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We investigate how the interplay between a staggered magnetic field and staggered coupling strength affects
both ground-state and thermal entanglement. Upon analytically calculating thermodynamic quantities and the
correlation functions for such a system, we consider both the global Meyer-Wallach measure of entanglement and
the concurrence between pairs of spins. We discover two quantum critical points present in the model and show
that the behavior of entanglement at zero temperature reflects each. We discover that increasing the alternating
field and alternating coupling strength can actually increase the amount of entanglement present both at zero
temperature and for thermal states of the system.
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I. INTRODUCTION

Entanglement is an intriguing concept in quantum infor-
mation, and a resource used in many quantum-computation
schemes [1]. The Heisenberg coupling in spin chains has
been shown to allow universal quantum computation [2]. Spin
chains are also good candidates for quantum wires [3]. Thus it
is an important task to explore how the amount of entanglement
in such systems changes under different conditions, to discover
whether it can be enhanced and what causes its destruction.

Many-body entanglement [1] is difficult to quantify, so
entanglement measures are often restricted to the pure, zero-
temperature case, for example, von Neumann entropy [4]
or the Meyer-Wallach measure [5], or to a small number
of possibly mixed qubits such as concurrence [6]. On the
other hand, it is, in general, hard to quantitatively study
entanglement of thermal states due to the absence of an
efficient separability criterion for mixed states in many-body
systems. An alternative approach is to use an entanglement
witness which detects rather than measures entanglement.
In particular, a thermodynamic entanglement witness uses
thermodynamic quantities derived from the partition function
of the system to detect entanglement [7,8].

In spin chains, ground-state entanglement is often inves-
tigated in the context of quantum phase transitions (QPTs).
A QPT is a sudden change in the properties of the ground
state when a parameter of the Hamiltonian such as a magnetic
field is varied. Since it is expected that by investigation of
QPTs, dramatic changes to physical quantities at very low
temperature will be revealed, QPTs have been intensely studied
in spin systems [9]. In Ref. [10], it was shown that, in general, a
singularity occurs in the ground-state entanglement at quantum
critical points (QCPs).

In this paper, we investigate entanglement of a spin
system in a nonuniform magnetic field with nonuniform
coupling constants. Certain solid-state systems such as copper
benzoate have a nonuniform magnetic field [11], caused by an
inhomogeneous Zeeman coupling. Similarly, examples exist
for a nonuniform coupling strength [12,13]. Some properties
of these materials can be captured using the staggered spin
chain we study in this paper.

Entanglement in a staggered magnetic field has been studied
previously using single-site entropy and an entanglement
witness [14]. The effect of such a staggered field on the
dynamics and on the high-fidelity transfer of entanglement
has also been considered [15]; it was found that the staggered
field is almost as efficient as the uniform case. On the other
hand, entanglement in a spin chain with staggered coupling and
magnetic field has been considered only for nearest neighbors
in chains of finite length [16].

Here, we show how to calculate two measures of en-
tanglement analytically for such spin chains with infinite
length. We first calculate thermodynamic properties and finite-
temperature correlation functions of the spin chain. Using
these results, we show that the system exhibits QPTs at zero
temperature induced by the staggered fields. We investigate
global entanglement of the ground state using the Meyer-
Wallach measure, a measure of multipartite pure states based
on bipartite entanglement. We then investigate both zero- and
finite-temperature entanglement between two spins using the
concurrence. At zero temperature, we calculate the derivative
of the concurrence and find that it diverges at the QCPs,
and demonstrate that the global Meyer-Wallach measure is
neither zero nor maximum at the QCPs, but changes to a
constant value instead. Regarding the amount of entanglement,
we find that global entanglement of the ground state in
general increases with an alternating coupling constant. At
zero temperature, the concurrence first increases, reaches a
maximum, and then decreases with an alternating coupling
constant. We also find that for certain values of magnetic field
both the Meyer-Wallach measure and the zero-temperature
concurrence can be increased by an alternating magnetic field.
At finite temperature, the concurrence can again be increased
by certain values of the staggered fields and couplings. Further,
we examine entanglement at finite temperature using an
entanglement witness with the aim of searching for thermal
multipartite entanglement.

This paper is organized as follows. In Sec. II, we present
the Hamiltonian and give its diagonal form, which allows us
to calculate thermodynamical quantities of the system. We
compute the correlation functions in Sec. III. In Sec. IV, we
investigate the ground state and show that the Hamiltonian
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exhibits QPTs. Then we investigate entanglement at zero
temperature and at finite temperature in Sec. V. We present
concluding remarks in Sec. VI.

II. THE HAMILTONIAN AND ITS
THERMODYNAMIC PROPERTIES

We consider the thermodynamic limit of the staggered
Hamiltonian

H = −
N∑

l=1

[
Jl

2

(
σx

l σ x
l+1 + σ

y

l σ
y

l+1

) + Blσ
z
l

]
, (1)

where Jl = J + eiπlj is the staggered coupling strength and
Bl = B + eiπlb is the staggered magnetic field. We refer
to j as the alternating coupling strength and b as the
alternating magnetic field. This spin chain can be diagonalized
[17] using a Jordan-Wigner transformation al = ∏l−1

m=1 σ z
m ⊗

(σx
l + iσ

y

l )/2, with anticommutation relations {al,am} = 0
and {a†

l ,am} = δl,m, followed by a Fourier transform al =
N−1/2 ∑

k dke
2iπkl/N . Next the Hamiltonian must be rewritten

as a sum to N/2:

H =
N/2∑
k=1

(μ−
k d

†
kdk + μ+

k d
†
k+N/2dk+N/2

+ ν+
k d

†
kdk+N/2 + ν−

k d
†
k+N/2dk − 2B1) (2)

where μ±
k = [2B ± 2J cos(2πk/N )] and ν±

k =
[2b ± 2ij sin(2πk/N )]. This can now be diagonalized
using a canonical transformation,

dk = αk cos θk + βk sin θk,
(3)

dk+N/2 = −αk sin θk + βk cos θk,

where θk is determined by −J cos(2πk/N ) sin 2θk +
b cos 2θk = ij sin(2πk/N ). Thus the diagonal form of the
Hamiltonian is

H =
N/2∑
k=1

(λ+
k α

†
kαk + λ−

k β
†
kβk − 2B1), (4)

where λ±
k = 2B ± 2

√
J 2 cos2( 2πk

N
) + b2 + j 2 sin2( 2πk

N
). The

anticommutation relations are now {α†
l ,αm} = {β†

l ,βm} = δl,m

and {αl,αm} = {βl,βm} = {α†
l ,βm} = {αl,βm} = 0. In all fig-

ures in the paper, we will fix J to 1 and use natural units.
The partition function Z = tr(e−βH ) of this system

can be written Z = ∏N/2
k=1 Zk and thus ln Z = ∑N/2

k=1 ln Zk ,
where Zk = [e2βB + e−β(λ−

k −2B) + e−β(λ+
k −2B) + e−2βB ] is

found from the kth term in the Hamiltonian sum. Explicitly
taking the thermodynamic limit, we find

ln Z = N

2π

∫ π

0
dq ln[4 cosh(β
+

q ) cosh(β
−
q )], (5)

where 
±
q = B ±

√
J 2 cos2 q + b2 + j 2 sin2 q. From this,

other thermodynamic quantities such as the internal energy

U = − ∂
∂β

ln Z can be calculated:

u := U

N
= −

∫ π

0

dq

2π
[
+

q tanh(β
+
q ) + 
−

q tanh(β
−
q )].

(6)

The magnetization M = 1
β

∂
∂B

ln Z is

m := M

N
=

∫ π

0

dq

2π
[tanh(β
+

q ) + tanh(β
−
q )], (7)

and the staggered magnetization Ms = 1
β

∂
∂b

ln Z is

ms := Ms

N
=

∫ π

0

dq

2π

b[tanh(β
+
q ) − tanh(β
−

q )]√
J 2 cos2 q + b2 + j 2 sin2 q

. (8)

III. CORRELATION FUNCTIONS

We will use the correlation functions of the system to
calculate each measure of entanglement. Since [H,

∑
l σ

z
l ] =

0, the only nonzero correlation functions of this spin chain
are 〈σx

l σ x
l+R + σ

y

l σ
y

l+R〉, 〈σ z
l σ z

l+R〉, and 〈σ z
l 〉. The Hamiltonian

is semi-translationally-invariant in that all odd and all even
sites can be considered identical in the thermodynamic limit.
Due to this semi-translational-invariance, when R is even,
〈σ z

l 〉 = 〈σ z
l+R〉.

We calculate each of the correlation functions
following the method in Ref. [18]. We find these for
any R. Generally, 〈σx

l σ x
l+R + σ

y

l σ
y

l+R〉 = 2〈a†
l

∏R−1
m=l+1(1 −

2a
†
mam)al+R + a

†
l+R

∏R−1
m=l+1(1 − 2a

†
mam)al〉, 〈σ z

l σ z
l+R〉 =

〈(1 − 2a
†
l al)(1 − 2a

†
l+Ral+R)〉, and 〈σ z

l 〉 = 〈1 − 2a
†
l al〉.

The autocorrelation functions of this model have been found
analytically in the infinite-temperature limit [19], and the time-
dependent 〈σ z

l (t)σ z
l+R〉 has been found, also analytically, for

arbitrary temperature [20]. However, the general equilibrium
correlation functions have not been calculated previously to
our knowledge.

Since the spin chain is a free-fermion model and semi-
translationally-invariant, Wick’s theorem can be applied to the
total correlation functions. Thus we can rewrite each of the
above equations in terms of two-point correlation functions.
For example, the zz correlation function is 〈(1 − 2a

†
l al)(1 −

2a
†
l+Ral+R)〉 = 〈σ z

l 〉〈σ z
l+R〉 − G2

l,R , where we have defined

Gl,R = −〈a†
l al+R − ala

†
l+R〉. We use the notation Gl,R =

G0
R + eiπlGs

R and 〈σ z
l 〉 = 〈σ z〉0 + eiπl〈σ z〉s where G0

R =
− 1

N

∑
l〈a†

l al+R − ala
†
l+R〉 and Gs

R = − 1
N

∑
l e

iπl〈a†
l al+R −

ala
†
l+R〉 (similarly for 〈σ z

l 〉). Note that we have treated 〈σ z
l 〉

separately from Gl,R despite the fact that R = 0 should give
us 〈σ z

l 〉. The reason for this will become clear below.
Using the Jordan-Wigner transformation and Fourier trans-

form and then summing to N/2 (the additional canonical
transformation is unnecessary), we find we can write

〈
σ z

l

〉0 = 1

N

N/2∑
k=1

[〈1 − 2d
†
kdk〉 + 〈1 − 2d

†
k+N/2dk+N/2〉],

(9)〈
σ z

l

〉s = − 2

N

N/2∑
k=1

[〈d†
kdk+N/2〉 + 〈d†

k+N/2dk〉],
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for 〈σ z
l 〉 and

G0
R = 1

N

N/2∑
k=1

cos

(
2πkR

N

)
[〈1 − 2d

†
kdk〉

+ eiπR〈1 − 2d
†
k+N/2dk+N/2〉],

(10)

Gs
R = 2i

N

N/2∑
k=1

sin

(
2πkR

N

)
[〈d†

kdk+N/2〉 + eiπR〈d†
k+N/2dk〉],

for Gl,R . We know the thermodynamic forms of 〈σ z
l 〉0 = m

[Eq. (7)] and 〈σ z
l 〉s = ms [Eq. (8)], and also of Gl,1 =

−〈σx
l σ x

l+1 + σ
y

l σ
y

l+1〉/2, which can be calculated by differ-
entiating the partition function with respect to the coupling
strengths, G0

l,1 = − 1
Nβ

∂
∂J

ln Z and Gs
l,1 = − 1

Nβ
∂
∂j

ln Z. Thus
we have

G0
1 = −

∫ π

0

dq

2π

J cos2 q[tanh(β
+) − tanh(β
−)]√
J 2 cos2 q + b2 + j 2 sin2 q

,

Gs
1 = −

∫ π

0

dq

2π

j sin2 q[tanh(β
+) − tanh(β
−)]√
J 2 cos2 q + b2 + j 2 sin2 q

.

The thermodynamic expressions for Gl,R are found directly
from the above equations. For even R, we compare the
correlation function form of Gl,R to that of 〈σ z

l 〉, noticing
that they are similar. Since we know the thermodynamic form
of 〈σ z

l 〉, we can also determine the thermodynamic form of
Gl,R:

G0
R =

∫ π

0

dq

2π
cos(qR)[tanh(β
+) + tanh(β
−)],

(11)

Gs
R = −i

∫ π

0

dq

2π

b sin(qR)[tanh(β
+) − tanh(β
−)]√
J 2 cos2 q + b2 + j 2 sin2 q

.

We note that for R even, Gs
R = 0. For odd R, we instead

compare the correlation function form of Gl,R to Gl,1, again
noticing they are similar. Using the thermodynamic form of
Gl,1, we determine the thermodynamic form of Gl,R:

G0
R = −

∫ π

0

dq

2π
cos(qR)

J cos q[tanh(β
+) − tanh(β
−)]√
J 2 cos2 q + b2 + j 2 sin2 q

,

Gs
R = −

∫ π

0

dq

2π
sin(qR)

j sin q[tanh(β
+) − tanh(β
−)]√
J 2 cos2 q + b2 + j 2 sin2 q

.

The differences between odd and even R are due to the
presence of the eiπR term in the correlation-function forms
of Gl,R .

IV. PROPERTIES OF THE GROUND STATE

In this section, we investigate the properties of the ground
state. Without the alternating coupling strength and the
alternating magnetic field, the Hamiltonian is referred to as
an XX model with a transverse magnetic field. It is well known
that the XX model has a second-order QPT at B = J [21].
We investigate the ground-state energy as a function of the
alternating coupling strength and the alternating magnetic
field, and see the QPTs induced by them.

We first define Q as

Q = {Q ∈ [0,π ]|
−
q < 0}. (12)

0.5 1.0 1.5 2.0
b

2.0

1.5

1.0

0.5

2
bE

B 0.5, j 0.3

0.5 1.0 1.5 2.0
b

4
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1

2
bE

B 1.5, j 0.5

(a b)

FIG. 1. (Color online) Second derivative of the ground-state
energy with respect to b. (a) and (b) are for (B,j ) = (0.5,0.3)
and (B,j ) = (1.5,0.5), respectively. It is observed that the second
derivative diverges at the QCPs B = √

J 2 + b2 and B = √
j 2 + b2.

For simplicity, we also introduce two functions,

�(q) =
√

J 2 cos2 q + b2 + j 2 sin2 q, (13)


 = arccos

√
B2 − b2 − j 2

J 2 − j 2
. (14)

By using the internal energy per site u given by Eq. (6), the
ground-state energy per site is obtained by taking a limit such
as

εg = − lim
β→∞

∫ π

0

dq

2π
[
+

q tanh(β
+
q ) + 
−

q tanh(β
−
q )]

= −
∫

q /∈Q

dq

2π
[
+

q + 
−
q ] −

∫
q∈Q

dq

2π
[
+

q − 
−
q ]

= −B + 1

π

∫
q∈Q

[B − �(q)]dq. (15)

In the Appendix, the region Q is analytically obtained and
exact expressions of the ground-state energy are shown. In
order to visualize the QPTs, the second derivative of the ground
state in terms of b for (B,j ) = (0.5,0.3) and (B,j ) = (1.5,0.5)
is given in Fig. 1. It is observed that the derivative diverges at
the points B = √

J 2 + b2 and B =
√

j 2 + b2, both of which
lead to second-order QPTs.

The QPTs are observed more clearly by looking at the
magnetic susceptibility at zero temperature. In the Appendix,
the magnetization at zero temperature is explicitly calculated;
it is a function of 
. Since the derivative of 
 with respect to
B and b includes a factor 1/

√
B2 − b2 − j 2

√−B2 + J 2 + b2,
the derivative diverges at the points B = √

J 2 + b2 and B =√
j 2 + b2, which implies QPTs. To demonstrate this, we also

plot the magnetization at zero temperature in Fig. 2. We can
clearly see that the magnetization of the ground state changes
nonsmoothly at both QCPs.

We note that, when j = b = 0 corresponding to the
XX model with a transverse magnetic field, B = √

J 2 + b2

reduces to the QCP of the XX model, B = J . On the other
hand, QPTs at B =

√
j 2 + b2 do not appear in the XX model.

Hence this QCP can be regarded as being induced by the
staggered nature of the spin chain.

V. ENTANGLEMENT

We study entanglement properties of the spin chain in
three different ways. First we define the Meyer-Wallach
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FIG. 2. (Color online) Magnetization at zero temperature. (a), (b),
and (c) show B = 0.6, 1, and 1.4, respectively. The magnetization
changes nonsmoothly at the quantum critical points B = √

J 2 + b2

and B = √
j 2 + b2.

measure and the concurrence and discuss how to calculate
each for the staggered Hamiltonian. Next we consider how
both entanglement measures behave at zero temperature, and
then how a finite temperature affects the concurrence. Finally
we consider a thermodynamic entanglement witness in an
attempt to detect thermal entanglement which the measures
miss, such as multipartite entanglement. In case of degeneracy
in the ground state, the description of the ground state depends
on how the degeneracy is dealt with, as does the amount of
entanglement of the ground state. In this paper, we calculate
entanglement of the ground state obtained by taking the
zero-temperature limit of thermal states in the thermodynamic
limit.

A. Meyer-Wallach measure and concurrence

First, we show how to calculate the Meyer-Wallach measure
and the concurrence from the thermodynamic quantities
calculated in Sec. II and correlation functions in Sec. III.
For a pure state |�〉 of an N -spin system, the Meyer-Wallach
measure is defined by

EMW(|�〉) = 2 − 2

N

N∑
i=1

Trρ2
i ,

where ρi := Tr¬i |�〉〈�| is the reduced density matrix at the
ith spin [5,22]. (The partial trace Tr¬i is taken over all degrees
of freedom except the ith spin.) The Meyer-Wallach measure
takes values between 0 and 1. The minimum is achieved if and
only if the state is separable, while the maximum is given by
states which are local unitary equivalents to the Greenberger-
Horne-Zeilinger (GHZ) state. The Meyer-Wallach measure is
a measure of global entanglement [5], namely, it reflects the
properties of entanglement in the total N -spin states. It is
investigated in the context of QPTs where the Meyer-Wallach
measure is shown to behave nonanalytically at QCPs [23–25].

We calculate the entanglement of the ground state found by
the Meyer-Wallach measure. Since the Hamiltonian preserves

the magnetization, i.e., [H,
∑

l σ
z
l ] = 0, the reduced density

matrix of a spin at site l, ρl , has only diagonal elements
such that ρl = diag{ 1+〈σ z

l 〉g
2 ,

1−〈σ z
l 〉g

2 }, where 〈σ z
l 〉g := 〈g|σ z

l |g〉
is the expectation value of σ z

l in the ground state |g〉. By
substituting this and using the fact that the Hamiltonian is
semi-translationally-invariant, we obtain the Meyer-Wallach
measure of the ground state as

EMW(|g〉) = 1 − 1
2

(〈
σ z

even

〉2
g
+ 〈

σ z
odd

〉2
g

)
, (16)

where 〈σ z
even〉g = 〈g|σ z

2l|g〉 and 〈σ z
odd〉g = 〈g|σ z

2l+1|g〉 for any
l. The 〈σ z

even〉 and 〈σ z
odd〉 are obtained from the magnetization

m given by Eq. (7) and ms given by Eq. (8), such that〈
σ z

even

〉
g

= lim
β→∞

[m + ms], (17)〈
σ z

odd

〉
g

= lim
β→∞

[m − ms]. (18)

The exact expressions of the ground-state energy, the magne-
tization at zero temperature, and the Meyer-Wallach measure
are given in the Appendix. The Meyer-Wallach measure of the
ground state behaves nonanalytically at QCPs, reflecting the
fact that it is a function of the magnetization.

The concurrence C between two spins [6] is an entangle-
ment measure for both pure and mixed states, and can therefore
be used at finite temperatures. It is given by

C(ρ) = max{0,λ1 − λ2 − λ3 − λ4}, (19)

where the λi’s are the square roots of the eigenvalues
of the matrix ρρ̃ with ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), and
satisfy λ1 � λ2 � λ3 � λ4. Again using [H,

∑
l σ

z
l ] = 0,

the concurrence between two spins at sites l and l + R

is C(ρl,l+R) = 2 max{0,|z| − √
vy}, where z = 1

4 〈σx
l σ x

l+R +
σ

y

l σ
y

l+R〉, and vy = 1
16 [(1 + 〈σ z

l σ z
l+R〉)2 − (〈σ z

l 〉 + 〈σ z
l+R〉)2].

Due to the semi-translational-invariance of the Hamiltonian,
the concurrence is the same for all odd sites and for all even
sites. The concurrence is zero if and only if the state of the two
spins is separable and is 1 when they are maximally entangled.
Although we could calculate the concurrence for any R, we
concentrate on the nearest-neighbor, C1 with R = 1, and the
next-nearest-neighbor, C2 with R = 2, concurrence, since for
large R the concurrence is infinitesimal. Using 〈σ z

l σ z
l+R〉 =

〈σ z
l 〉〈σ z

l+R〉 − G2
l,R , the nearest-neighbor concurrence is

C1 = max
{
0,|Gl,1| − 1

2

√(
1 + 〈

σ z
l σ z

l+1

〉)2 − (2〈σ z〉0)2
}
,

(20)

and the next-nearest-neighbor concurrence is

C2 = max
{
0,

∣∣Gl,1Gl+1,1 − Gl,2
〈
σ z

l+1

〉∣∣
− 1

2

√(
1 + 〈

σ z
l σ z

l+2

〉)2 − (
2
〈
σ z

l

〉)2}
, (21)

remembering that Gl,R is different for odd and for even values
of R.

When J = j , the total coupling strength between nearest-
neighbor sites for odd l is zero, while for even l, it is 2J . Thus,
at any temperature, there is no entanglement between nearest
neighbors for odd sites, and at zero temperature (and magnetic
fields), the chain consists of N/2 maximally entangled singlet
states. This is an example of dimerization. As a consequence
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of this, there is also no concurrence at J = j for both odd and
even sites for any R > 1.

In the following, we investigate entanglement in the
ground state in terms of the Meyer-Wallach measure and
the concurrence, as well as in the thermal state in terms of
the concurrence. The Meyer-Wallach measure is a measure
of global entanglement of the total N -spin state, whereas
the concurrence is a measure of entanglement of a reduced
two-spin density matrix. When the Meyer-Wallach measure
is zero, the concurrence between any two spins is also zero.
However, a large amount of the Meyer-Wallach measure does
not necessarily imply a large amount of concurrence between
two spins. For instance, the Meyer-Wallach measure is 1 but the
concurrence between any two spins is zero for the GHZ state.
By calculating both of them, we study multilateral properties of
entanglement contained in the ground state. It should be noted
that the Meyer-Wallach measure is a measure of entanglement
only for a pure state and thus is meaningful for investigation of
entanglement in the ground state but not that of thermal states,
in contrast to the concurrence.

B. Zero temperature

In this section, we study entanglement at zero temperature
using the Meyer-Wallach measure and the concurrence as
defined above. Figures 3 and 4 show the Meyer-Wallach
measure, Figs. 5 and 6 the nearest-neighbor (NN) concurrence
for both odd and even sites, and Fig. 7 the next-nearest-
neighbor (NNN) concurrence.

1. Quantum phase transitions

We first discuss the Meyer-Wallach measure of the ground
state. See the Appendix for the detailed calculation. In Figs. 3
and 4, it is observed that the Meyer-Wallach measure changes
nonsmoothly at the QCPs.

Conversely, considering the plots for concurrence at zero
temperature, the quantum phase transitions present in the
staggered model are not always evident. In particular, when
B is plotted against b for odd sites in Fig. 5, only the
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FIG. 3. (Color online) The Meyer-Wallach measure as a function
of B and b.
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FIG. 4. (Color online) The Meyer-Wallach measure as a function
of B and j .

curve B = √
J 2 + b2 can be seen in Fig. 5(b), while only

B =
√

j 2 + b2 can be seen in Fig. 5(c). However, changes in
the concurrence can be observed at both QCPs for even l in the
same figure, and for both odd and even sites in Fig. 6 where we
plot B against j . These results are consistent with the results
in Ref. [10], where it is shown that entanglement of the ground
state behaves singularly around QCPs in general.

In order to probe the quantum phase transition further,
we plot both the derivative of the concurrence (for T → 0)
with respect to α = 1/B and the Meyer-Wallach measure as

B

b

(a) j=0

0 1 2
0

1

2

0

0.1

0.2

0.3

B

b
(b) j=0.5 l odd

0 1 2
0

1

2

0

0.05

0.1

0.15

B

b

(c) j=1.5 l odd

0 1 2
0

1

2

0

0.05

0.1

0.15

B

b

(d) j=0.5 even l

0 1 2
0

1

2

0

0.2

0.4

0.6

0.8

B

b

(e) j=1 even l

0 1 2
0

1

2

0

0.2

0.4

0.6

0.8

B

b

(f) j=1.5 even l

0 1 2
0

1

2

0

0.2

0.4

0.6

0.8

FIG. 5. (Color online) The nearest-neighbor concurrence as a
function of B and b as T → 0.
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FIG. 6. (Color online) The nearest-neighbor concurrence as a
function of B and j as T → 0. (i) plots the concurrence against
j for l even, B = 0.5 to show that the concurrence decreases for high
enough j for b = 0 (solid red line), 0.5 (dashed green line), 1 (dotted
purple line), and 1.5 (dot-dashed blue line).

a function of α (Fig. 8) as was done for the XY spin chain in
Ref. [26]. It has been reported in some spin models that,
on taking an appropriate superposition of degenerate ground
states, global measures such as the Meyer-Wallach measure
display either a maximum or a change to zero entanglement
at the QCP, while derivatives of the bipartite entanglement
measures such as concurrence diverge at the critical point
[23,24,27–29]. Such behavior of global entanglement at the
QCPs in the staggered model is not observed in Fig. 8; while
the derivative of the concurrence with respect to α indeed
exhibits divergences at both critical points, the Meyer-Wallach
measure is neither zero nor maximum at some critical points.
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FIG. 7. (Color online) Next-nearest-neighbor concurrence as
T → 0. Concurrence is zero when j = 1 as discussed in the text.

Moreover, in our case, the magnetization of the ground state
in the thermodynamic limit does not change on taking different
superpositions of degenerate ground states, and therefore nei-
ther does the Meyer-Wallach measure, which is a function of
the magnetization. Hence, global entanglement of the ground
state for the staggered Hamiltonians cannot show a maximum
or a change to zero entanglement at the QCP. The invariance
of the Meyer-Wallach measure under superpositions in our
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FIG. 8. (Color online) (a), (b), and (c) show the derivative of the
concurrence with respect to α = 1/B. In each, the inset shows the
behavior of the concurrence itself as a function of α. (d) plots the
Meyer-Wallach measure against α.
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models justifies the use of the Meyer-Wallach measure to
quantify global entanglement of the ground state for staggered
Hamiltonian systems.

Finally, related to the phase diagram of the XX model, we
make a remark on our figures concerning the ambiguity of
the amount of entanglement for the degenerate ground state in
finite systems. When j = b = 0, the Hamiltonian reduces to
the XX model. By taking a superposition of degenerate ground
states at B = 1, we can choose a separable ground state without
taking the thermodynamic limit [30], whereas if we take a
mixture of two degenerate states, the resulting state is still
weakly entangled [31]. The choice of the separable ground
state is observed in our figures, that is, both of the Meyer-
Wallach measure and the concurrence are zero at B = 1 when
j = b = 0. In other parameter regions where entanglement is
zero, the ground state is separable only in the thermodynamic
limit.

2. Effects of j and b on entanglement

Next, we discuss the effects of b and j on the Meyer-
Wallach measure and the concurrence. First, we consider the
effect of b on entanglement, shown in Figs. 3 and 5. How
the concurrence behaves in the presence of alternating fields
is highly dependent on whether the site is odd or even. In
general, due to the larger coupling from an even site to an odd
site, both nearest- and next-nearest-neighbor concurrence are
higher, with the opposite being true from an odd to an even site.
Entanglement for the Meyer-Wallach measure and odd-site
NN concurrence remains large only when B is between the
two QPTs, i.e.,

√
j 2 + b2 < B <

√
J 2 + b2 when j < J or√

J 2 + b2 < B <
√

j 2 + b2 when J < j . For both measures,
the maximum entanglement is at B ∼ b for large magnetic
fields. These results are understandable from the fact that a
large magnetic field aligns spins in the same direction, leading
to a separable state. When b and B are large, entanglement
can be large only for B ∼ b, since the magnetic field on odd
sites is canceled in such cases. The even-site NN concurrence
does not follow this pattern, and instead a larger amount of
entanglement tends to be present when B <

√
j 2 + b2 for j <

J or when B <
√

J 2 + b2 for J < j .
On the other hand, the Meyer-Wallach measure and the

concurrence vary differently with the alternating coupling
constant j as shown in Figs. 4 and 6, where entanglement
is plotted as a function of j . The Meyer-Wallach measure is an
increasing function with j except in the vicinity of the QCPs
while the concurrence is in general a decreasing function of j .
Figure 6(i) shows that for each b there is a nonzero value of j

for which the concurrence is the maximum possible. Since
the Meyer-Wallach measure is a measure of entanglement
shared in the whole spin chain and the concurrence measures
entanglement between two spins, we can conclude from these
results that, as the alternating coupling constant j increases,
the amount of entanglement shared among all spins increases.
Such global entanglement is not locally detected, in the sense
that entanglement of the reduced two-spin state is small.

The concurrence is closely related to entanglement of
formation. In Fig. 6, for odd sites, when B >

√
J 2 + b2,

increasing j can increase concurrence, and for even sites,

when B <
√

j 2 + b2, increasing j increases the concurrence
until a maximal value is reached, after which the concurrence
decreases again. Thus a low but nonzero value of j can be
beneficial to the extraction of the maximally entangled state.

Another interesting feature common to both the Meyer-
Wallach measure and the concurrence, demonstrated in
Figs. 3–6, is that below the region of the QCPs, entanglement
is constant as B varies. That is, the magnetic field B is not a
dominant parameter for entanglement below the QCPs. The
QPTs are often intuitively understood as occurring due to the
balance between the strength of the coupling constants and
that of the magnetic fields. As such, the dominant parameters
of this system are the coupling constants (the magnetic fields)
below (above) the QCPs in general. Our results support this
intuition from the viewpoint of entanglement in the sense
that the magnetic field B does not change entanglement below
the QCPs. On the other hand, entanglement is sensitive to
the change of the alternating magnetic field b even below the
QCPs, which demonstrates the difference between B and b.

Finally, the NNN concurrence is reduced compared to
NN concurrence as expected, but remains reasonably high,
especially for even sites where a nonzero value of b increases
the entanglement. Further, increasing b allows a spin chain
with larger values of B to be entangled.

We have also calculated third-nearest-neighbor concur-
rence with R = 3, but do not give the figures here. We observe
similar plots to Fig. 7, but with the features for odd and
even sites reversed such that similar regions (but with less
entanglement) to those in Figs. 7(d), 7(e), and 7(f) is seen for
odd rather than even sites. This follows from the staggered
nature of the chain.

C. Finite temperature

We next investigate entanglement properties of the thermal
states of the Hamiltonian using the concurrence. Figure 9
shows the nearest-neighbor concurrence for both odd and even
sites for varying temperature and alternating coupling strength
j . The figures show that increasing j allows the spin chain
to be entangled at higher temperatures, and that increasing
both b and B can enlarge the region of entanglement. That
is, the spin chain is entangled for more values of T and j for
higher b and B. This is true for even as well as odd sites.
Next-nearest-neighbor concurrence can be seen in Fig. 10,
where we again see that increasing the magnetic fields can
be beneficial to entanglement. The third-nearest-neighbor
concurrence is nonzero only for the parameter values studied
(i.e., those in Fig. 9) when b = 0 and B = 5. The plots (not
shown) for odd and even sites are similar to Fig. 10(a),
but the amount of entanglement is less and odd-site and
even-site concurrences are no longer identical. As discussed
previously, there is no entanglement at j = 1 for odd sites at
any temperature.

Increasing temperature has the effect of mixing energy
levels, something which has the ability to either increase or
decrease entanglement, although a high enough temperature
will destroy entanglement. Increasing the alternating coupling
strength counteracts this to some extent, although a high
enough temperature still destroys the concurrence.
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FIG. 9. (Color online) Nearest-neighbor concurrence for odd and
even sites.

We note that increasing b allows larger values of concur-
rence at higher temperatures at lower, more accessible values
of j as demonstrated in Figs. 9(b) and 9(f). Thus, here, it is
the combination of alternating fields b and j that allows the
spin chain to be entangled at higher temperatures. Increasing
B has a similar effect, although to a lesser extent.

D. An entanglement witness

In order to detect rather than measure entanglement in
this system, we use an entanglement witness based on the
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FIG. 10. (Color online) Next-nearest-neighbor concurrence.
When b = 0 and B = 5, (a), the plot for odd and even sites is identical.
No next-nearest-neighbor concurrence is found for the other values
of B and b shown for nearest-neighbor concurrence.

FIG. 11. (Color online) We witness entanglement at different
values of the alternating coupling strength j for j = 0 (purple), 0.5
(blue), 1 (red), and 1.5 (green), from inside to out.

expectation value of the Hamiltonian:

4|U + BM + bMs |
N (|J − j | + |J + j |) � 1, (22)

where U is the internal energy [Eq. (6)], M is the magnetization
[Eq. (7)], and Ms is the staggered magnetization [Eq. (8)].
The bound is found similarly to the usual method [7,8].
Rearrangement of the expectation value of the Hamilto-
nian gives 2|U + BM + bMs | = |J ∑

l〈σx
l σ x

l+1 + σ
y

l σ
y

l+1〉 +
j

∑
l e

iπl〈σx
l σ x

l+1 + σ
y

l σ
y

l+1〉|. The absolute value allows
us to write 4|U + BM + bMs |/N � |(J − j )||〈σx

l σ x
l+1 +

σ
y

l σ
y

l+1〉|l,odd + |J + j ||〈σx
l σ x

l+1 + σ
y

l σ
y

l+1〉|l,even. Next, the
bound for both the odd and even l for pure product states can be
found using the Cauchy-Schwarz inequality and the definition
of the density matrix, giving |〈σx

l σ x
l+1 + σ

y

l σ
y

l+1〉| � 1. Due
to the convexity of the set of separable states, this bound is
also true for all separable states, while an entangled state can
violate this bound.

Figure 11 demonstrates that an increase in the alternating
coupling strength increases the region of entanglement de-
tected by the witness. That is, at larger j , entanglement is
detected for higher values of B, b, and T than is possible at
smaller j . This trend persists even at very high values of j . In
addition, the alternating magnetic field increases the maximum
values of B for which entanglement is detected. However,
overall, a sufficient increase in B, b, or T (except at B ∼ b

as discussed in Sec. V B) will destroy entanglement either by
causing the spins to align with the magnetic field, or via the
mixing of energy levels as the temperature is raised.

The entanglement witness generally complements the
results of the entanglement measures and allows for the
possibility of detecting multipartite entanglement that cannot
be measured by them. However, for our Hamiltonian, a
comparison of Fig. 11 to Figs. 9 and 10 shows that this witness
does not detect any extra entangled regions compared to the
concurrence.

VI. CONCLUDING REMARKS

We have found that the introduction of an alternating
coupling strength and alternating magnetic field into the
usual XX spin chain in a uniform magnetic field can, for
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certain values of the parameters, increase both the amount and
region of entanglement quantified by either the Meyer-Wallach
measure or the concurrence. This is the case for both zero and
finite temperatures. We have demonstrated that two quantum
phase transitions exist in this system, signs of which are evident
in both entanglement measures. In addition, we have calculated
an entanglement witness that detects entanglement within a
region which agrees with the measures of entanglement we
consider.

It would be interesting to calculate the finite-temperature
effects of the quantum phase transitions in this model.
Determination of the effect on entanglement of increasing
the period of the staggered parameters would also be an
interesting extension to this work, for example, by variation
of the magnetic field and coupling strength over three sites l,
l + 1, and l + 2 rather than the two considered here. However,
this may not be possible to do analytically.
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APPENDIX: CALCULATIONS OF QUANTITIES
AT ZERO TEMPERATURE

Here, we give exact expressions of the ground-state energy,
the magnetization at zero temperature, and the Meyer-Wallach
measure of the ground state. For simplicity, we define regions
such as

B1 := [0,
√

J 2 + b2), (A1)

B2 := [
√

J 2 + b2,
√

j 2 + b2), (A2)

B3 := [
√

j 2 + b2,∞), (A3)

B′
3 := [

√
J 2 + b2,∞). (A4)

1. Ground-state energy

First, we show the exact expressions of the ground-state
energy εg given by Eq. (15).

a. j < J

In this case, Q is given by

Q = (0,
) ∪ (π − 
,π ). (A5)

It is straightforward to calculate the ground-state energy

εg =
{(

2
π

 − 1

)
B − 2

π

∫ 


0 �(q)dq for B ∈ B1,

−B for B ∈ B′
3.

(A6)

b. j = J

Since 
−
q = 2B − 2

√
J 2 + b2, the ground-state energy is

obtained as

εg =
{−√

J 2 + b2 for B ∈ B1,

−B for B ∈ B′
3.

(A7)

c. j > J

In this case, Q is given by

Q = (
,π − 
). (A8)

Then, the ground-state energy is calculated as

εg =

⎧⎪⎨
⎪⎩

− 2
π

∫ π/2
0 �(q)dq for B ∈ B1,

− 2
π

B − 2

π

∫ π/2



�(q)dq for B ∈ B2,

−B for B ∈ B3.

(A9)

2. Magnetization at zero temperature

We show the magnetization at zero temperature per site mg .
The magnetization mg is directly obtained from Eq. (7) as

mg = lim
β→∞

∫ π

0

dq

2π
[tanh(β
+) + tanh(β
−)] =

∫
q /∈Q

dq

π
.

(A10)

By substituting Q, the magnetization is obtained as follows:
for j < J

mg =
{

1 − 2
π

 for B ∈ B1,

1 for B ∈ B′
3;

(A11)

for j = J ,

mg =
{

0 for B ∈ B1,

1 for B ∈ B′
3;

(A12)

and, for j > J ,

mg =

⎧⎪⎨
⎪⎩

0 for B ∈ B1,

2
π

 for B ∈ B2,

1 for B ∈ B3.

(A13)

3. Meyer-Wallach measure of the ground state

Here, we give the exact expressions for the Meyer-Wallach
measure of the ground state, EMW, given by Eq. (16). For
j < J ,

EMW =
{ 4

π



(
1 − 


π

) − (
2b
π

∫ 


0
1

�(q)dq
)2

for B ∈ B1,

0 for B ∈ B′
3.

(A14)

For j = J ,

EMW =
{ J 2

J 2+b2 for B ∈ B1,

0 for B ∈ B′
3.

(A15)

042303-9



JENNY HIDE, YOSHIFUMI NAKATA, AND MIO MURAO PHYSICAL REVIEW A 85, 042303 (2012)

Finally, for j > J ,

EMW =

⎧⎪⎪⎨
⎪⎪⎩

1 − (
2b
π

∫ π/2
0

1
�(q)dq

)2
for B ∈ B1,

1 − 4
2

π2 − (
2b
π

∫ π/2



1
�(q)dq

)2
for B ∈ B2,

0 for B ∈ B3.

(A16)
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