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We describe and expand upon the scalable randomized benchmarking protocol proposed in Phys. Rev. Lett. 106,
180504 (2011) which provides a method for benchmarking quantum gates and estimating the gate dependence
of the noise. The protocol allows the noise to have weak time and gate dependence, and we provide a sufficient
condition for the applicability of the protocol in terms of the average variation of the noise. We discuss how
state-preparation and measurement errors are taken into account and provide a complete proof of the scalability
of the protocol. We establish a connection in special cases between the error rate provided by this protocol and
the error strength measured using the diamond norm distance.
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I. INTRODUCTION

Quantum computers promise an exponential speedup over
known classical algorithms for problems such as factoring
integers [1], finding solutions to linear systems of equations
[2], and simulating physical systems [3,4]. Quantum error-
correction methods have been devised for preserving quantum
information in the presence of noise [5–7], leading to the
theoretical development of a fault-tolerant theory of quantum
computing [8–10]. Such a theory promises that quantum com-
putation is possible in the presence of errors, provided the error
rate is below a certain threshold value which depends on the
particular coding scheme used as well as the error model. This
potential has motivated much experimental research dedicated
to building a functioning quantum-information processor, with
various proposals for possible implementations [11–14].

One of the main challenges in building a quantum-
information processor is the nonscalability of completely char-
acterizing the noise affecting a quantum system via process
tomography [15,16]. A complete characterization of the noise
is useful because it allows for the determination of good
error-correction schemes, and thus the possibility of reliable
transmission of quantum information. Since complete process
tomography is infeasible for large systems, there is growing
interest in scalable methods for partially characterizing the
noise affecting a quantum system [17–24].

In Ref. [25] we provided a scalable (in the number n
of qubits comprising the system) and robust method for
benchmarking the full set of Clifford gates by a single
parameter using randomization techniques. The concept of
using randomization methods for benchmarking quantum
gates, commonly called randomized benchmarking (RB), was
introduced previously in Refs. [18,26]. The simplicity of
these protocols has motivated experimental implementations
in atomic ions for different types of traps [26–28], NMR
[29], superconducting qubits [30,31], and atoms in optical
lattices [32]. Unfortunately there are several drawbacks to the
methods of Refs. [18,26]. For instance [18] assumes the highly
idealized situation of the noise being independent of the chosen
gate, in which case the fidelity decay curve averaged over
randomly chosen unitaries takes the form of an exponential
(in the sequence length). The protocol of Ref. [26] is limited

to the single-qubit case and fits the observed fidelity decay
averaged over sequences of single-qubit gates (where each gate
consists of a random generator of the Clifford group composed
with a random Pauli operator) to an exponential. The decay
rate is assumed to provide an estimate of the average error
probability per Clifford gate. However, conditions for when
the assumption of an exponential decay is valid, specifically in
the realistic case of gate-dependent and time-dependent noise,
were not given. Such a set of conditions would be useful
because it is easy to construct pathological examples where
the estimated decay rate is not reliable. An unphysical but
intuitively simple example is when the error is gate dependent
and equal to the exact inverse of the target gate. The error
rate given by the protocol is always equal to zero; however, in
actuality there is substantial error on each gate (see Sec. IV B).
Other important shortcomings of these previous RB protocols
are that extensions to multiqubit systems are either not scalable
or not well understood, and it is unclear how to explicitly
account for state-preparation and measurement errors.

In this paper we give a full analysis of the scalable
multiqubit randomized benchmarking protocol for Clifford
gates we proposed in Ref. [25], which overcomes the short-
comings described above. We note that since one “gate” in
the single-qubit protocol of Ref. [26] consists of a random
Clifford generator as well as a random Pauli operator, the cost
of implementing a gate in this scheme is 2. In the single-qubit
case, our RB scheme can be implemented by explicitly writing
down the 24 elements of the Clifford group decomposed
into a sequence of the same generators that are randomly
applied in Ref. [26]. The average number of generators in
such a decomposition is 1.875, which implies that even for the
single-qubit case our protocol takes no more time to implement
than that of Ref. [26]. Hence, since our protocol is scalable
and produces an error estimate which overcomes the various
shortcomings listed above, it is reasonable to apply it over
other existing schemes regardless of the number of qubits
comprising the system.

We provide a detailed proof that our protocol requires at
most O(n2) quantum gates, O(n4) cost in classical preprocess-
ing (to select each gate sequence), and a number of single-shot
repetitions that is independent of n. As well, we give a thorough
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explanation of the perturbative expansion of the time- and gate-
dependent errors about the average error that leads to the fitting
models for the observed fidelity decay. Our zeroth-order model
directly shows that for time-independent and gate-independent
errors the fidelity decay is indeed modeled by an exponential
decay, and the decay rate produces an estimate for the average
error rate of the noise.

We derive the first-order fitting model which takes into
account the first-order correction terms in the perturbative
expansion and provide a detailed explanation of the conditions
for when this is a sufficient model of the fidelity decay
curve. The fitting formula shows that gate-dependent errors
can lead to a deviation from the exponential decay (defining a
partial test for such effects in the noise), which was illustrated
via numerical examples in Ref. [25]. State-preparation and
measurement errors appear as independent fit parameters in
the fitting models, and we discuss when the protocol is robust
against these errors. In the case of Pauli errors we give
some preliminary results regarding the relationship between
the benchmarking average error rate and the more common
diamond norm error measure [33,34] used in fault-tolerant
theory.

The paper is structured as follows: In Sec. II we discuss
notation and background material. In Sec. III A we discuss
the proposed protocol and then in Sec. III B we present the
perturbative expansion and expressions for the zeroth- and
first-order fitting models. Section IV provides a sufficient
condition for neglecting higher-order terms in the model as
well as a simple case for when the benchmarking scheme
fails. We also discuss when the protocol is robust against state-
preparation and measurement errors. Section V discusses the
relationship between the error rate given by the benchmarking
scheme and other measures of error commonly used in
quantum information. Section VI provides a detailed proof that
our protocol is scalable in the number of qubits comprising the
system, and a discussion with concluding remarks is contained
in Sec. VII.

II. BACKGROUND

Let us first set some notation. Suppose we have an n-qubit
quantum system so that the Hilbert space H representing
the system has dimension d = 2n. Thus H is isomorphic to
Cd and both will generically refer to the Hilbert space of a
d-dimensional quantum system throughout the presentation.
The set of linear operators on H will be denoted by L(H).
The set of pure states is represented by the complex projective
space CP d−1 and the set of all mixed states in L(H), denoted
by D(H), is given by the set of non-negative, trace-1 linear
operators on H. Unless otherwise stated, we will be concerned
only with quantum operations with the same input and output
spaces. The set of linear superoperators mapping L(H) into
itself is denoted by T (H) with the set of quantum channels
(completely positive, trace-preserving linear maps) contained
in T (H) denoted by S(H).

There are various methods for quantifying the distance
between quantum operations, we briefly describe those that
will be of use to us. Good references for many of the topics in
this section are [35–37].

A. Diamond norm, average gate fidelity, and minimum
gate fidelity

One method of quantifying the distance between two linear
superoperators E1,E2 ∈ T (H) is given by the diamond norm
distance ‖E1 − E2‖�. The diamond norm of an arbitrary linear
superoperator R : L(Cm) → L(Cn) is defined as

‖R‖� = supk∈N‖R ⊗ Ik‖1, (2.1)

where ‖ ‖1 on superoperators is defined to be the ∞ norm
induced by the trace norm ‖ ‖1 on L(Cm) and L(Cn). It is
known that the supremum occurs for k = m and so

‖R‖� = ‖R ⊗ Im‖1 = maxA:‖A‖1�1‖R ⊗ Im(A)‖1, (2.2)

where A ∈ L(Cm ⊗ Cm). Hence for E1,E2 ∈ T (H),

‖E1 − E2‖� = ‖(E1 − E2) ⊗ Id‖1. (2.3)

The diamond norm distance is commonly used in quantum
information due to its operational meaning of being related
to the optimal probability for distinguishing E1 and E2 using
a binary-outcome positive operator-valued measure (POVM)
and single input state (allowing for ancillas) [38].

Another method for quantifying the distance between linear
superoperators is given by the ‖ ‖H

1→1 norm defined for the
linear superoperator R : L(Cm) → L(Cn) as

‖R‖H
1→1 = maxA:A=A†,‖A‖1�1‖R(A)‖1, (2.4)

where A ∈ L(Cm). One can see that ‖ ‖H
1→1 is just ‖ ‖1 (which

is also denoted ‖ ‖1→1) restricted to Hermitian inputs. This
norm is less common in quantum information due to its lack
of operational meaning; however, it is a weaker measure
of distance than the diamond norm since for any linear
superoperator R : L(Cm) → L(Cn), ‖R‖H

1→1 � ‖R‖�. This
will be of much use to us later when we consider neglecting
higher-order effects in the benchmarking scheme.

A commonly used state-dependent measure for comparing
quantum operations E1,E2 ∈ S(H) is given by the channel
fidelity,

FE1,E2 (ρ) = F (E1(ρ),E2(ρ))

=
(

tr
√√

E1(ρ)E2(ρ)
√
E1(ρ)

)2

(2.5)

where “F ” refers to the usual fidelity between quantum
states [39]. In the case of a unitary operation U and quantum
operation E , and restricting input states to CP d−1, the channel
fidelity is called the gate fidelity. Explicitly, for φ ↔ |φ〉〈φ| ∈
CP d−1,

FE,U (φ) = tr[U(|φ〉〈φ|)E(|φ〉〈φ|)], (2.6)

and defining � = U† ◦ E gives

FE,U (φ) = F�,I (φ) = tr[|φ〉〈φ|�(|φ〉〈φ|)]. (2.7)

The channel � can be thought of as representing how much
E deviates from U in that if E = U then � = I. The gate
fidelity has many nice mathematical properties, including a
simple expression for the average over pure states, expressions
for the variance in terms of various representations of �, and
a concentration of measure phenomenon for large systems
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[40–42]. The average gate fidelity is obtained by integrating
FE,U over CP d−1 using the Fubini-Study measure μFS [43],

FE,U = F�,I =
∫
CP d−1

tr[|φ〉〈φ|�(|φ〉〈φ|)]dμFS(φ).

(2.8)

Taking the minimum of FE1,E2 over all mixed states ρ produces
a quantity Fmin

E1,E2
commonly called the minimum channel

fidelity,

Fmin
E1,E2

= minρFE1,E2 (ρ).

Note that because of concavity of the fidelity, the minimum
channel fidelity occurs at a pure state [39]. In the case of the
gate fidelity, the minimum is called the minimum gate fidelity.

In certain cases we will be concerned with how close E1 and
E2 are in terms of the difference between the average fidelity
of each channel. To this end we define

�F (E1,E2) := |FE1,I − FE2,I |. (2.9)

Last, we note the following relationships between some of the
distance measures defined above. First, for E1, E2 ∈ S(H) the
following inequalities hold:

�F (E1,E2) � ‖E1 − E2‖H
1→1 � ‖E1 − E2‖�, (2.10)

where we recall the definition of ‖ ‖H
1→1 in Eq. (2.4). The

second inequality is clear since,

‖E1 − E2‖H
1→1 � ‖E1 − E2‖1 � ‖E1 − E2‖�. (2.11)

Now for the first inequality note that

�F (E1,E2) � max|φ〉|tr[(E1 − E2)(|φ〉〈φ|)|φ〉〈φ|]|
� max|φ〉‖(E1 − E2)(|φ〉〈φ|)‖∞

= maxA:A=A†,‖A‖1�1‖(E1 − E2)(A)‖∞
= ‖E1 − E2‖H

1→∞, (2.12)

where we note that since E1 and E2 are completely posi-
tive, E1 − E2 is Hermiticity preserving. Hence since ‖E1 −
E2‖H

1→∞ � ‖E1 − E2‖H
1→1 the inequalities in Eq. (2.10) hold.

Next we show that for any quantum operations E1,E2 ∈
S(H),

Fmin
E1,E2

� 1 − ‖E1 − E2‖�. (2.13)

We have that

‖E1 − E2‖� = max|ψ〉∈H⊗H‖E1 ⊗ I(|ψ〉〈ψ |)
− E2 ⊗ I(|ψ〉〈ψ |)‖1. (2.14)

By the Fuchs–Van de Graaf inequalities [44],

‖E1 ⊗ I(|ψ〉〈ψ |) − E2 ⊗ I(|ψ〉〈ψ |)‖1

� 1 − F (E1 ⊗ I(|ψ〉〈ψ |),E2 ⊗ I(|ψ〉〈ψ |)), (2.15)

so

‖E1 − E2‖�
� max|ψ〉∈H⊗H[1 − F (E1 ⊗ I(|ψ〉〈ψ |),E2 ⊗ I(|ψ〉〈ψ |))]
= 1 − min|ψ〉∈H⊗HF (E1 ⊗ I(|ψ〉〈ψ |),E2 ⊗ I(|ψ〉〈ψ |)).

(2.16)

Now we have

min|ψ〉∈H⊗HF (E1 ⊗ I(|ψ〉〈ψ |),E2 ⊗ I(|ψ〉〈ψ |))
� min|φ〉∈HF (E1(|φ〉〈φ|),E2(|φ〉〈φ|)) (2.17)

since

min|ψ〉∈H⊗HF (E1 ⊗ I(|ψ〉〈ψ |),E2 ⊗ I(|ψ〉〈ψ |))
� min|φ〉∈HF (E1 ⊗ I(|φ〉〈φ| ⊗ |φ〉〈φ|),E2 ⊗ I(|φ〉〈φ| ⊗ |φ〉〈φ|))
= min|φ〉∈H(tr

√√
E1(|φ〉〈φ|) ⊗ |φ〉〈φ|[E2(|φ〉〈φ|) ⊗ |φ〉〈φ|]

√
E1(|φ〉〈φ|) ⊗ |φ〉〈φ|)2

= min|φ〉∈H[tr(
√√

E1(|φ〉〈φ|)[E2(|φ〉〈φ|)]
√
E1(|φ〉〈φ|) ⊗ |φ〉〈φ|)]2 = min|φ〉∈HF (E1(|φ〉〈φ|),E2(|φ〉〈φ|)). (2.18)

So

‖E1 − E2‖� � 1 − min|φ〉∈HF (E1(|φ〉〈φ|),E2(|φ〉〈φ|)). (2.19)

Now by concavity,

Fmin
E1,E2

= min|φ〉∈HF (E1(|φ〉〈φ|),E2(|φ〉〈φ|)) (2.20)

and so

Fmin
E1,E2

� 1 − ‖E1 − E2‖�. (2.21)

B. The Clifford group and t-designs

The Clifford group on n qubits, denoted Clifn, is defined
as the normalizer of the Pauli group Pn and is generated
by the phase (S), Hadamard (H), and controlled-NOT (CNOT)

gates. Clifn plays an important role in many areas of quantum
information such as universality [45], stabilizer code theory
and fault tolerance [46], and noise estimation [17].

One extremely useful property of Clifn, especially for noise
estimation, is that the uniform probability distribution over
Clifn comprises a unitary two-design [17]. A unitary t-design
is defined as follows.

Definition 1. Unitary t-design.
A unitary t-design is a discrete random variable

{(q1,U1), . . . ,(qK,UK )}, with each Ui ∈ U (d), such that for
every homogeneous complex-valued polynomial p in 2d2

indeterminates of degree (s,s) less than or equal to (t,t),

1

K

K∑
j=1

p(Uj ) =
∫

U (d)
p(U )dU. (2.22)

042311-3



EASWAR MAGESAN, JAY M. GAMBETTA, AND JOSEPH EMERSON PHYSICAL REVIEW A 85, 042311 (2012)

The integral is taken with respect to the Haar measure on
U (d). Here p(U ) is defined to be the evaluation of p at the
2d2 values consisting of the d2 matrix entries of U as well as
the d2 complex conjugates of these matrix entries. In the case
t = 2 the above reduces to a “twirling” [47] condition

K∑
j=1

qj [Uj�(U †
j ρUj )U †

j ] =
∫

U (d)
[U�(U †ρU )U †]dU

(2.23)

being satisfied for any quantum channel � and any state ρ

[17]. Since a uniform probability distribution on Clifn forms a
two-design, if Clifn = {Cj : j ∈ K = {1, . . . ,|Clifn|}}, then

W(�)(ρ) := 1

|Clifn|
|Clifn|∑
j=1

[Cj�(C†
jρCj )C†

j ]

=
∫

U (d)
[U�(U †ρU )U †]dU. (2.24)

As shown in Refs. [18,40],
∫
U (d)[U�(U †ρU )U †]dU pro-

duces the unique depolarizing channel �d with the same
average fidelity as �. Hence, if F�,I is the average fidelity
of �, and �d is given by

�d(ρ) = pρ + (1 − p)
1

d
, (2.25)

then

F�,I = p + (1 − p)

d
. (2.26)

Thus twirling a quantum operation over the Clifford group
produces a depolarizing channel, and the average fidelity is
invariant under the twirling operation.

In Sec. III we will be concerned with compositions of
both gate-independent and gate-dependent twirls. In the gate-
independent case, the sequence of twirls of � of length k,
W(�)k , can be rewritten as the k-fold composition of �d with
itself. Using the above representation of �d we get

W(�)k(ρ) = pkρ + (1 − pk)
1

d
. (2.27)

Therefore the average fidelity decreases exponentially to 1
d

since

F�k
d,I = pk + (1 − pk)

d
. (2.28)

We can also write the average fidelity of � in terms of its
χ matrix [15]. The χ matrix is an important (basis-dependent)
object in experimental quantum information as it is directly
related to practical methods in process tomography. The χ

matrix is obtained by expanding the Kraus operators {Ak} of
� with respect to a particular basis of L(Cd ), which is most
often chosen to be the Pauli basis {Pj }d2−1

j=0 (P0 = 1). This gives

�(ρ) =
∑

k

AkρA
†
k =

∑
i,j

χi,jPiρPj , (2.29)

and so a complete description for � can be given by estimating
the entries of χ . As shown in Ref. [15],

F�,I = χ0,0d + 1

d + 1
, (2.30)

which gives

χ0,0 = p

(
1 − 1

d2

)
+ 1

d2
= F�,I (d + 1) − 1

d
. (2.31)

Therefore the (0,0) entry of the χ matrix for a quantum
operation with respect to the Pauli basis is invariant under
twirling over a two-design. Moreover, χ0,0 for �k

d decreases
to 1

d2 exponentially in k.

III. RANDOMIZED BENCHMARKING

In this section we present both the protocol and a full
derivation of the fitting models for randomized benchmarking
that were given in Ref. [25]. First, we set some notation and
make various definitions that will be used throughout the
presentation.

Denote the elements of Clifn by Ci and the maximum
sequence length of applying Clifford gates by M . Suppose
that the actual implementation of Ci at time j (1 � j � M)
results in the map Ei,j with Ei,j = �i,j ◦ Ci for some error map
�i,j . Hence with each Clifford Ci we associate a sequence
�i,1, . . . ,�i,M which represents the time-dependent noise
operators affecting Ci . We define the average error operator
as follows:

Definition 2. Average error operator.
The average error operator affecting the gates in Clifn is

given by

� = 1

M|Clifn|
∑

j

∑
i

�i,j . (3.1)

Consider the twirl of the average error operator over Clifn.
As discussed in Sec. II B, this produces a depolarized channel
�d,

�d(ρ) = 1

|Clifn|
∑

i

C
†
i ◦ �ave ◦ Ci (ρ) = pρ + (1 − p)

1

d
.

(3.2)

Recall from Sec. II B that the average fidelity of �, denoted
Fave, is invariant under Clifford twirling and so

Fave = p + 1 − p

d
. (3.3)

We now define the average error rate of the set of Clifford
gates as follows:

Definition 3. Average error rate.
The average error rate r of the Clifford gates used in a

quantum computation is defined to be

r = 1 − Fave = 1 −
(

p + 1 − p

d

)
= (d − 1)(1 − p)

d
.

(3.4)

042311-4



CHARACTERIZING QUANTUM GATES VIA RANDOMIZED . . . PHYSICAL REVIEW A 85, 042311 (2012)

It is important to note that r defined above should not be
confused with the “error rate” rP of a Pauli channelP . For Pauli
channelP , rP is defined to be the probability that a nonidentity
Pauli operator is applied to the input state. Conditioning on
a nonidentity Pauli being applied, there is still a nonzero
probability of the input state being unchanged. Subtracting
this probability out gives our defined parameter r for P , which
is commonly called the “infidelity” of P . One can show that r

and rP are related via rP = (d+1)r
d

. Following the terminology
set in Ref. [26], we will call r the (average) error rate of � and
note that, in the case where � is a Pauli channel, r is equal to
the infidelity of �.

The parameter r is the figure of merit we want to be
able to estimate experimentally. One can estimate p directly
using any of standard process tomography [15], ancilla-
assisted or entanglement-assisted process tomography [48],
or Monte Carlo methods [23,24]. The tomography-based
schemes suffer from the unrealistic assumptions of negligible
state-preparation and measurement errors, and clean ancillary
states and operations. These schemes also require exponential
time resources in n, making them infeasible for even relatively
small numbers of qubits. The Monte Carlo methods also have
the drawback of assuming negligible state-preparation and
measurement errors. The advantages of these methods are that
the average fidelity of each gate can be estimated and the
scheme is efficient in n.

The experimentally relevant challenge therefore is to
estimate p while relaxing the assumptions on state preparation,
measurement, and ancillary states and processes. Ideally, such
a method should also scale efficiently with the number of
qubits. As we show below, such an estimate can be obtained
through benchmarking the performance of random circuits.

A. Protocol

For a fixed sequence length m � M − 1, the benchmarking
protocol consists of choosing Km sequences of independent
and identically distributed uniformly random Clifford ele-
ments and calculating the fidelity of the average of the Km

sequences. One repeats this procedure for different values of
m and fits the fidelity decay curve to the models we derive
below. More precisely, the protocol is as follows.

Fix an initial state |ψ〉 and perform the following steps:
Step 1. Fix m � M − 1 and generate Km sequences

consisting of m + 1 quantum operations. The first m operations
are chosen uniformly at random from Clifn and the (m + 1)th
operation is uniquely determined as the inverse gate of the
composition of the first m. By assumption, each operation Cij

is allowed to have some error, represented by �ij ,j , and each
sequence can be modeled by the operation

Sim = ©m+1
j=1

(
�ij ,j ◦ Cij

)
, (3.5)

where im is the m-tuple (i1, . . . ,im) (which we sometimes also
denote by im) and im+1 is uniquely determined by im.

Step 2. For each of the Km sequences, measure the survival
probability Tr[EψSim (ρψ )]. Here ρψ is a quantum state that
takes into account errors in preparing |ψ〉〈ψ | and Eψ is the
POVM element that takes into account measurement errors. In
the ideal (noise-free) case ρψ = Eψ = |ψ〉〈ψ |.

Step 3. Average over the Km random realizations to find the
averaged sequence fidelity,

Fseq(m,ψ) = Tr
[
EψSKm

(ρψ )
]
, (3.6)

where

SKm
= 1

Km

∑
im

Sim (3.7)

is the average sequence operation.
Step 4. Repeat steps 1 through 3 for different values of m

and fit the results for the averaged sequence fidelity [defined
in Eq. (3.6)] to the model

F (1)
g (m,|ψ〉) = A1p

m + B1 + C1(m − 1)(q − p2)pm−2

(3.8)

derived below. The coefficients A1, B1, and C1 absorb the
state-preparation and measurement errors as well as the error
on the final gate. The difference q − p2 is a measure of the
degree of gate dependence in the errors, and p determines the
average error rate r according to the relation given by Eq. (3.4).
In the case of gate-independent and time-independent errors
the results will fit the simpler model

F (0)
g (m,|ψ〉) = A0p

m + B0 (3.9)

also derived below, where A0 and B0 absorb state-preparation
and measurement errors as well as the error on the final gate.

We note that for each m, in the limit of Km → ∞,
Fseq(m,ψ) converges to the exact (uniform) average Fg(m,ψ),
over all sequences,

Fg(m,ψ) = Tr[EψSm(ρψ )], (3.10)

where we define the exact average of the sequences to be

Sm = 1

|Clifn|m
∑

(i1,...,im)

�im+1,m+1 ◦ Cim+1 ◦ · · · ◦ �i1,1 ◦ Ci1 .

(3.11)

Hence the fitting functions by which we model the behavior
of Fseq(m,ψ) are derived in terms of Fg(m,ψ) (see Sec. III B).
Note that, since Fg(m,ψ) is the uniform average over all
sequences, we can sum over each index independently,

Fg(m,ψ) = 1

|Clifn|m
∑

i1,...,im

tr
[
�im+1,m+1 ◦ Cim+1 ◦ �im,m

◦ Cim ◦ · · · ◦ �i1,1 ◦ Ci1 (ρψ )Eψ

]
. (3.12)

In order to prepare for the next section where we derive the
above fitting models, we write Fg(m,ψ) in a more intuitive
form. We first rewrite �im+1,m+1 ◦ Cim+1 ◦ �im,m ◦ Cim ◦ · · · ◦
�i1,1 ◦ Ci1 by inductively defining new uniformly random gates
from the Clifford group in the following manner:

(1) Define Di1 = Ci1 .
(2) Define Di2 uniquely by the equation Ci2 = Di2 ◦ D†

i1
,

i.e., Di2 = Ci2 ◦ Ci1 = ©2
s=1Cis .

(3) In general, for j ∈ {2, . . . ,m}, if Ci1 , . . . , Cij and
Di1 , . . . , Dij have been chosen, define Dij+1 uniquely by the
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equation Cij+1 = Dij+1 ◦ D†
ij

, i.e.,

Dij+1 = Cij+1 ◦ · · · ◦ Ci1 = ©j+1
s=1Cis . (3.13)

Note that if j �= k, Cij and Cik are independent and so since
the Clifford elements form a group, for each j = 2, . . . ,m + 1,
Dij is independent of Dij−1 . As well, summing over each ij
index runs over every Clifford element once and only once in
Dij .

We have created a new sequence (Di1, . . . ,Dim ) from
(Ci1, . . . ,Cim ) uniquely so that

S im = �im+1,m+1 ◦ Cim+1 ◦ �im,m ◦ Cim ◦ · · · ◦ �i1,1 ◦ Ci1

= �im+1,m+1 ◦ Dim+1 ◦ Dim
† ◦ �im,m ◦ Dim ◦ · · ·

◦Di1
† ◦ �i1,1 ◦ Di1 . (3.14)

Since Cim+1 = C†
i1

◦ · · · ◦ C†
im

and Dim+1 = Cim+1 ◦ · · · ◦ Ci1 ,

Dim+1 = 1. (3.15)

Hence the (m + 1)th gate is decoupled from the rest of the
sequence and we have

S im = �im+1,m+1 ◦ Cim+1 ◦ �im,m ◦ Cim ◦ · · · ◦ �i1,1 ◦ Ci1

= �im+1,m+1 ◦ Dim
† ◦ �im,m ◦ Dim ◦ · · ·

◦Di1
† ◦ �i1,1 ◦ Di1 . (3.16)

B. Perturbative expansion and the fitting models

We would like to develop fitting models for Fg(m,ψ)
where the most general noise model allows for the noise
to depend upon both the set of gates in Clifn and time.
We can estimate the behavior of Fg(m,ψ) by considering a
perturbative expansion of each �i,j about the average �. We
quantify the difference between �i,j and � by defining for
all i,j ,

δ�i,j = �i,j − �. (3.17)

Our approach will be valid provided δ�i,j is a small
perturbation from � in a sense to be made precise later. Note
that each δ�i,j is a Hermiticity-preserving, trace-annihilating
linear superoperator. Under the above conditions this approach
will allow for fitting the experimental fidelity decay sequence
to a model with fit parameters that determine not only the
average error per gate but also the separate contribution from
the combined effects of state-preparation and measurement
errors. In the limit of multiple qubits and very precise control,
weaker forms of twirling may permit even more detailed
modeling of the noise.

Using the change of variables Dij = ©j

s=1Cis described
above and expanding to first order we get

S im ≡ �im+1,m+1 ◦ Cim+1 ◦ · · · ◦ �ij ,j ◦ Cij ◦ · · · ◦ �i1,1 ◦ Ci1 = �im+1,m+1 ◦ Dim
† ◦ �im,m ◦ Dim ◦ · · · ◦ Di1

† ◦ �i1,1 ◦ Di1

= � ◦ Dim
† ◦ � ◦ Dim ◦ · · · ◦ Di1

† ◦ � ◦ Di1 + δ�im+1,m+1 ◦ (
Dim

† ◦ � ◦ Dim

) ◦ · · · ◦ (
Di1

† ◦ � ◦ Di1

)
+ · · · + � ◦ (

Dim
† ◦ � ◦ Dim

) ◦ · · · ◦ (
Dij

† ◦ δ�ij ,j ◦ Dij

) ◦ · · · ◦ (
Di1

† ◦ � ◦ Di1

)
+ · · · + � ◦ (

Dim
† ◦ � ◦ Dim

) ◦ · · · ◦ (
Di1

† ◦ δ�i1,1 ◦ Di1

) + O
(
δ�2

ij ,j

)
. (3.18)

We define

S (0)
im := � ◦ Dim

† ◦ � ◦ Dim ◦ · · · ◦ Di1
† ◦ � ◦ Di1 , (3.19)

(
S (1)

im
)

:= δ�im+1,m+1 ◦ (
Dim

† ◦ � ◦ Dim

) ◦ · · · ◦ (
Di1

† ◦ � ◦ Di1

)
+ · · · + � ◦ (

Dim
† ◦ � ◦ Dim

) ◦ · · · ◦ (
Dij

† ◦ δ�ij ,j ◦ Dij

) ◦ · · · ◦ (
Di1

† ◦ � ◦ Di1

)
+ · · · + � ◦ (

Dim
† ◦ � ◦ Dim

) ◦ · · · ◦ (
Di1

† ◦ δ�i1,1 ◦ Di1

)
, (3.20)

and so on for higher-order perturbation terms. As well,
recalling the definition of Sm in Eq. (3.11), we define for
each order k,

S (k)
m := 1

|Clifn|m
∑

i1,...,im

S (k)
im (3.21)

and

F (k)
g (m,ψ) := tr

[(
k∑

j=0

S (j )
m

)
(ρψ )Eψ

]
, (3.22)

so that

Sm =
m+1∑
k=0

S (k)
m (3.23)

and

Fg(m,ψ) = F (m+1)
g (m,|ψ〉) = tr

[(
m+1∑
j=0

S (j )
m

)
(ρψ )Eψ

]
.

(3.24)
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1. Zeroth-order model

First, we look at the zeroth-order fitting model F (0)
g (m,|ψ〉)

and note that F (0)
g (m,|ψ〉) is exact in the case that the

noise is independent of both the gate chosen and time, i.e.,
�ij ,j = �. Because of the independence of the Dij and the
fact that averaging over the ensemble of realizations produces
independent twirls which depolarize m factors of � (see
Sec. II B), we get

S(0)
m = � ◦ �d ◦ · · · ◦ �d = � ◦ ( ©m

j=1 �d

)
. (3.25)

Thus,

F (0)
g (m,|ψ〉) = tr[S(0)

m (ρψ )Eψ ] = tr[�(ρψ )Eψ ]pm

+ tr

[
�

(
1

d

)
Eψ

]
(1 − pm) = A0p

m + B0,

(3.26)

where

A0 := Tr

[
Eψ�

(
ρψ − 1

d

)]
(3.27)

and

B0 := Tr

[
Eψ�

(
1

d

)]
. (3.28)

Hence, assuming the simplest (ideal) scenario where the noise
operator at each step is independent of the applied gate
(and is also time invariant), Fg(m,ψ) = F (0)

g (m,|ψ〉) decays
exponentially in p.

2. First-order model

To find F (1)
g (m,|ψ〉) we note that in the definition of

S
(1)
im given by Eq. (3.20) there are ( m + 1

1 )= m + 1 first-order
perturbation terms which contain the gate dependence. First,
we consider the m − 1 terms with j ∈ {2, . . . ,m}. For each
such j , averaging over the {i1, . . . ,im} gives a term of the form

1

|Clifn|m
∑

i1,..., im

� ◦ (
Dim

† ◦ � ◦ Dim

) ◦ · · ·

◦ (
Dij

† ◦ δ�ij ,j ◦ Dij

) ◦ (
Dij−1

† ◦ � ◦ Dij−1

) ◦ · · ·

◦ (
Di1

† ◦ � ◦ Di1

)
. (3.29)

For these m − 1 terms the main trick is to realize that we can
reexpand Dij = Cij ◦ Dij−1 in order to depolarize the unitarily

rotated perturbation C†
ij
�ij ,jCij with the twirling operation

1
|Clifn|

∑
ij−1

D†
ij−1

· Dij−1 because the sums are independent.
More precisely, the above can be written as

� ◦ �
m−j

d ◦
[

1

|Clifn|2
∑

ij−1,ij

Dij−1
† ◦ C†

ij
◦ δ�ij ,j ◦ Cij ◦ � ◦ Dij−1

]
◦

[ ∑
ij−2,...,i1

(
Dij−2

† ◦ � ◦ Dij−2

) ◦ · · · ◦ (
Di1

† ◦ � ◦ Di1

)]

= � ◦ �
m−j

d ◦ [
(Qj ◦ �)d − �2

d

] ◦ �
j−2
d , (3.30)

where Qj := 1
|Clifn|

∑
i C

†
i ◦ �i,j ◦ Ci and the subscript “d” represents the depolarization of the operator within brackets. Using

the fact that depolarizing channels commute, we get

� ◦ �
m−j

d ◦ [
(Qj ◦ �)d − �2

d

] ◦ �
j−2
d = � ◦ [

(Qj ◦ �)d − �2
d

] ◦ �m−2
d . (3.31)

For the term with j = 1, averaging over i1, . . . ,im gives a term of the form

� ◦ �m−1
d ◦ 1

|Clifn|
∑
i1

Di1
† ◦ δ�i1,1 ◦ Di1 = � ◦ �m−1

d ◦ (Q1 − �d), (3.32)

where

Q1 := 1

|Clifn|
∑
i1

(
D†

i1
◦ �i1,1 ◦ Di1

) = 1

|Clifn|
∑

i

(C†
i ◦ �i,1 ◦ Ci). (3.33)

Last, for the term with j = m + 1, averaging gives

1

|Clifn|m
∑

i1,..., im

δ�im+1,m+1 ◦ (
Dim

† ◦ � ◦ Dim

) ◦ · · · ◦ (
Di1

† ◦ � ◦ Di1

)

= 1

|Clifn|m−1

∑
i1,..., im−1

(
1

|Clifn|
∑
im

δ�im+1,m+1 ◦ (
Dim

† ◦ � ◦ Dim

)) ◦ · · · ◦ (
Di1

† ◦ � ◦ Di1

)
. (3.34)
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Since Clifn is a group, if i1, . . . ,im−1 is fixed, averaging over
the im index runs through every Clifford element with equal
frequency in the Dim random variable. Since �im+1,m+1 is just
the error associated with the gate D†

im
, 1

|Clifn|
∑

im
δ�im+1,m+1 ◦

(Dim
† ◦ � ◦ Dim) is independent of the i1, . . . ,im−1 indices.

Hence we can define

Rm+1 := 1

|Clifn|
∑
im

�im+1,m+1 ◦ (
Dim

† ◦ � ◦ Dim

)

= 1

|Clifn|
∑

i

�i ′,m+1 ◦ (
C†

i ◦ � ◦ Ci

)
(3.35)

where �i ′,m+1 denotes the error that arises when the Clifford
operation C†

i is applied at final time step m + 1. Again, using
the group property of Clifn, we have

Rm+1 = 1

|Clifn|
∑

i

�i,m+1 ◦ (Ci ◦ � ◦ Ci
†). (3.36)

This decoupling of Rm+1 allows us to write

1

|Clifn|m−1

×
∑

i1,..., im−1

(
1

|Clifn|
∑
im

δ�im+1,m+1 ◦ (
Dim

† ◦ � ◦ Dim

))

◦ · · · ◦ (
Di1

† ◦ � ◦ Di1

) = (Rm+1 − � ◦ �d ) ◦ �m−1
d .

(3.37)

Hence combining Eqs. (3.25), (3.31), (3.32), and (3.37) gives

S(0)
m + S(1)

m = � ◦ �m
d + (Rm+1 − � ◦ �d) ◦ �m−1

d

+
m∑

j=2

� ◦ [
(Qj ◦ �)d − �2

d

] ◦ �m−2
d

+� ◦ �m−1
d ◦ (Q1 − �d)

= Rm+1 ◦ �m−1
d +

m∑
j=2

[
� ◦ (Qj ◦ �)d ◦ �m−2

d

]
+� ◦ �m−1

d ◦ Q1 − m
(
� ◦ �m

d

)
. (3.38)

To calculate F (1)
g (m,|ψ〉) := tr[(S(0)

m + S(1)
m )(ρψ )Eψ ] we

have

tr
[
Rm+1 ◦ �m−1

d (ρψ )Eψ

] = G1,m+1p
m−1 + H1,m+1,

(3.39)

tr
[
� ◦ (Qj ◦ �)d ◦ �m−2

d (ρψ )Eψ

] = A0qjp
m−2 + B0,

(3.40)

tr
[
� ◦ �m−1

d ◦ Q1(ρψ )Eψ

] = A1,1p
m−1 + B0, (3.41)

tr
[
� ◦ �m

d (ρψ )Eψ

] = A0p
m + B0, (3.42)

where G1,m+1 := tr[Rm+1(ρψ − 1
d

)Eψ ], H1,m+1 :=
tr[Rm+1(1

d
)Eψ ], A1,1 := tr{�[Q1(ρψ ) − 1

d
]Eψ }, A0 and

B0 are as given in Eqs. (3.27) and (3.28), and qj is the

depolarization parameter for (Qj ◦ �)d. Thus

F (1)
g (m,|ψ〉) = G1,m+1p

m−1 + H1,m+1+
m∑

j=2

(A0qjp
m−2+B0)

+A1,1p
m−1 + B0 − m(A0p

m + B0)

= pm−1(G1,m+1 + A1,1 − A0p)

+ (m − 1)A0p
m−2

(∑m
j=2 qj

m − 1
−p2

)
+ H1,m+1.

(3.43)

Finally, we can also rewrite Eq. (3.43) as

F (1)
g (m,|ψ〉) = A1(m)pm + B1(m) + C1(m − 1)

× [q(m) − p2]pm−2, (3.44)

where

A1(m) = Tr

[
Eψ�

(Q1(ρψ )

p
− ρψ + (p − 1)1

pd

)]

+ Tr

[
EψRm+1

(
ρψ

p
− 1

pd

)]
,

B1(m) = Tr

[
EψRm+1

(
1

d

)]
, C1=Tr

[
Eψ�

(
ρψ − 1

d

)]
,

q(m) =
m∑

j=2

qj/(m − 1), (3.45)

and qj is the depolarizing parameter defined by

(Qj ◦ �)d(ρ) = qjρ + (1 − qj )
1

d
. (3.46)

We write the first-order model in the form of Eq. (3.44)
because of its similarity to that of the zeroth-order model given
by Eq. (3.26). The difference between Eqs. (3.44) and (3.26) is
the C1(m − 1)[q(m) − p2]pm−2 term contained in Eq. (3.44),
which can be thought of as a measure of the gate dependence
of the noise.

Again, we see that the edge effects and state-preparation
and measurement errors are embedded in the three coefficients
A1(m), B1(m), and C1. Note that the m dependence in q(m)
and the A1(m), and B1(m) coefficients due to the last gate
disappears if the errors do not change as a function of time.

IV. NEGLECT OF HIGHER ORDERS

A. Bounding higher-order perturbation terms

We would like to give conditions showing when one is
justified in stopping the expansion at some order k. The
main idea, as expressed in Eq. (4.1) below, is to bound the
“size” of the terms in S(k+1)

m and we use the “1 → 1” norm
on linear superoperators maximized over Hermitian inputs,
denoted ‖ ‖H

1→1, to make this precise (see Sec. II). Note that
‖ ‖H

1→1 has the following useful properties:
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(a) submultiplicativity for Hermiticity-preserving superop-
erators,

(b) unitary invariance, and
(c)‖E‖H

1→1 � 1 for any quantum operation E .

Later we will discuss the motivation for using ‖ ‖H
1→1 as

opposed to more familiar norms used in quantum-information
theory such as the diamond norm ‖ ‖�.

From Sec. II A we have that

∣∣F (k+1)
g (m,ψ) − F (k)

g (m,ψ)
∣∣ =

∣∣∣∣∣tr
[(

k+1∑
j=0

S(j )
m

)
(ρψ )Eψ

]
− tr

[(
k∑

j=0

S(j )
m

)
(ρψ )Eψ

]∣∣∣∣∣ = ∣∣tr[S(k+1)
m (ρψ )Eψ

]∣∣ �
∥∥S(k+1)

m

∥∥H

1→1

(4.1)

and so bounding S(k+1)
m provides a bound for how much the k- and (k + 1)-order fidelities will differ. We first look at the case of

stopping at first order, i.e., k = 1. There are ( m + 1
2 ) = (m+1)m

2 second-order perturbation terms in Eq. (3.18). Let us look at at a
term with perturbations at j1 and j2 where without loss of generality we assume j2 > j1. Using the properties listed above, along
with the triangle inequality, we have∥∥∥∥∥∥

1

|Clifn|m
∑

im
� ◦ D†

im
◦ � ◦ Dim ◦ · · · ◦ D†

ij2
◦ δ�ij2

◦ Dij2
◦ · · · ◦ D†

ij1
◦ δ�ij1

◦ Dij1
◦ · · · ◦ D†

i1
◦ � ◦ Di1

∥∥∥∥∥∥
H

1→1

� 1

|Clifn|m
∑

im

∥∥�‖H
1→1

∥∥D†
im

◦ � ◦ Dim

∥∥H

1→1 · · · ∥∥D†
ij2

◦ δ�ij2
◦ Dij2

∥∥H

1→1 · · · ∥∥D†
ij1

◦ δ�ij1
◦ Dij1

∥∥
1→1 · · · ∥∥D†

i1
◦ � ◦ Di1

∥∥H

1→1

= (‖�‖H
1→1

)m−1 1

|Clifn|
∑
ij2

∥∥D†
ij2

◦ δ�ij2
◦ Dij2

∥∥H

1→1

1

|Clifn|
∑
ij1

∥∥D†
ij1

◦ δ�ij1
◦ Dij1

∥∥H

1→1

� 1

|Clifn|
∑
ij2

∥∥D†
ij2

◦ δ�ij2
◦ Dij2

∥∥H

1→1

1

|Clifn|
∑
ij1

∥∥D†
ij1

◦ δ�ij1
◦ Dij1

∥∥H

1→1 = γj2γj1 , (4.2)

where we define the time-dependent variation in the noise,

γj := 1

|Clifn|
∑

i

‖�i,j − �‖H
1→1. (4.3)

Summing over all j1,j2 with j2 > j1 gives

∥∥S(2)
m

∥∥H

1→1 =
∥∥∥∥∥ 1

|Clifn|m
∑

im
S

(2)
im

∥∥∥∥∥
H

1→1

=
∥∥∥∥∥ 1

|Clifn|m
∑

im

∑
j2>j1

� ◦ D†
im

◦ δ� ◦ Dim ◦ · · · ◦ D†
ij2

◦ δ�ij2

◦Dij2
◦ · · · ◦ D†

ij1
◦ δ�ij1

◦ Dij1
◦ · · · ◦ D†

i1
◦ � ◦ Di1

∥∥∥∥∥
H

1→1

�
∑
j2>j1

∥∥∥∥∥ 1

|Clifn|m
∑

im
� ◦ D†

im
◦ δ� ◦ Dim ◦ · · · ◦ D†

ij2

◦ δ�ij2
◦ Dij2

◦ · · · ◦ D†
ij1

◦ δ�ij1
◦ Dij1

◦ · · · ◦ D†
i1

◦ � ◦ Di1

∥∥∥∥∥
H

1→1

�
∑
j2>j1

γj2γj1 . (4.4)

In terms of the fidelity we thus have from Eqs. (4.1) and (4.4),

∣∣F (2)
g (m,|ψ〉) − F (1)

g (m,|ψ〉)∣∣ �
∑
j2>j1

γj2γj1 . (4.5)

Note that if the noise is time independent then we have

∑
j2>j1

γ 2 = (m + 1)m

2
γ 2, (4.6)
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which gives

∣∣F (2)
g (m,|ψ〉) − F (1)

g (m,|ψ〉)∣∣ � (m + 1)m

2
γ 2. (4.7)

It is straightforward to show that bounds on higher-order
terms go as ∥∥S(k)

m

∥∥H

1→1 �
∑

jk>···>j1

γjk
· · · γj1 , (4.8)

so that the difference between the k- and (k + 1)-order
fidelities is bounded by∣∣F (k+1)

g (m,ψ) − F (k)
g (m,ψ)

∣∣ �
∑

jk>···>j1

γjk
· · · γj1 . (4.9)

Again, if the noise is time independent,

∣∣F (k+1)
g (m,ψ) − F (k)

g (m,ψ)
∣∣ �

(
m + 1

k

)
γ k. (4.10)

We now discuss our motivation for using ‖ ‖H
1→1 as opposed

to more familiar norms for distinguishing superoperators, such
as the diamond norm. For any superoperator norm ‖ ‖ that
satisfies the properties listed above, the following inequality
holds: ∣∣F (k+1)

g (m,ψ) − F (k)
g (m,ψ)

∣∣ �
(

m + 1

k

)
γ k, (4.11)

where

γ := 1

|Clifn|
∑

i

‖�i − �‖ (4.12)

and for simplicity we have assumed time-independent noise.
The above equations show that in order to give the tightest

bound on the fidelity difference we would like to find the norm
‖ ‖ that provides the smallest value of γ . The diamond norm
‖ ‖� is a candidate; however, by Eq. (2.11) ‖ ‖H

1→1 is much
weaker than ‖ ‖�. Therefore γ associated with ‖ ‖H

1→1 will be
much smaller than γ associated with ‖ ‖�, providing a tighter
bound on the fidelity difference.

B. Case where benchmarking fails

There is a simple (and highly unphysical) case in which
benchmarking fails. Suppose the noise is time independent
and for each i, �i = C†

i . Then Fg(m,ψ) = 1 for every m

even though there is substantial error on each Ci and so
benchmarking clearly fails. The key point to note here is that
the noise is highly dependent on the gate chosen, and so we
expect that the sufficient condition derived above for ignoring
higher-order terms will not be satisfied (i.e., γ in this example
will be far from 0). To see that this is the case, note that since
Clifn is a unitary two-design it is also a unitary one-design.
Hence, since Clifn is † closed,

1

|Clifn|
|Clifn|∑
i=1

�i = 1

|Clifn|
|Clifn|∑
i=1

C†
i = 1

|Clifn|
|Clifn|∑
i=1

Ci = 
,

(4.13)

where 
 is the totally depolarizing channel mapping every
input state to the maximally mixed state 1

d
. Therefore,

‖�i − �‖H
1→1 = ‖C†

i − 
‖H
1→1. (4.14)

Now ‖�i − �‖H
1→1 is achieved at a pure state, and for any

pure state |ψ〉

(�i − �)(|ψ〉〈ψ |) = C
†
i |ψ〉〈ψ |Ci − 1

d
. (4.15)

Hence, if |φ〉 is a pure state at which ‖�i − �‖H
1→1 is achieved,

‖�i − �‖H
1→1 =

∥∥∥∥∥C
†
i |φ〉〈φ|Ci − 1

d

∥∥∥∥∥
1

= 1 − 1

d
+ (d − 1)

1

d
= 2(d − 1)

d
. (4.16)

Therefore in this case,

γ = 1

|Clifn|
∑

i

‖�i − �‖H
1→1 = 2(d − 1)

d
� 1, (4.17)

and so our sufficient condition is not satisfied, as expected.
It is important to note that one can devise tests for when

such a pathological case is occurring. One simple test is as
follows: If the input state is |ψ〉 then choose Clifford elements
Ci that map |ψ〉 to an orthogonal state in the measurement
basis containing |ψ〉. For each i, apply Ci to |ψ〉 and perform
the measurement. For small noise strength the output of the
measurement should almost never be ψ ; however, if the noise
is something close to the inverse of the gate the measurement
result will be ψ with high probability.

C. State preparation and measurement errors

In this section we analyze the effect of state-preparation
and measurement errors on the benchmarking protocol. The
main result is that these errors can be ignored in situations
of practical relevance. For simplicity of the discussion, let us
assume the gate dependence of the noise is weak enough so that
the zeroth-order expression given in Eq. (3.26) is a valid model
for the fidelity decay curve. One can obtain an estimate for p as
long as the fidelity curve is not constant. As state-preparation
and measurement errors are accounted for in A0 and B0,
we can obtain an estimate for p regardless of the form of
the state-preparation and measurement errors whenever the
curve is not constant. Thus the protocol is robust against
any state-preparation or measurement errors unless these
errors create a constant fidelity curve. It is straightforward
to characterize exactly when the fidelity curve is constant.

From Eq. (3.26) an exponential decay occurs if and only if
A0 is nonzero and p lies in (0,1). Hence no decay occurs if
and only if one of p = 0, p = 1, or A0 = 0 occurs. We look
at each case separately.

p = 0. This occurs if and only if � is the totally depolar-
izing channel and in this case the fidelity is constant at B0 =
tr(Eψ )

d
� 1

d
. Since we have assumed small gate dependence, this

case is possible only if most of the errors are approximately
centered around the totally depolarizing channel with little
variation. This situation is of little practical relevance since
the gate operations being characterized are usually reasonably
precise.
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p = 1. This case corresponds to � being the identity
channel, which means all gates are perfect. Again, in practice
this situation is unlikely as the implementation of any gate will
have some associated error. Note that in this case the fidelity
is equal to A0 + B0 which is just tr[�(ρψ )Eψ ] = tr(ρψEψ ).
Hence the constant decay curve is a measure of the overlap
between the imperfect input state and the imperfect POVM
element.

A0 = 0. The case A0 = 0 occurs if and only if

tr[Eψ�(ρψ )] = tr

[
Eψ�

(
1

d

)]
. (4.18)

Thus �(ρψ )) and �(1
d

) have the same probability of producing
the output “ψ” from the measurement. Since gates are
reasonably precise in practice, this situation occurs when
at least one of the state preparation or measurement has
substantial error. Note that the fidelity will be equal to B0

in this case and so can take any value in [0,1].
Of the above three cases, the only one that depends upon

state-preparation or measurement errors is the case A0 = 0.
Since this case occurs when at least one of the state preparation
or measurement has substantial error, it is unlikely to arise in
practice. This discussion shows that a constant fidelity decay
curve can occur only in extreme cases, and so it is safe to
assume the protocol is independent of state-preparation and
measurement errors.

V. AVERAGE ERROR RATE AND THE DIAMOND NORM

In terms of connections between the average error rate r

and relevant fault-tolerant measures of error, it is natural to ask
how the error rate r between � and I is related to the diamond
norm between � and I. In general an explicit relationship
will be impossible to obtain; however, we show that in certain
cases that are relevant in various fault-tolerant noise models
we can obtain such a relationship. First we give an additional
proof of a previously established result [38] for calculating the
diamond norm distance between generalized Pauli channels.
The proof we present here illustrates how one can apply a
semidefinite program to calculate the diamond norm distance
between quantum channels [49]. Ideally, this proof technique
could be used either to explicitly calculate or to place bounds
on the diamond norm distance between more general classes
of quantum channels. This could allow for obtaining further
relationships between r and the diamond norm distance which
hold in more general cases.

A. Calculating the diamond norm distance between generalized
Pauli channels

Suppose E1 and E2 are Pauli channels, or more generally
any channels with Kraus operators given by an orthogonal
(normalized to d) basis of unitary operators {Pi}d2

i=0 (which we
call generalized Pauli channels),

E1(ρ) =
d2−1∑
i=0

qiPiρP
†
i , (5.1)

E2(ρ) =
d2−1∑
i=0

riPiρP
†
i . (5.2)

Define the vector v of length d2 by

vi = qi − ri (5.3)

for all i ∈ {0, . . . ,d2 − 1}. Then

‖E1 − E2‖� = ‖v‖1 =
d2−1∑
i=0

|vi |. (5.4)

To prove Eq. (5.4) using the semidefinite program in
Ref. [49], first note that � = E1 − E2 has action

�(ρ) =
d2−1∑
i=0

(qi − ri)PiρP
†
i . (5.5)

The semidefinite program has the following primal and dual
problems:

Primal problem. Maximize 〈J (�),W 〉 subject to W � 1d ⊗
ρ, W ∈ Pos[L(Cd ⊗ Cd )], ρ ∈ D(L(Cd )),

Dual problem. Minimize ‖tr1(Z)‖∞ subject to Z � J (�),
Z ∈ Pos[L(Cd ⊗ Cd )], where J (�) is the Choi matrix [50] of
�. If α and β are the solutions to the primal and dual problems
then the case that α = β is called strong duality. It is shown
in Ref. [49] that the above semidefinite program always has
the property of strong duality and the solution to the program
is α = 1

2‖E1 − E2‖�. Note also that it is always the case that
α � β.

By definition,

J (�) = d� ⊗ I(|ψ0〉〈ψ0|)

= d

d2−1∑
i=0

(qi − ri)Pi ⊗ 1|ψ0〉〈ψ0|P †
i ⊗ 1. (5.6)

Noting that {|ψi〉 := Pi ⊗ 1|ψ0〉}d2−1
i=0 forms an orthonormal

basis of maximally entangled states for Cd ⊗ Cd , which we
call the generalized Bell basis (GBB), we have that J (�) is
diagonal when written in the GBB with diagonal elements
(eigenvalues) d(qi − ri). Let �+ denote the projector onto the
eigenspace with non-negative eigenvalues and �− denote the
projector onto the eigenspace with negative eigenvalues.

For the primal problem let W = �+
d

and ρ = 1
d

. Then

〈J (�),W 〉 =
∑

k:qk−rk�0

qk − rk = 1

2

∑
k

|qk − rk| = 1

2
‖v‖1.

(5.7)

Thus α � 1
2‖v‖1.

For the dual problem take Z = d�+J (�)�+ which is
just

∑
k:qk−rk�0(qk − rk)|ψk〉〈ψk| and note that Z � J (�).

Moreover, tr1(Z) = d(
∑

k:qk−rk�0 qk − rk)1
d

and so

‖tr1(Z)‖∞ =
( ∑

k:qk−rk�0

qk − rk

)
= 1

2
‖v‖1. (5.8)

Thus α � 1
2‖v‖1, which implies α = 1

2‖v‖1 and ‖E1 − E2‖� =
‖v‖1 as desired.
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As a simple corollary to Eq. (5.4) note that if E1 and E2

are depolarizing channels with fidelity parameters p1 and p2,
respectively, then

‖E1 − E2‖� = 2|p1 − p2|(d2 − 1)

d2
. (5.9)

To see this note that

q0 = (d + 1)FE1,I − 1

d
= (d + 1)

(
p1 + 1−p1

d

) − 1

d

= (d2 − 1)p1 + 1

d2
(5.10)

and similarly

r0 = (d2 − 1)p2 + 1

d2
. (5.11)

Thus, for every 1 � i � d2 − 1,

qi = 1 − q0

d2 − 1
= 1 − p1

d2
(5.12)

and

ri = 1 − r0

d2 − 1
= 1 − p2

d2
. (5.13)

So

‖E1 − E2‖� = ‖v‖1 = |q0 − r0| +
d2−1∑
i=1

|qi − ri |

=
∣∣∣∣ (d2 − 1)p1 + 1

d2
−

(
(d2 − 1)p2 + 1

d2

)∣∣∣∣
+ (d2 − 1)

∣∣∣∣1 − p1

d2
−

(
1 − p2

d2

)∣∣∣∣
= 2

(d2 − 1)|p1 − p2|
d2

. (5.14)

B. Relating the diamond norm and error rate in benchmarking

Now suppose that E2 = I in Eq. (5.4). Then, r0 = 1 and for
every 1 � i � d2 − 1, ri = 0. Hence in this case

‖E1 − I‖� = ‖v‖1 = |q0 − 1| + 1 − q0 = 2(1 − q0). (5.15)

We know that q0 is related to the average fidelity of E1,
FE1,I , by

FE1,I = q0d + 1

d + 1
(5.16)

and so

‖E1 − I‖� = 2(d + 1)(1 − FE1,I )

d
. (5.17)

Therefore in the case of randomized benchmarking (where we
define the error rate r = 1 − F�,I ), if � is a generalized Pauli
channel, r and ‖� − I‖� are related by

‖� − I‖� = 2
(d + 1)r

d
. (5.18)

VI. SCALABILITY OF THE PROTOCOL

In this section we fill in the details of the scalability proof of
our RB protocol that was briefly outlined in Ref. [25]. First, we
note that the size of the Clifford group scales as 2O(n2) and so
the number of sequences of length m scales as 2mO(n2). Hence,
if full averaging over the Clifford group is required for each
sequence length, our protocol does not scale well in either of
n or m. As mentioned in Ref. [25], there are three obstacles to
overcome in order for the above protocol to be scalable:

(1) Sequence length: Since the number of sequences of
length m scales as 2mO(n2), averaging over all sequences for
each m is clearly inefficient.

(2) Uniform sampling: Since the size of the Clifford group
scales as 2O(n2), sampling directly from a list of all Clifford
elements becomes impossible for large n (writing down every
element is inefficient in n).

(3) Implementing Clifford operations: In practice, one can
only implement a generating set for the Clifford group. Hence
even if random sampling can be accomplished there must be
a scalable method for implementing each Clifford using only
this generating set.

We now describe how to overcome each of the above
obstacles.

Solution to (1). From Eq. (3.12), Fg(m,ψ) is the uniform
average of the random variable

F im
g (m,|ψ〉) : = tr[S im(ρψ )Eψ ]

= tr[�im+1,m+1 ◦ Cim+1 ◦ · · · ◦ �i1,1 ◦ Ci1 (ρψ )Eψ ]

(6.1)

over |Clifn|m sequences (i1, . . . ,im). The benchmarking pro-
tocol requires choosing a sequence at random, evaluating the
above fidelity, repeating for many sequences, and taking the
average of the results.

Let Sk(m,|ψ〉) = F im
g (m,|ψ〉)+··· +F im

g (m,|ψ〉)
k

be the normalized

k-fold sum of the random variable F im
g (m,|ψ〉) and note

that E[Sk(m,|ψ〉)] = Fg(m,ψ). A probabilistic bound on
|Sk(m,|ψ〉) − Fg(m,ψ)| is given by Höeffding’s inequality,

P [|Sk(m,|ψ〉) − Fg(m,ψ)| � ε]

� 2e−2(kε)2/k(b−a)2 = 2e−2kε2/(b−a)2
, (6.2)

where [a,b] is the range of F im
g (m,|ψ〉). Since F im

g (m,|ψ〉) is
a fidelity it must lie in [0,1] (in reality it will lie in a much
smaller interval; for now we continue to assume it lies in
[a,b] ⊆ [0,1]). Suppose we want

P [(|Sk(m,|ψ〉) − Fg(m,ψ)| � ε] � δ, (6.3)

where ε represents the accuracy of the estimate and 1 − δ

represents the desired confidence level. We can find how many
trials one needs to perform to obtain this accuracy by setting
δ = 2e−2kε2/(b−a)2

and solving for k,

k = ln
(

2
δ

)
(b − a)2

2ε2
. (6.4)

Note that k is explicitly independent of m and n which provides
a solution to (1).
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It is instructive to obtain an estimate of the size of k for
realistic parameter values of δ and ε. Since 1 − δ represents
our desired confidence level we set δ = 0.05. Fault tolerance
provides a wide range for the error tolerance of a physical
(0-level) gate in the fault-tolerant construction. The value of
the error tolerance depends on both the coding scheme and
the noise model and typical values lie somewhere between
10−6 and 10−2. Let us assume that the physical gates have
errors on the order of 10−4. Intuitively, since the fidelity curve
decays in sequence length it is reasonable to assume that ε

can be relaxed as m grows large. Similarly, b − a can be
assumed to be relatively small for small values of m but will
converge to 1 − 1

d
as m grows large. As a result both b − a

and ε have an implicit dependence on m, and this implicit
dependence is advantageous when choosing ε for large values
of m. Let us assume m = 100 and a fidelity decay curve that is
well approximated by an exponential. Then we expect fidelity
values on the order of 0.99 at this value of m and so we take
ε = 10−3, b − a = 0.2. With these values for ε, δ, and b − a

we get

k = ln
(

2
0.05

)(
0.2

)2

2(10−3)2
∼ 7 × 104. (6.5)

While this number is large it is independent of n and thus
compares favorably with quantum process tomography which
scales as 16n. As a direct comparison, performing process
tomography on a four-qubit system already requires 65 536
measurements.

Solution to (2). For the second problem we present a method
to scalably sample uniformly from the full Clifford group that
utilizes the symplectic representation of the Clifford group
(see Refs. [51,52]). Since the Clifford group is the normalizer
of the Pauli group, every Clifford element is completely
determined by its action under conjugation on the Pauli group.
In particular, since the Pauli group is generated by the set
of all Xi and Zi (the label i refers to X or Z being in the
ith position with identity operators elsewhere), an element
of the Clifford group is completely determined by its action
on this set. In the symplectic representation this corresponds
to each Clifford element Q being associated uniquely with
a 2n × 2n binary symplectic matrix C and length-2n binary
vector h which records negative signs in the images of Xi and
Zi . The only constraints on Q are that commutation relations
and Hermiticity of the generating set must be preserved under
Q. Hence we can construct a random Clifford element Q by
inductively constructing a random symplectic matrix C and
vector h.

Since h corresponds to keeping track of negative signs,
the binary entries of h can be chosen uniformly at random.
C is inductively constructed column by column, where the
first n columns correspond to the images of X1 through
Xn, and the last n columns correspond to the images of Z1

through Zn (all of which are written in binary notation as in
Ref. [52]). Preservation of commutation relations is phrased
through the symplectic inner product and so at each step one
chooses the new column by finding a random solution to a
system of linear equations which represents the inner-product
conditions. Since randomly choosing 2n elements of the
Pauli group that satisfy the required commutation relations

is equivalent to inductively choosing random solutions to 2n

sets of linear equations [which requires O(n3) operations], we
can produce a random Clifford element in O(n4) (classical)
operations.

Solution to (3). Any Clifford element can be decomposed
into a sequence of O(n2) one- and two-qubit generators in
O(n2) time [52] [alternatively, there are slower methods which
produce a “canonical” decomposition into O(n2/ log n) gen-
erators [53]]. We describe this method which again utilizes the
symplectic representation of the Clifford group. As mentioned
above, every Clifford element Q is represented up to a phase
by a binary, symplectic matrix C and a binary vector h. The
main goal is to decompose C into generators as the negative
signs represented by h can be accounted for via multiplication
by single-qubit Pauli operators. The main theorem used in the
decomposition of Clifford elements is Theorem 4 of Ref. [52]
which states that if C is a binary symplectic matrix then C

can be decomposed as a product of five binary symplectic
matrices, which we denote by T1 through T5.

These symplectic matrices can be decomposed into sym-
plectic matrices representing one- and two-qubit Clifford
operations that correspond to Hadamard, single-qubit π

2
rotations about σZ , two-qubit π

2 rotations about σZ ⊗ σZ ,
two-qubit permutation operations, and CNOT operations. The
overall discussion can be condensed into the following main
result:

Main result. Every Clifford operation Q can be realized by
a sequence of one- and two-qubit Clifford operations which
consists of the following six rounds of operations:

(1) an initial round of single-qubit Pauli operators,
(2) application of a sequence of CNOT and two-qubit

permutation operations,
(3) application of a sequence of π

2 rotations about σZ ⊗ σZ

followed by a sequence of π
2 rotations about σZ ,

(4) application of Hadamard operations,
(5) application of a sequence of π

2 rotations about σZ ⊗ σZ

followed by a sequence of π
2 rotations about σZ , and

(6) application of a final round of CNOT and two-qubit
permutation operations.

Note that the operations within each of the rounds 3, 4, and
5 all commute and can be performed in any order.

The time complexity in decomposing a symplectic matrix
into the sequence of one- and two-qubit Clifford operations
given above is O(n3) since one needs to solve linear systems
of equations to obtain T1 through T5. In many cases one would
like to have a decomposition of a Clifford element into a
particular generating set for the Clifford group, such as Gn :=
{H,S,CNOT} which consists of Hadamard’s (H) and phase gates
(S) on each qubit, as well as CNOT gates on all pairs of qubits.
There are n2 + n elements in Gn, and it is a straightforward
process to decompose the operations in rounds 1 through 6
above into H, S, and CNOT gates.

In total, for an n-qubit system, we can efficiently choose
Clifford gates uniformly at random and decompose each gate
into a canonical subsequence of elements from the generating
set Gn. The total time complexity of these two procedures is
O(n4) + O(n3) = O(n4). The number of trials k one needs to
perform to estimateFg(m,ψ) to an accuracy ε with probability
at least 1 − δ is given by Eq. (6.4), which is independent of m

and n. Thus if we perform the protocol for R different values
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of m, the total time complexity is

O(n4)R ln(2/δ)

2ε2
(6.6)

which implies that the protocol is scalable in n.

VII. DISCUSSION

We have shown that randomized benchmarking provides a
scalable method for benchmarking the set of Clifford gates.
The protocol allows for time- and gate-dependent noise,
and the fitting models for the fidelity function take into
account state-preparation and measurement errors. In addition
to providing an estimate of the average fidelity across all
Clifford gates, the first-order model provides a measure of
the gate dependence of the noise.

We have provided here rigorous proofs of the conditions
for the validity of the protocol, as well as the scalability
of the protocol in the number of qubits n comprising the
system. We have also established an exact relationship between
the average fidelity estimate provided by the protocol and a
stronger characterization of the average error operator strength
given by the diamond norm for the case of random Pauli errors.
The proof of this relationship utilizes a semidefinite program
for computing the diamond norm [49] which has the potential
to establish further connections between these two notions of
error strength.

While benchmarking the full unitary group would be ideal,
this is a provably inefficient task since just generating a
Haar-random unitary operator is inefficient in n. On the other
hand as we have shown here, benchmarking the Clifford group
is an efficient task. It is not difficult to see that benchmarking
the Clifford group provides significant information for both
fault-tolerant quantum computation as well as obtaining a
benchmark for a generating set of the full unitary group.
First, any realistic implementation of a quantum computer
will have to take advantage of error-correction codes in order
to perform fault-tolerant quantum computation. The fact that
most of the codes used in fault-tolerant theory are stabilizer
codes implies that the encoding and decoding operations that
have to be performed can be chosen to be Clifford operations.
Hence a benchmark of Clifford operations provides direct
information regarding the robustness of these encoding and
decoding schemes.

Second, the unitary group can be generated by adding just
one single-qubit rotation not in the Clifford group (for instance
the π

8 gate). Hence a benchmark for the Clifford group can
actually provide useful information regarding a benchmark
for a generating set of the full unitary group. In addition, it has
been shown that any unitary operation can be implemented
using Clifford gates, a single-qubit ancilla state called a magic
state [54] and measurements in the computational basis. Hence
in this model of quantum computation the only gates that need
to be benchmarked for universal quantum computation are
Clifford gates.

Various interesting questions and comments arise from
the benchmarking analysis presented here. First, there is a
key point to emphasize regarding the zeroth- and first-order
fitting models. As depicted in Ref. [25], there exist physically
relevant noise models for which when the true value of the

depolarization fidelity parameter p is used, the first-order
model fits the experimental data much better than the zeroth-
order model. However, it may be the case that a least-squares
fitting procedure using the functional form of the zeroth-order
model produces a very good fit to the experimental data, albeit
producing an incorrect value for p. Therefore in order to
obtain a more accurate value for p one should always use the
first-order fitting model unless prior knowledge of the noise
indicates that it is effectively gate independent.

It will be useful to obtain a better understanding of when
a least-squares fitting procedure using the zeroth-order model
produces a value for p that is close to its true value. Clearly,
in the gate-independent case the zeroth-order model fits the
fidelity decay curve exactly. Moreover, for weakly gate-
dependent noise one can see from our continuity argument that
the zeroth-order model is still a sufficient fitting function for the
fidelity decay curve. Hence the most interesting case to analyze
is when there is a non-negligible amount of gate dependence
in the noise and the condition for using the first-order model
to fit the decay curve is satisfied. A useful test that would
indicate gate dependence in the noise, and thus the validity of
the value of p obtained from fitting to the zeroth-order model,
is to perform the least-squares fitting procedure using both
the zeroth- and first-order fitting models. If the estimates of p

obtained in each case differ significantly then the zeroth-order
model must be a poor choice of fitting function even though it
may fit the data well. In this case the noise must have a strong
gate dependence because otherwise q − p2 would be small
which implies that the two fitting functions would produce
similar estimates for p.

An interesting question is how to extract a meaningful
average error rate over a generating set of the Clifford group,
for instance Gn defined previously, from the average error
rate r over the entire Clifford group. One might argue that
benchmarking a generating set for the Clifford group is
sufficient for benchmarking the full Clifford group; however,
it is entirely plausible that noise correlations between the n

physical qubits create large errors on elements of Clifn, even
when the errors on the generating set can be controlled [55]. In
fact an assumption that is often made in fault-tolerant estimates
is that the correlation in noise between qubits either is small
or can be ignored.

With regard to scalability, while we have shown that
the protocol itself is scalable in n, a useful direction for
further research would be an analysis of how the sufficient
condition of weak average variation of the noise depends
on n. As previously noted, the noise associated with a
multiqubit Clifford element is given by the noise associated
with the sequence of generators comprising the Clifford. A
determination of whether these noise operators continue to
satisfy the sufficient condition when it is met for small numbers
of qubits will be useful for understanding the applicability of
the protocol.

Rigorous fault-tolerant analyses sometimes invoke the
diamond norm as a measure of the error strength rather than
the weaker characterization provided by the average fidelity.
Hence it is desirable to find relationships between these
two quantities that is more general than the special case of
random Pauli errors presented here. As mentioned above, the
semidefinite program we have used to deduce the relationship
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appears to be a promising tool for further research in this area.
From the expression given in Eq. (2.2), one can see that the
diamond norm is essentially a “worst-case” maximization over
input (entangled) states. In quantum computation it is the case
that the measure of accessible states (states that can be reached
in polynomial time using a generating set for the unitary
group) is equal to 0. Hence there is a high probability that
the maximization criterion demanded by the diamond norm is
a much stronger condition than necessary for understanding
the strength of the errors affecting the computation. This point
becomes even more relevant for an algorithm-specific (i.e.,
nonuniversal) quantum computer. An interesting direction of
further research is to provide precise conditions for when

the average fidelity provides an indication or bound on the
error strength in terms of stronger characterizations such as
the diamond norm.

Additionally, if one were able to obtain an estimate of the
minimum gate fidelity from knowledge of the average fidelity
they could use the direct relationship between the minimum
gate fidelity and diamond norm given by Eq. (2.21) to obtain
information about the error strength in terms of the diamond
norm. A result that may be useful in this direction of research
is the “concentration-of-measure effect” of the gate fidelity,
which implies that as n increases, the measure of the set of
states which produce a fidelity close to the minimum yet far
from the average is exponentially small in n [41,42].
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