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We evaluate the degree of quantum correlation between two fermions (bosons) subject to continuous-time
quantum walks in a one-dimensional (1D) ring lattice with periodic boundary conditions. In our approach,
no particle-particle interaction is considered. We show that the interference effects due to exchange symmetry
can result into the appearance of nonclassical correlations. The role played onto the appearance of quantum
correlations by the quantum statistics of the particles, the boundary conditions, and the partition of the system
is widely investigated. Quantum correlations have also been investigated in a model mimicking the ballistic
evolution of two indistinguishable particles in a 1D continuous-space structure. Our results are consistent with
recent quantum optics and electron quantum optics experiments where the showing up of two-particle nonclassical
correlations has been observed even in the absence of mutual interaction between the particles.
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I. INTRODUCTION

Quantum walks (QW) describe the random walk behavior
of a quantum particle [1]. Due to quantum mechanics effects,
such as the coherent superposition of wave functions and
interference, QW exhibit a qualitatively different behavior
with respect to classical random walks, such as the ballistic
propagation of the wave function instead of the diffusive
behavior exhibited by the classical probability distribution
[2]. Quantum effects make QW extremely promising for
the implementation of more efficient and faster research
algorithms than the protocols commonly adopted in the
classical computation [3–5]. Due to their potential application
in quantum information science, simple models of QW have
been investigated and physically implemented in various
physical systems ranging from quantum optics [6–8] to nuclear
magnetic resonance setups [9,10].

Two kinds of QW are considered in the literature: discrete-
time quantum coined walks and continuous-time quantum
walks (CTQW). In the former, a two-level state, the so-
called coin, rules the unitary discrete-time evolution of a
particle moving in a lattice of sites. On the other hand, for
CTQW the evolution of the particle is continuous in time
and it is only determined by a Hamiltonian whose terms
represent transitions among the lattice sites. CTQW have
successfully been implemented in lattice waveguide systems
[6–8], where the appearance of nonclassical correlations has
been observed for two-photon input states [6,8]. Indeed, due to
indistinguishability of the photons, probability amplitudes of
two-particle wave functions can interfere, thus leading to the
formation of correlations with no particle-particle interaction.
Interference effects have also been successfully detected in
the so-called electron quantum optics experiments, namely
quantum-optics like experiments with electrons in solid-state
systems, where many-particle effects play a key role [11,12].
Recent developments in nanofabrication technology have
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allowed exploiting the ballistic electron transport along chiral
edge states at integer quantum Hall regime for the experi-
mental realization of Mach-Zehnder and Hanbury Brown–
Twiss interferometers [11,12]. In these studies, two-particle
Aharanov-Bohm oscillations, due to exchange symmetry, have
been related to the degree of quantum correlation between
the charge carriers, even if electron-electron interaction is not
taken into account [13].

In the last decade, the notion of quantum correlations (QC)
as a fundamental source for the implementation of quantum
information algorithm and commonly referred to as entan-
glement has been widely investigated in systems of identical
particles [14–18]. Indeed, its quantification is certainly crucial
for understanding a number of physical phenomena involving
correlated indistinguishable subsystems. The main difficulties
appearing in the definition of a criterion able to classify and
quantify the amount of QC among indistinguishable particles
are closely related to exchange symmetry which requires the
symmetrization or the antisymmetrization of the quantum
wave functions describing bosons or fermions, respectively.
Different approaches have been used to estimate the degree
of nonclassical correlation in bipartite systems of identical
particles [14–16]. The Schliemann criterion relies on the
fermionic analogous of the Schmidt decomposition, namely
the Slater decomposition [14]. In the approach developed
by Zanardi [15], the entanglement is evaluated in terms
of the QC between modes by mapping the Fock space
of the modes themselves into qubit states. In the criterion
proposed by Wiseman and Vaccaro [16,18], the entanglement
of the particles is a sort of accessible entanglement (i.e.,
the maximum amount of nonclassical correlations which
can be extracted from the system by means of local op-
erations and then transferred into conventional quantum
registers).

While the correlation between position and coin degrees
of freedom of particles has been widely investigated in
discrete-time quantum walks [1,19–21], an exhaustive analysis
of the building up of the QC in CTQW of identical particles
is still lacking. The appearance of nonclassical correlations in
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two-particle quantum optics CTQW setups has been discussed
only qualitatively [6,8]. The aim of this work is to provide an
accurate analysis of the quantum correlation created in the
CTQWs of two identical particles (both fermions and bosons)
in a one-dimensional (1D) system. Specifically, we will first
examine the diffusion of two fermions (bosons) in a lattice
of sites with periodic boundary conditions, in order to study
the development of nonclassical correlations in simple models
mimicking experimental quantum optics and electron quantum
optics setups. Then, we will analyze such a system in the limit
of a large number of lattice sites, with a vanishing intersite
distance, thus resulting in the free propagation of two identical
particles along a 1D structure.

Our model does not take into account any kind of
particle-particle interaction, so that the time evolution of the
two-particle quantum state involving exchange symmetry is
essentially ruled by single-particle Hamiltonians describing
CTQW. In this way, the appearance of QC is only related
to two-fermion (-boson) amplitude interference due to the
quantum statistics of the particles involved in the process.
In this work, in order to estimate the degree of nonclassical
correlation between the positions of the particles, we adopt the
criterion proposed by Wiseman and Vaccaro [16,18]. In fact,
such a criterion, unlike the approach developed by Schliemann
[14], behaves correctly under one-site (local) and two-site
(nonlocal) transformations. Furthermore, its use does not lead
to the violation of the local number of particles superselection
rule, as may happen in the case of the procedure proposed by
Zanardi [15].

The paper is organized as follows. In Sec. II, we describe
the theoretical approach used to quantify the QC between two
indistinguishable particles. In Sec. III, we study the CTQW
of two fermions (bosons) in a lattice of sites with periodic
boundary conditions and then estimate the time evolution of
the amount of QC of the system. In Sec. IV, we numerically
evaluate the degree of nonclassical correlation between two
identical particles free propagating in a 1D structure. Finally,
conclusions and discussions are given in Sec. V.

II. EVALUATOR OF THE DEGREE OF QUANTUM
CORRELATIONS IN BIPARTITE SYSTEMS

OF IDENTICAL PARTICLES

Here, we briefly illustrate the theoretical criterion adopted
to evaluate the degree of quantum correlation in two-fermion
and -boson systems. It is based on the notion of entanglement
of particles proposed by Wiseman and Vaccaro [16,18].

By using the mode-occupation representation, an arbitrary
pure two-fermion (boson) state in an M-mode system can be
expressed as

|�〉 =
∑
{n}

c{n}|{n}〉, (1)

where the integers ni of the set {n} = n1, . . . ,ni, . . . ,nM

satisfy the relation n1 + · · · + ni + · · · + nM = 2. Here, the
ket |{n}〉 indicates the state vector in the Fock space with ni’s
particles in the ith mode, and the c{n}’s are the coefficients of
the linear superposition. While for bosons ni’s range from 0

to 2, for fermions the occupations numbers are restricted to be
0 or 1 due to the Pauli exclusion principle.

As argued by some authors [15], a formal equivalence
between the space of the occupation-number states and the
tensor product space of the modes can be established. In this
way, the occupation number of each mode constitutes a distinct
state of the mode itself. In the Zanardi approach [15], the
amount of nonclassical correlations between the occupation
numbers of the modes controlled by two parties of the system,
namely Alice and Bob, represents the so-called entanglement
of modes. The latter does not always constitute a valid measure
of the true degree of quantum correlation between Alice and
Bob [18]. As a matter of fact, not only the entanglement of
modes can give values different from zero even when applied
to suitable single-particle states [22], but also it does not
take into account the local-particle number superselection rule
(LPNSR) [16]. Indeed to fully exploit the QC between modes,
Alice and Bob, at least in principle, must be able to arbitrarily
measure and manipulate their local systems. Unless each party
of the systems possesses a definite number of particles, this
will lead to a violation of the LPNSR.

The Wiseman and Vaccaro criterion satisfies the LPNSR.
In such an approach, in addition to the two identical particles
shared by Alice and Bob, their quantum state |�〉 involve
a standard quantum register, namely a set of distinguishable
qubits. The entanglement of the particles EP is defined as
the maximum amount of QC that Alice and Bob can produce
between their standard quantum registers by means of local
operations. As a consequence of the LPNSR, EP , in place of
the QC between the modes that Alice and Bob have access to,
is given by

EP (|�〉) =
2∑

n=0

PnEM (|�(n)〉), (2)

where |�(n)〉 is the projection of the quantum state |�〉,
describing the global system, onto the Fock subspace where
Alice controls n particles and Bob the remaining (2 − n) ones.
Pn = 〈�(n)|�(n)〉 is the probability for Alice (Bob) of finding
n (2 − n) particles as a consequence of a measure of the
local number of particles, while EM is the degree of quantum
correlation between the two sets of modes, each controlled
by a party of the system. In other terms, EP is the weighted
sum of the entanglement of modes when the local particle
number is measured. It is worth noting that EP depends upon
the partition of the system, that is upon which modes Alice
and Bob control. From this point of view, different partitions
of the system can lead to different values of EP .

For two-particle pure states, the expression given in Eq. (2)
takes a simple form. Indeed, only some quantum states |�(n)〉,
belonging to the Fock subspace with a fixed local number of
particles, give a nonvanishing contribution to entanglement.
Specifically, let us consider the case of the set of states |�(0)〉
where the local number of particles possessed by Alice is zero.
Any state of such a set can be written, in the mode occupation
number, as |0nA

〉 ⊗ |2nB
〉 and it is separable, that is, it can be

factorized in a term describing Alice with no particle and in a
term describing Bob with two particles. This implies that the
contribution of |�(0)〉 to EP is zero. Analogously, the amount
of quantum correlations stemming from a set of states |�(2)〉
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is also zero. This implies that the bipartite entanglement is
nonvanishing only when both Alice and Bob have one particle,
that is, only for the quantum states belonging to the set |�(1)〉.
As shown in Ref. [16], EP becomes

EP = P1ε
[
ρ

(1)
A

]
, (3)

where ε indicates an arbitrary quantum binary entropy and

[
ρ

(1)
A

]
kk′ = 〈�(1)|a†

kak′ |�(1)〉∑
l〈�(1)|a†

l al|�(1)〉
(4)

is the single-particle matrix describing the subsystem con-
trolled by Alice. The latter is obtained from |�(1)〉 by means
of the creation (annihilation) operators a

†
k(ak) acting on Alice’s

modes only. The form of EP given in Eq. (3) holds for either
bosons or fermions.

III. TWO-PARTICLE CONTINUOUS-TIME QUANTUM
WALKS ON 1D RING LATTICES

In this section, a model of two-fermion and two-boson
CTQW in 1D graphs is solved by means of analytical
and numerical techniques for a small and large number of
nodes, respectively. The time evolution of the wave function
describing the system is then used to estimate the degree
of quantum correlation according to the criterion given in
Eq. (3).

Here we examine CTQW on a 1D ring lattice of N sites
(with N even) with periodic boundary conditions. In agreement
with previous single-particle investigations [23], the topology
of the graphs here considered is simple in the sense that
each node is connected to its two first neighbors. Even if
more complex networks, among which two-dimensional (2D)
lattices [24] or graphs with larger connectivity [25], could be
examined, our model is good enough to describe experimental
implementations of CTQW, such as two-photon transport in
an array of waveguide lattices where nonclassical correlations
appear. Therefore, though simple, it represents a valid tool to
analyze the amount of QC appearing in two-particle CTQW.

The two-particle Hamiltonian describing the dynamical
evolution of the system is given by

H = H0
α + H0

β, (5)

where H0
α(β) is the single-particle Hamiltonian acting on the

particle α(β):

H0
α(β)|j 〉α(β) = γ (2|j 〉α(β) − |j − 1〉α(β) − |j + 1〉α(β)). (6)

|j 〉α(β) indicates the quantum state describing the particle
α(β) localized in the j node and forming a complete,
orthonormalized basis set, which spans the whole accessible

Hilbert space. γ denotes the intersite transmission rate. Due
to the periodic boundary conditions, here we assume that the
node N + 1 coincides with node 1. Equation (6) is the discrete
version of the Laplacian, and, in turn, the discrete version of
the Hamiltonian describing the free propagation of a particle
in a lattice.

Given the form of the two-particle Hamiltonian in Eq. (5),
single-particle dynamics allows one to estimate the time
evolution of the two-fermion and -boson system in the basis
states given by

|jk〉f = 1√
2

(|jk〉αβ − |kj 〉αβ), (7)

and

|jk〉b =
{

1√
2
(|jk〉αβ + |kj 〉αβ) : j �= k,

|jj 〉αβ : j = k,
(8)

respectively. Specifically in order to solve the model, which
can be interpreted as the free propagation of two identical
particles in a periodic system, we adopt the Bloch function
approach, in analogy with the method commonly used in solid-
state physics [23]. The single-particle Bloch states

|φn〉 = 1√
N

N∑
j=1

exp

(
− i

2πn

N
j

)
|j 〉 (9)

are eigenstates of the Hamiltonian of the Eq. (6) with eigen-
values En = 2γ (1 − cos 2πn

N
), and can be used to evaluate

the coefficients describing the transition amplitude λk,j (t) =
〈k|e−iH0t |j 〉 from the state |j 〉 at t = 0 to state |k〉 at time t .
Indeed the latter can be expressed as

λk,j (t) =
N∑

n=1

N∑
m=1

〈k|φn〉〈φn|e−iH0t |φm〉〈φm|j 〉

= exp (−2iγ t)

N

N∑
n=1

exp

[
2iγ t cos

(
2nπ

N

)]

× exp

(
− i

2πn

N
(k − j )

)
, (10)

where is set h̄ = 1.
By using the two-particle basis states written in Eqs. (7)

and (8), we can evaluate, in terms of the above single-particle
coefficients, the two-boson (-fermion) transition amplitude
μf (b)

ks,jr (t), from the state |jr〉f (b) at t = 0 to state |ks〉f (b) at
time t . It reads

μf
ks,jr (t) = λk,j (t)λs,r (t) − λk,r (t)λs,j (t), (11)

and

μb
ks,jr (t) =

⎧⎪⎨
⎪⎩

λk,j (t)λs,r (t) + λk,r (t)λs,j (t) k �= s and j �= r
√

2λk,j (t)λs,r (t) k = s or j = r

λk,j (t)λs,r (t) k = s and j = r

. (12)
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Once the time evolution of the two-particle quantum state
|jr〉f (b) describing two fermions (bosons) initially localized
in the nodes j and r is known, the dynamics of the build-up
of the amount of quantum correlation can be quantified by
using Eq. (3). To this aim, different partitions of the system
can be considered. Note that here the modes of the system
correspond to the sites of the lattice. In the simplest case,
Alice controls the first half of the lattice and Bob the second
one, namely A = {1, . . . ,N

2 } and B = {N
2 + 1, . . . ,N}. Thus,

the single-particle density matrix of Alice’s subsystem given
in Eq. (4) takes, for the initial state |jr〉b(f ), the form,

[
ρ(t)(1)

A

]
kk′ =

∑N

s= N
2 +1 μ∗

ks,jr (t)μk′s,jr (t)∑ N
2
k=1

∑N

s= N
2 +1 |μks,jr (t)|2

. (13)

Its quantum entropy can be quantified by means of the von
Neumann entropy,

εvN (t) = −Tr
{[

ρ(t)(1)
A

]
ln

[
ρ(t)(1)

A

]}
, (14)

which represents an appropriate evaluator of the degree of the
correlation in standard bipartite systems, and this can be used
in Eq. (3) in order to estimate of the entanglement of particles.
For sake of completeness, in the following, other possible
partitions of the system will be examined, where Alice and
Bob can access nonadjacent modes. The evaluation of EP

in such cases requires one to calculate again both the single-
particle density matrix of the subsystems and the probability of
finding one particle in each subsystem, the latter being closely
dependent upon the specific partition.

A. Small number of nodes

Here we study, by means of analytical techniques, the
quantum correlation dynamics for the case of a 1D ring
lattice composed of a small number of sites. Specifically,
we take N = 4. Various initial configurations of the bosonic
(fermionic) system, that is, the states describing at time t =
0 the two identical particles, should be examined. However,
due to the periodic boundary conditions of the lattice under
investigation, the number of initial setups of the system
resulting into different time evolutions of the QC turns out
to be smaller than the dimension of the Fock space of the
two-fermion (-boson) system.

First, let us analyze the case of particles initially localized
in two different nodes for the partition A = {1,2} and B =
{3,4}. Three configurations are possible: Both particles occupy
the Alice (Bob) modes, that is, the quantum state |12〉f (b)

(|34〉f (b)); one particle is in an Alice site and the other one
is localized in the adjacent site controlled by Bob, the state
|23〉f (b) or |14〉f (b), or in the nonadjacent Bob mode, the state
|13〉f (b) or |24〉f (b). Thus, to analyze the role of the initial
configuration of the system into the building up of nonclassical
correlations, we just need to evaluate the time evolution of the
quantum states |12〉f (b), |23〉f (b), and |13〉f (b). As shown in the
previous section, the latter can be calculated from the single-
particle amplitude transitions given in Eq. (10). In agreement
with the results of Ref. [23], these, after a straightforward

calculation for the case of N = 4, can be expressed as

λk,k(t) = exp(−2iγ t) cos2 γ t,

λk±1,k(t) = λk,k±1(t) = exp(−2iγ t)i sin γ t cos γ t, (15)

λk±2,k(t) = λk,k±2(t) = − exp(−2iγ t) sin2 γ t.

By inserting the above coefficients in Eqs. (11) and (12), and
then by using the expressions (13) and (14), we can quantify
the building up of QC for the initial quantum states of interest.
We find that

EP (|ψ (12)〉f (b))A={1,2} = 1

2
sin2(2γ t) ln 2,

EP (|ψ (13)〉f (b))A={1,2} = − [cos(2γ t) − 1]2

4

× ln

[
[cos(2γ t) − 1]2

2[1 + cos2(2γ t)

]
(16)

− [cos(2γ t) + 1]2

4

× ln

[
[cos(2γ t) + 1]2

2[1 + cos2(2γ t)]

]
,

EP (|ψ (23)〉f (b))A={1,2} = 0.

In Fig. 1, we report the time evolution of EP , namely, the
amount the QC, for a two-fermion (-boson) system prepared
in different initial conditions. For the sake of simplicity, in
this section we call time the adimensional parameter γ t .
In agreement with theoretical predictions, at t = 0, EP is
null, thus indicating the absence of QC between the two
particles localized in different nodes. After initial time, EP

remains zero for the input state |ψ (23)〉f (b), while it exhibits
oscillations, between 0 and ln 2/2, with a period of π/2 for the
other two input states |ψ (12)〉f (b) and |ψ (13)〉f (b). While in the
former initial configuration the dynamics of the two-particle
wave function does not result into building up of nonclassical
correlations, in the latter cases the interference effects are able

0 2 4 6 8 10
γ t

0

0.1

0.2

0.3

0.4

0.5

E
P

|Ψ(12)〉
f(b)

|Ψ(13)〉
f(b)

FIG. 1. (Color online) Time evolution of EP for three input
states, namely |12〉f (b) (solid line), |13〉f (b) (dashed line), with Alice
controlling sites {1,2} and Bob {3,4}. For the sake of clarity, the
entanglement dynamics of the initial state |23〉f (b) has not been
reported being always null.
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to produce QC, whose periodic behavior is strictly related
to the evolution of the system in a ring lattice with a small
number of nodes with periodic boundary conditions. Here,
the highest value of EP is ln 2/2, that is, the half of the
maximum degree of quantum correlation achievable between
two particles, each one in a two-mode subsystem. It is worth
noting that, for the partition considered, EP turns out not to
depend upon the quantum statistics of the particles involved
in the process. Such a result is somehow unexpected due to
the different number of states accessible to the two systems
during the time evolution. Indeed, unlike fermions, bosons can
occupy simultaneously the same node, that is, the transition
probability to the states |kk〉b’s does not vanish as time goes
by. Even if the time evolution of the bosonic wave function
differs from the fermionic one, for the specific partition here
considered the two-particle interference effects lead to the
same single-particle features, as, in particular, the reduced
density matrices of the subsystems. As a consequence, also
the amount of QC is the same.

The results reported above are closely related to how the
nodes of the ring lattice are assigned to Alice and Bob. If we
move from the partition A = {1,2} and B = {3,4} to the one
A = {1,3} and B = {2,4}, not only the QC turn out to depend
upon the quantum statistics of the particles, but the highest
degree of correlation can also be reached. Let us examine
the time evolution of two bosons, or two fermions, initially
occupying nodes 1 and 3. After a straightforward calculation,
we obtain

EP (|ψ (13)〉f )A={1,3} = ln 2 sin2(2γ t) and
(17)

EP (|ψ (13)〉b)A={1,3} = 0.

While in the two-boson system no correlation is created,
in the two-fermion one EP exhibits periodic oscillations and
reaches the maximum value, namely ln 2, for γ t = (2k +
1)/(4π ) with k ∈ N.

As stated above, Bose-Einstein statistics allows for the
localization of two bosons on the same site. When the latter is
taken as the initial configuration of the two-particle system, the
amount of nonclassical correlations built up does not change
with time and remains equal to zero for any partition examined.
This means that time-evolved states of the kind |kk〉b can
always be factorized in terms of a one-particle state in the
Alice modes and one in the Bob modes. Thus, an initial bosonic
bunching prevents the appearance of QC in CTQW.

B. Large number of nodes

For a lattice with N sites, the dimensions of the Hilbert
space for the two-boson and two-fermion systems are N (N +
1)/2 and N (N − 1)/2, respectively. This makes the analytical
techniques inefficient for large N both to solve the two-particle
dynamics and to evaluate the degree of quantum correlation.
For this reason, we implemented a numerical approach that,
once known the time evolution of the state, allows one first to
diagonalize the single-particle reduced density matrix given
in Eq. (13), and then to estimate, at any time, EP . Such an
approach is used here to quantify the amount of quantum
correlations stemming from two-particle CTQW in a 1D ring

0            20            40 60 80
γ t
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0.3
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E
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60 80
γ t

0

0.1

0.2

0.3

0.4

E P
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0            20            40

FIG. 2. (Color online) Time evolution of EP for the CTWQ of
two fermions and two bosons, in the left and right panel, respectively,
on a lattice with a number of sites N = 50 (dashed line), N = 70
(solid line), and N = 100 (dotted line). Both systems are initially
prepared in the state |N

2
N

2 + 1〉f (b).

lattice with N = 50,70,100, when Alice accesses the first half
of the lattice and Bob the second half (namely, the partition
A = {1 . . . ,N/2},B = {N/2 + 1, . . . ,N}).

Figure 2 displays the time evolution of EP for two fermions
(bosons) initially localized in two adjacent sites belonging
to different subsystems, corresponding to the input state
|N/2,N/2 + 1〉f (b). As expected, at t = 0 the amount of QC is
zero. As time goes by, EP increases and saturates, apart from
small oscillations, around a specific value for a time interval
γ τ which is found to be linearly dependent upon the number
N of lattice nodes. These oscillations are closely related to the
two-particle interference effects stemming from the spreading
of the spatial wave packets in a discrete lattice. In the limit
of large values of N , the fluctuations disappear leading to a
smoother behavior, as it will be shown in the next section. After
a time γ τ , EP shows first a rapid increase and then again large
fluctuations around a new saturation value.

In order to get a better insight into the appearance of QC,
we focus on the time-evolution of the two-fermion (-boson)
correlation function 

f (b)
kj (t) [6], namely the square modulus

of the coefficient μ
f (b)
kj, N

2
N
2 +1

(t). To this aim, we report in Fig. 3

the values of 
f (b)
kj (t), at four different times, for the case of

a ring lattice with 70 nodes. At initial time, the two fermions
(bosons) are localized in two adjacent sites (taken in the middle
of the lattice) in a separable state. After a relatively short time,
their wave packets overlap and interfere thus leading to the first
rise of EP . Then the fermions (bosons) freely propagate along
the lattices exhibiting spatial antibunching (bunching) [26],
as shown by the two peaks positioned along the antidiagonal
(diagonal) of the correlation matrix [see Figs. 3(b) and 3(c)].
During this ballistic evolution, the amount of QC exhibits
small fluctuations around a given value in the interval γ τ .
The latter can now be viewed as a characteristic parameter
of the dynamics of the system. Indeed, it corresponds to
the traveling time of the two particles along half a lattice
before the transmission through periodic boundary conditions
occurs. As expected, γ τ is independent upon the quantum
statistics of the particles. At longer times, the two-particle wave
function is transmitted by the periodic boundary conditions,
and their components interfere again creating additional QC.
As reported in Fig. 3(d), at γ t = 40, f (b)

kj reveals a checkered
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FIG. 3. (Color online) (Left panels) Two-particle correlation function 
f

kj of the two-fermion CTQW in a ring lattice with N = 70 evaluated
at four different times: γ t = 0 (a); γ t = 5 (b); γ t = 10 (c); and γ t = 40 (d). The input state is |N

2
N

2 + 1〉f . At short times, fermions exhibit
ballistic evolution with spatial antibunching. At the final time, as a consequence of the interference stemming from the transmission through
periodic boundary conditions, the two-particle wave function is scattered along the whole lattice. (Right panels) Two-particle correlation
function b

kj of the two-boson CTQW in a ring lattice with N = 70 evaluated at four different times: γ t = 0 (a); γ t = 5 (b); γ t = 10 (c);
and γ t = 40 (d). The input state is |N

2
N

2 + 1〉b. At short times, bosons propagate ballistically along the lattice showing spatial bunching. After
reaching the boundary, the transmission through the periodic boundary conditions induces the spread of the two-particle wave function all over
the lattice.

pattern where both fermions and bosons are scattered along
the whole lattice and EP oscillates in time.

The time evolution of EP deserves further comments. The
results reported here differ significantly from the ones found
for the case of a lattice with N = 4. First, QC depend now
upon the quantum statistics of the the particles considered,
though the qualitative behavior of EP of the two-fermion
and -boson systems is the same. Specifically, we find that the
degree of correlation between two bosons is always equal or
greater than the one of the fermionic system. Such a behavior
is at a first analysis counterintuitive. Unlike the two-fermion
dynamics, the bosonic bunching lowers the probability P1 of
finding each of the two particles in a different subsystem (see
Fig. 4). As a consequence, according to Eq. (3), the amount
of QC between two bosons should be lower than the one
created in the fermionic system. However, also the degree
of nonclassical correlation of the two-particle state describing
one particle in the Alice modes and the other one in the Bob
modes, and quantified by the von Neumann entropy, has to
be taken into account. In this case, the latter is larger for the
two-boson CTQW and the product P1εvN , namely EP , turns
out to be larger than the one corresponding to the two-fermion
system.

Furthermore, we find that the behavior in time of EP is not
periodic. Indeed, as expected, for lattices with a large number
of sites, the transmission through the boundary conditions does
not affect very much the time evolution of the two-particle
wave function. As a consequence the interference among
the different components of the wave function leads to a
nonperiodic behavior of the correlations. Thus, the effect of
the lattice periodicity on two-particle dynamics and the degree

of quantum correlation is lower for lattices with higher values
of N and should vanish in the limit of a very large N .

IV. TWO-PARTICLE FREE PROPAGATION IN 1D
SPACE-CONTINUOUS STRUCTURES

In this section, we numerically study the building up
of nonclassical correlations in the free propagation of two
identical particles in a 1D structure.

0 5 10 15 20 25 30
γ t

0

0.2

0.4

0.6

0.8

P1 (bosons)
εvN (bosons)
P1 (fermions)
εvN (fermions)

FIG. 4. (Color online) Probability P1 of finding each particle in
a different subsystem and von Neumann entropy εvN , both for two
bosons and the for two fermions as a function of time for the case of
a lattice ring with a number of nodes N = 50.
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The physical model here investigated consists of two
noninteracting massive fermions (bosons) traveling in a
space-continuous structure. The latter can be viewed as an
infinite lattice with vanishing intersite distance without the
interference effect stemming from the transmission through
the periodic boundary conditions. In other terms, we are
considering the continuous-space limit of the model examined
in the previous section. If the free propagation of massive
particles obeying the Bose-Einstein statistics constitutes a
helpful theoretical tool to investigate the appearance of QC
due to the bunching in a space-continuous structure, on the
other hand the fermionic system can also describe phenomena
of physical interest, like the electron diffusion in solid-state
systems.

The dynamics of the global system can be described by the
two-particle Hamiltonian:

H(x1,x2) = − h̄2

2m

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
, (18)

with m indicating the particle mass. Equation (18), that is,
the sum of two Laplacians, is the continuous version of
the Hamiltonian written in Eq. (5) for the CTQW of two
particles. Both of them are represented, at the initial time
t0, by a minimum-uncertainty wave packet that, in the space
representation, reads

φ±x0,k(x,t0) =
(

1

2πσ 2

)1/4

exp

(
ikx − (x ∓ x0)2

4σ 2

)
, (19)

where ±x0 is the mean position of the space wave packet
with variance σ , and k =

√
2mEk

h̄
with Ek kinetic energy of the

particle. Thus the two-fermion (-boson) initial wave function
�f (b)(x1,x2) can be written as

�f (b)(x1,x2,t0) = φx0,k1 (x1,t0)φ−x0,k2 (x2,t0)

− (+)φx0,k1 (x2,t0)φ−x0,k2 (x1,t0), (20)

with the normalization condition
∫ +∞
−∞ dx1

∫ +∞
x1

dx2|�b(f )

(x1,x2,t0)|2 = 1. The variance σ of the two single-particle
Gaussian wave packets and the distance |2x0| between their
centers are such that, at the initial time, their spatial overlap is
practically null.

Here we estimate the amount of QC between the spatial
degrees of freedom of the two particles. Specifically, we
assume that the space domain [−∞,0] is controlled by Alice,
while Bob controls to the spatial modes in the interval
[0, + ∞]. To quantify EP we adopt a numerical procedure.
In fact, even if the dynamics of the system could be evaluated
analytically, nevertheless the estimation of the time evolution
of EP as given in Eq. (3) would require involved calculations.
On the contrary, the implementation of a numerical approach,
exploiting the Crank-Nicholson finite difference scheme to
solve the two-particle time-dependent Schrödinger equation,
permits one to evaluate efficiently, at fixed time steps, the
buil-up of the nonclassical correlations. Here EP is evaluated
by means of the linear entropy εL, in place of the von
Neumman entropy, in order to make the numerical procedure
less demanding, as shown in Ref. [27]. Given the relation

εL = 1 − Tr(ρ2
A), EP reads

EP = P1
(
1 − Tr

(
ρ2

A

)) = P1

(
1 −

∫ 0

−∞
dxρ2

A(x,x)

)
, (21)

where the space-continuous nature of the model is ex-
plicitly taken into account. In the above expression,
the probability P1 of finding one particle in the Al-
ice side and the other in the Bob side, is given by∫ 0
−∞ dx1

∫ +∞
0 dx2|�b(f )(x1,x2,t)|2, while the single-particle

density matrix describing the subsystem controlled by Alice is
ρA(x,x ′) = (1/P1)

∫ +∞
0 dx ′′�b(f )(x,x ′′,t)�∗

b(f )(x
′,x ′′,t) with

x,x ′ ∈ [−∞,0].
We examine the model for two different initial conditions:

particles with the same velocity, that is, k1=k2, and particles
with opposite velocities, that is, k1=− k2. The latter case
mimics a collision event between two noninteracting identical
particles.

The former case can be thought as the space-continuous
analogous of the CTQW on a site lattice with two particles
initially localized in specific sites. At the initial time, both
Alice and Bob have a particle: The centers of the two
single-particle wave functions are located in different spatial
subdomains and the space overlap between the wave functions
is zero. This makes the degree of the nonclassical correlation
vanishing, as shown in the left panel of Fig. 5. As time
increases, single-particle wave packets spread out making the
spatial overlap between them not negligible anymore. Now
the probability amplitudes of the two-fermion (-boson) wave
function �b(f )(x1,x2) can interfere and quantum correlation
builds up. The latter increases with time and finally reaches
a stationary value depending upon the quantum statistics of
the particles involved: It is higher for bosons. Apart from
the absence of oscillations which can be related to the space-
continuous structure, the time evolution of EP of the fermionic
(bosonic) system is, at least at short times, in qualitative
agreement with the dynamics of the quantum correlations
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FIG. 5. (Color online) (Left panel) EP as a function of the time for
two fermions (dashed line) and two bosons (solid line) moving with
the same velocity. Such a condition is equivalent to the one where
the particles have zero initial kinetic energy. In order to make the
numerical implementation of wave-function dynamics simple, here
we considered Ek = 0. The particles are initially described by two
wave packets with initial variance σ = 5 nm and x0 = 20 nm. (Right
panel) EP as a function of the time for two fermions (dashed line) and
two bosons (solid line) moving in opposite directions. The particles
have the same kinetic energy Ek = 10 meV, and, at the initial time,
are also described by two wave packets with variance σ = 5 nm and
x0 = 20 nm. In all the numerical calculations we take m =
9.1×10−31Kg.
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appearing in the model investigated in the previous section.
At longer times, due to the different boundary conditions of
the two systems, a discrepancy between the two entanglement-
time behavior is observed. While in the ring lattice the
two-particle wave function is transmitted through periodic
boundary conditions and this results in a further increase of
the amount of quantum correlations, the space-continuous
structure is supposed to be infinite and the wave packets
can only spread with no additional interference effect due to
transmitted components.

For the case of two fermions (bosons) running in opposite
directions, QC exhibit a peculiar behavior (see the right panel
of Fig. 5). EP increases while the two fermions (bosons) are
approaching each other. Specifically, when the centers of the
two wave packets reach the minimum distance, two-particle
interference gives the maximum amount of quantum correla-
tions. Finally, EP drops again to zero once the particles get far
apart and the corresponding Gaussian wave packets exhibit a
negligible spatial overlap. This behavior is in agreement with
previous analyses, adopting other entanglement criteria, of the
dynamics of the QC stemming from carrier-carrier scattering
events in semiconductor nanostructures [28,29].

V. CONCLUSIONS

Recent experiments addressed the appearance of non-
classical correlations in CTWQ of photon pairs in coupled
waveguide lattices [6,8]. Such correlations have been related
to nontrivial interference effects due to the quantum statistics
of the particles. In this perspective, an accurate analysis of the
quantum correlation created in few-particle CTQW models is
undoubtedly of great interest given their experimental feasibil-
ity and potential application in quantum communication and
quantum computation theory [6,8].

Here, we investigated the appearance of QC in CTWQ of
two noninteracting bosons (fermions) on a 1D ring lattice with
periodic boundary conditions. Specifically, in our model the
topology of the graphs examined is very simple, that is, each
node is connected to its first neighbors and this permits one
to express the Hamiltonian, ruling the two-particle dynamics,
in terms of the so-called discrete single-particle Laplacian.
Indeed, our CTQW well describes the free propagation of
two noninteracting identical particles in a periodic system.
Given the key role played by the exchange symmetry into
the emergence of nonclassical correlations, their quantitative
evaluation in our physical system required the use of a suitable
criterion which takes into account the indistinguishability of
the particles. To this purpose we adopted the Wiseman and
Vaccaro approach [16] which allowed estimating the degree
of quantum correlation between two parties of the system
(each possessing one particle and accessing to a given set of
nodes) with no violation of the particle local number superse-
lection rules, as occurring in the preparation, manipulation,
and measurement of the experimental implementations of
CTQW.

In agreement with the theoretical predictions [6,8], results
indicate that the building up of QC in our system is due to the
two-particle interference effects between the propagating wave
packets. Indeed, the time evolution of the quantum system

affects the degree of correlation. Specifically, we find that,
for CTQW on discrete ring lattices with a small number
of nodes, the transition amplitudes depend sinusoidally on
time due to the transmission of the wave packets through
periodic boundary conditions. As a consequence, QC also
exhibit a time-periodic behavior. They are also affected by
the quantum statistics of the particles involved in the process
and by the partition of the system. Specifically, the production
of the maximum degree of nonclassical correlation between
the subsystem accessing nonadjacent nodes occurs, cyclically,
only for two-fermion systems initially prepared in a suitable
input state. Such a result seems consistent with experiments in
electron Hanbury Brown-Twiss interferometers showing the
emergence of QC between two identical charge carriers at
couples of nonadjacent drains [12,13]. For two-particle CTQW
on a 1D discrete ring lattice with a large number of nodes,
the time evolution of the quantum system is less affected by
transmission through periodic boundary conditions and this
leads to the disappearance of the cyclical behavior of the
QC. In particular, the latter are still related to the interference
stemming from the overlap of the wave packets, but they turn
out to be almost insensitive to the quantum statistics of the
particles, apart from small fluctuations related to the discrete
nature of the ring lattice.

Finally, we analyzed the building up of QC in the free
propagation of two identical particles in a 1D structure. Such
a system can be considered the continuous-space limit of a 1D
ring lattice with a large number of sites and vanishing intersite
distance. It provides a useful guideline both to validate the
results found for the discrete case and to compare our outcomes
with the analyses of nonclassical correlations appearing in
scattering events in 1D semiconductor structures [28,29].
Two different initial conditions have been examined: particles
moving with the same velocity in the same or in the opposite
direction. In the former case, we find that the QC of the
system first show an initial increase due to the interference
of the spreading single-particle wave packets and then, for
sufficiently long times, reach a stationary value, different from
zero, depending upon quantum statistics. Such behavior is in
qualitative agreement with the one found for CTQW in the 1D
ring lattice (apart from the absence of the effects related to
the transmission through periodic boundary conditions and to
the discreetness of the lattice). On the other hand, for the
case of particles propagating one against the other, as the
fermions (bosons) get closer, the degree of quantum correlation
increases and attains its maximum values in correspondence
of the maximum spatial overlap of the single-particle wave
packets. When the two particles get away from each other,
the amount of QC decreases until it vanishes. Such a behavior
appears to be consistent with the time evolution of the entangle-
ment created in binary collisions of electrons in semiconductor
structures [28,29].

Despite the simplicity of the graphs here investigated, it
seems reasonable to assume that the results obtained are
representative, at least qualitatively, of the behavior of the
QC between two indistinguishable particles in more complex
structures, such as 2D lattices or graph with larger connectivity.
Thus, the analysis here reported represents a valuable starting
point to investigate the emergence of nonclassical correlations
in other models of or fermionic or bosonic CTWQ, where also
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particle-particle interaction could be considered. Furthermore,
it would be of interest to insert in such models environmental
noise such as the one due to lattice disorder. Indeed, the latter

can be viewed as a decoherence source and, as a consequence,
should result into peculiar phenomena, among which the
sudden death or the revival of quantum correlations.
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