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Scalable one-way quantum computer using on-chip resonator qubits
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We propose a scalable and robust architecture for one-way quantum computation using coupled networks of
superconducting transmission line resonators. In our protocol, quantum information is encoded into the long-lived
photon states of the resonators, which have a much longer coherence time than the usual superconducting qubits.
Each resonator contains a charge qubit used for the state initialization and the local projective measurement of
the photonic qubit. Any pair of neighboring photonic qubits are coupled via a mediator charge qubit, and large
photonic cluster states can be created by applying Stark-shifted Rabi pulses to these mediator qubits. The distinct
advantage of our architecture is that it combines both the excellent scalability of the solid-state systems and the
long coherence time of the photonic qubits. Furthermore, this architecture is very robust against the parameter
variations.
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I. INTRODUCTION

Entanglement lies at the heart of quantum-information
processing [1]. In 2001, Raussendorf and Briegel showed that
a special type of highly entangled multiqubit states, called
cluster states, can be used to implement one-way quantum
computation [2]. In contrast to the standard quantum circuit
model, which uses single- and two-qubit logic gates, a one-way
quantum computer proceeds by a sequence of single-qubit
measurements with classical feedforward of their outcomes.
Moreover, this new kind of quantum computation is universal
in the sense that any quantum circuit can be implemented
on a suitable cluster state by single-qubit measurements
only.

Quantum computation on cluster states has been studied in
a variety of physical systems. To date, a small-scale one-way
quantum computation has been demonstrated using linear
optics techniques [3–5]. As quantum-information carriers,
photonic qubits have the advantage of long coherence time.
However, it is hard to construct a scalable optical one-
way quantum computer due to the difficulty of large-scale
integration in the linear optical devices. One-way quantum
computation has also been explored in artificial solid-state
systems (e.g., electron spins in quantum dots [6,7] and
superconducting qubits [8–10]). Thanks to well-established
microfabrication techniques, these solid-state qubits have
very excellent scalability, but their inherent bad coherence
properties remain a stumbling block. A physical architec-
ture, which combines both the scalability and the long
coherence time, is desirable for the realization of scalable
one-way quantum computation.

Here, we propose an alternative architecture for one-way
quantum computation using on-chip resonator qubits, which
to some extent can overcome the two major roadblocks—
decoherence and scalability—at the same time. In our protocol,
quantum information is encoded into the zero- and one-
photon states of the high-Q transmission line resonators.
The good coherence properties of these photon states have
been demonstrated in recent experiments. Many interesting
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complex quantum states of photons, including the arbitrary
superposition of Fock states [11] and NOON states with large
particle numbers [12], have been synthesized in the laboratory.
More recently, researchers have also proposed using these
photon states to implement quantum computation based on
the standard circuit model [13–15]. Each resonator in our
architecture contains a charge qubit inside it, which is used for
the state initialization and the local projective measurement of
the photonic qubit. The controlled-phase interaction between
neighboring photonic qubits can be implemented by applying
2π Stark-shifted Rabi pulses to the charge qubits at the
resonator junctions, and large photonic cluster states can be
created in 2d steps where d is the dimension of the resonator
lattice. Moreover, our architecture is very robust against the
parameter variations.

The paper is organized as follows. In Sec. II we describe
our proposed architecture for one-way quantum computation
in detail. In Sec. III, a concrete experimental procedure
is presented including how to initialize the system, create
the large photonic cluster states, and implement the local
projective measurements of photonic qubits in the arbitrary
basis. Finally, the experimental feasibilities are analyzed in
Sec. IV.

II. PHYSICAL ARCHITECTURE

In principle, our idea is applicable for implementing one-
way quantum computation based on an arbitrary dimensional
resonator array. In Fig. 1, we only draw the one-dimensional
(1D) linear resonator array and the two-dimensional (2D)
resonator square lattice as simple examples.

For the 1D case, a linear array of n transmission line
resonators, R1,R2, . . . ,Rn, are connected via n − 1 super-
conducting charge qubits, Q2

1,Q
3
2, . . . ,Q

n
n−1 [Fig. 1(a)]. Any

pair of neighboring resonators Ri and Ri+1 (1 � i � n − 1)
is required to have different resonance frequencies. Here, we
assume that all the resonators Rp (1 � p � n, p is odd) have
the same resonance frequency ω, while the other resonators
Rq (1 � q � n, q is even) have the resonance frequency ω′
(ω′ �= ω). Then the Hamiltonian that describes the photons in
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FIG. 1. (Color online) Schematic layout of our proposed architecture for one-way quantum computation based on the 1D linear resonator
array (a) and the 2D resonator square lattice (b). Quantum information is encoded into the zero- and one-photon states of the high-Q microwave
resonators. Each resonator contains a charge qubit used for the state initialization and the local projective measurement of the photonic qubit.
Any pair of neighboring resonators have different resonance frequencies and are simultaneously capacitively coupled to a mediator charge
qubit.

the resonator modes is (assuming h̄ = 1)

H 1D
1 =

p is odd∑
1�p�n

ωa†
pap +

q is even∑
1�q�n

ω′a†
qaq, (1)

where a
†
p (a†

q) and ap (aq) are the photon creation and
annihilation operators for resonator Rp (Rq). In our scheme,
the photon number of any resonator at any time is engineered
to be smaller than 2, and we use the zero-photon state |0〉i and
one-photon state |1〉i of resonator Ri to represent the two states
of logical qubit i. This kind of photonic qubit has a much longer
coherence time than the usual superconducting qubits. Each
resonator Ri contains a charge qubit Qi used for the single-
qubit rotations and readout of the photonic qubit i. Qi’s role
will be discussed in detail later. The neighboring resonators Ri

and Ri+1 are simultaneously capacitively coupled to a mediator
charge qubit, Qi+1

i . Let us denote the lowest two eigenstates
of qubit Qi+1

i with |g〉i+1
i and |e〉i+1

i , which are separated
by energy εi+1

i and coupled to its adjacent resonators with
qubit-resonator coupling strength g. Then the Hamiltonian
that describes the mediator qubits at the resonator junctions
and their interaction with the resonators is

H 1D
2 =

n−1∑
i=1

[
εi+1
i |e〉i+1

i 〈e|i+1
i + g

(
a
†
i |g〉i+1

i 〈e|i+1
i

+ a
†
i+1|g〉i+1

i 〈e|i+1
i + H.c.

)]
. (2)

We assume that control of Qi+1
i can be exercised by a “shift”

pulse to tune εi+1
i or a resonant microwave pulse to induce

Rabi oscillation between |g〉i+1
i and |e〉i+1

i .
For the 2D case, n2 resonators Ri,j (1 � i,j � n) are con-

nected by 2n(n − 1) charge qubits Q
i ′,j ′
i,j (1 � i,j,i ′,j ′ � n,

i ′ + j ′ − i − j = 1) to form an n × n square lattice [Fig. 1(b)].
To suppress the photon hopping between neighboring res-
onators, we arrange that all the resonators Rp,q (1 � p,q � n,
p + q is even) have the same resonance frequency ω, while the
other resonators Rk,m (1 � k,m � n, k + m is odd) have the
resonance frequency ω′. Then the Hamiltonian of the resonator
modes reads

H 2D
1 =

p+q is even∑
1�p,q�n

ωa†
p,qap,q +

k+m is odd∑
1�k,m�n

ω′a†
k,mak,m, (3)

where a
†
p,q (a†

k,m) and ap,q (ak,m) are the photon creation
and annihilation operators for resonator Rp,q (Rk,m). Each
resonator Ri,j contains a charge qubit Qi,j . The mediator qubit

Q
i ′,j ′
i,j ’s lowest two eigenstates |g〉i ′,j ′

i,j and |e〉i ′,j ′
i,j , separated by

energy ε
i ′,j ′
i,j , are simultaneously capacitively coupled to Ri,j

and Ri ′,j ′ with coupling strength g. Then the Hamiltonian that
describes the mediator qubits at the resonator junctions and
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their interaction with the resonators is

H 2D
2

=
∑

1�i,j�n

[
ε

i,j+1
i,j |e〉i,j+1

i,j 〈e|i,j+1
i,j + ε

i+1,j

i,j |e〉i+1,j

i,j 〈e|i+1,j

i,j

+ g
(
a
†
i,j |g〉i,j+1

i,j 〈e|i,j+1
i,j + a

†
i,j+1|g〉i,j+1

i,j 〈e|i,j+1
i,j + H.c.

)
+ g

(
a
†
i,j |g〉i+1,j

i,j 〈e|i+1,j

i,j + a
†
i+1,j |g〉i+1,j

i,j 〈e|i+1,j

i,j + H.c.
)]

,

(4)

where ε
i,n+1
i,n = ε

n+1,j

n,j = 0 (1 � i,j � n) and ai,n+1 =
an+1,j = 0 (1 � i,j � n).

In principle, the structures drawn in Fig. 1 can be extended
to the higher dimensional case. In Ref. [16], the authors showed
that it is possible to realize an effective arbitrary dimensional
resonator lattice system by appropriately engineering the
connections between the resonators fabricated on a 2D chip.
However, with the increasing dimension, we must deal with
the experimental problem of overlapping connections. Maybe
it can be solved by fabricating crossing lines in different
layers [17]. In fact, a 2D resonator square lattice suffices
to implement the universal one-way quantum computation
and overlapping connections are already needed for this case
considering the necessary readout and control lines.

In our architecture, the coupling between any pair of
adjacent resonators is independently tunable. By tuning the
resonance frequency of a mediator charge qubit and making
it far detuned from its neighboring resonators, the interaction
between the two resonator qubits can be switched off. This is
essential for the implementation of one-way quantum compu-
tation. First, once the photonic cluster states are generated, the
interqubit coupling should be disabled to prevent the system
state from further evolution. Second, an isolated photonic qubit
is convenient for preparing the initial state and performing the
local projective measurements.

Large cluster states can be generated by “fusing” the
neighboring qubits via conditional phase gates [2]. In our
architecture, the controlled-phase interaction between a pair of
neighboring photonic qubits can be implemented by applying
a 2π Stark-shifted Rabi pulse to the mediator charge qubit
(Fig. 2). Now, we will explain this method based on the linear
resonator array. We assume that the two involving resonators,
Ri with resonance frequency ω and Ri+1 with resonance
frequency ω′, are isolated from the other resonators (by tuning
the transition frequencies of Qi

i−1 and Qi+2
i+1 instantaneously

to the far detuned regime), and their mediator charge qubit,

2 pulse
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FIG. 2. (Color online) The conditional phase gate between a pair
of neighboring photonic qubits can be implemented by applying a 2π

Stark-shifted Rabi pulse to the mediator charge qubit.

Qi+1
i , is operated in the strong dispersive regime. In this case,

the qubit transition of Qi+1
i can be resolved into separate

spectral lines for different photon number states of Ri and
Ri+1. Corresponding to n photons in Ri and n′ photons in
Ri+1, the Stark-shifted transition frequency of Qi+1

i is [18]

εi+1
i (n; n′) = εi+1

i + g2

εi+1
i − ω

(2n + 1) + g2

εi+1
i −ω′ (2n′ + 1).

(5)

An additional microwave field with frequency ωd is applied to
Qi+1

i , which is described by

Hdrive = �
(|e〉i+1

i 〈g|i+1
i e−iωd t + H.c.

)
, (6)

where � is the Rabi strength. Now we choose ωd = εi+1
i (1; 1)

and |�| � 2g2

|εi+1
i −ω| ,

2g2

|εi+1
i −ω′| , and then the mediator charge

qubit Qi+1
i undergoes Rabi oscillations if both Ri and Ri+1

have one photon in them, but does nothing for other photon
states. With the choice of �t = π , the system state evolution
is

|0〉i |0〉i+1|g〉i+1
i → |0〉i |0〉i+1|g〉i+1

i ,

|1〉i |0〉i+1|g〉i+1
i → |1〉i |0〉i+1|g〉i+1

i ,
(7)

|0〉i |1〉i+1|g〉i+1
i → |0〉i |1〉i+1|g〉i+1

i ,

|1〉i |1〉i+1|g〉i+1
i → −|1〉i |1〉i+1|g〉i+1

i .

By tracing out the auxiliary system Qi+1
i , we actually obtain

a conditional phase gate between photonic qubits i and i + 1.
The Stark-shifted Rabi oscillation used in this method has been
experimentally demonstrated [19,20] and more recently was
used in an entangled state synthesis algorithm [21].

Local operations of a photonic qubit can be performed
with the help of a charge qubit injected into the resonator.
High-Q resonator modes are advantageous for the quantum-
information encoding but are adverse to the local measure-
ments. To solve this problem, we can use the technique
of engineering two modes of a resonator with different
quality factors, which has been demonstrated experimentally
in Ref. [22]. Now, we introduce the detailed configuration
inside Ri . As shown in Fig. 3, the charge qubit Qi , fabricated
at one end of Ri , is capacitively coupled to the resonator
modes. The transition between Qi’s lowest two eigenstates
|g〉i and |e〉i , which are separated by energy εi , can be driven
by applying a microwave pulse, Ud

i , to the gate. εi can be
controlled using a local flux bias line by changing the applied
magnetic flux �i . The high-Q half-wave mode of Ri is used for
encoding the quantum information, and Ri’s low-Q full-wave
mode is strongly coupled to a measurement line fabricated
at the resonator center. The state of Qi can be measured by
tuning εi close to the full-wave resonance frequency of Ri

and applying a microwave field, Um
i , at the input port of the

measurement line [22].

III. ONE-WAY QUANTUM COMPUTATION USING
ON-CHIP RESONATOR QUBITS

In this section, we give a concrete experimental procedure
to implement one-way quantum computation based on our
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FIG. 3. (Color online) Detailed configuration inside Ri . The
charge qubit Qi is fabricated at one end of Ri and capacitively coupled
to the resonator modes. The high-Q half-wave mode of Ri is used
for the quantum-information encoding, while Ri’s low-Q full-wave
mode is strongly coupled to a measurement line fabricated at the
resonator center.

proposed architecture. We describe in detail the total manip-
ulation process including state initialization, creation of the
large photonic cluster states, and implementation of the local
projective measurements in the arbitrary basis.

To generate the large photonic cluster states, the photonic
qubits should be prepared in the state ⊗i

1√
2
(|0〉i + |1〉i).

Initially, we assume the composite system of Qi and Ri is
in the ground state |g〉i |0〉i , and Qi is detuned from Ri . Then,
by applying a π

2 pulse to Qi through the local driving line, the
system state can be driven into 1√

2
(|g〉i − i|e〉i)|0〉i . Next, we

tune the transition frequency of Qi to be resonant with Ri’s
half-wave mode instantaneously. After time duration t = 3π

2gi
,

where gi is the qubit-resonator coupling strength between Qi

and Ri , the system state evolves into 1√
2
|g〉i(|0〉i + |1〉i), and

Qi is tuned to be detuned from Ri again. Since each resonator
has its own auxiliary charge qubit and driving line, parallel
operation is allowed for this state initialization process.

For the 1D case, we show how to create the large photonic
cluster state from the initial state ⊗n

i=1
1√
2
(|0〉i + |1〉i). In the

first step, the photonic qubit pairs 1 and 2, 3 and 4, 5 and
6, . . . are isolated to form independent subsystems by tuning
the transition frequencies of Q3

2, Q5
4, Q7

6, . . . to the far detuned
regime instantaneously, and then we “fuse” the qubits 1 and 2,
3 and 4, 5 and 6, . . . using conditional phase gates by applying
2π Stark-shifted Rabi pulses to Q2

1, Q4
3, Q6

5, . . .. After this
step, the state of all the photonic qubits is

1

2
n
2

⊗i=1,3,5,...

(|0〉i + σ z
i+1|1〉i

)
(|0〉i+1 + |1〉i+1), (8)

where σ z
i+1 is the Pauli-Z operator for qubit i + 1. In the second

step, we isolate photonic qubit pairs 2 and 3, 4 and 5, 6 and
7, . . ., and perform conditional phase gates for each pair as in
the first step. Then we can prepare the n photonic qubits in the
desired cluster state

1

2
n
2

⊗n
i=1

(|0〉i + σ z
i+1|1〉i

)
, (9)

where σ z
n+1 ≡ 1.

In Ref. [23], Nielsen showed that 1D cluster states are not
universal resource states because any one-way computation
performed on 1D cluster states can efficiently be simulated
on a classical computer. On the contrary, 2D cluster states
have been proven to be universal resource states for one-way
quantum computation in the sense that any quantum circuit can
be implemented by performing a suitable sequence of single-
qubit measurements on a sufficiently large 2D cluster state
[24]. Therefore, creating large cluster states of dimensions
higher than one is essential for implementing the universal
quantum computation.

For the n × n resonator square lattice, the 2D photonic
cluster state can be generated in four steps. First, we entangle
the n qubits in each row into a 1D cluster state. Considering
that this operation can be performed in parallel for different
rows, it can be completed in two steps similar to the 1D case.
After this operation, the state of all the photonic qubits is

1

2
n2
2

⊗n
i=1

[ ⊗n
j=1

(|0〉i,j + σ z
i,j+1|1〉i,j

)]
, (10)

where σ z
i,j+1 is the Pauli-Z operator for qubit (i,j + 1).

Second, do the same for the n columns, then we can prepare
the n2 photonic qubits in the 2D cluster state

1

2
n2
2

⊗n
i,j=1

(|0〉i,j + σ z
i,j+1σ

z
i+1,j |1〉i,j

)
, (11)

where σ z
i,n+1 ≡ σ z

n+1,j ≡ 1. Our procedure can be extended to
the general case. For a general d-dimensional (dD) resonator
cubic lattice, the dD cluster states can be generated in 2d steps.

In one-way quantum computation based on cluster states,
calculations are carried out by a series of local measurements
in the basis B(γ ) = {|+γ 〉, |−γ 〉}, where |±γ 〉 = (|0〉 ±
eiγ |1〉)/√2 (γ is a real number). It is easy to verify that
measuring a qubit in the basis B(γ ) is equivalent to performing
a unitary rotation, Uγ , on the qubit followed by a measurement
in the basis {|0〉, |1〉}, where Uγ |+γ 〉 = |0〉 and Uγ |−γ 〉 =
|1〉. Now, using the experimental architecture shown in Fig. 3,
we give a procedure for measuring the photonic qubit i in the
basis B(γ ). Step 1, we let Qi be resonant with Ri for time
duration t = π

2gi
, and then the system state evolution is

(α|0〉i + β|1〉i)|g〉i → (α|g〉i − iβ|e〉i)|0〉i , (12)

where α|0〉i + β|1〉i is the initial state of photonic qubit i.
Single-qubit rotations of Qi can be implemented by pulses
of microwave applied to the gate driving line. Following the
results of Ref. [18], different drive frequencies can be chosen
to realize rotations around arbitrary axes in the x-z plane,
and the rotation angle can be changed easily via varying the
microwave pulse length. Let us define Rν(θ ) (ν = x,y,z) as
the rotation of a qubit by an angle θ around the ν axis. Step 2,
we rotate the charge qubit Qi by an angle π

2 around the z axis
and then the state of Qi evolves into

Rz

(
π

2

)
(α|g〉i − iβ|e〉i) = α|g〉i + β|e〉i . (13)

After steps 1 and 2, the state of photonic qubit i is perfectly
transferred to Qi . Step 3, we first rotate the charge qubit Qi

by an angle π
2 − γ around the z axis and then by an angle π

2
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around the x axis, in this way a single-qubit operation UQ
γ =

Rx(π
2 )Rz(π

2 − γ ) is performed on Qi which satisfies

UQ
γ

[
1√
2

(|g〉i + eiγ |e〉i)
]

= |g〉i ,
(14)

UQ
γ

[
1√
2

(|g〉i − eiγ |e〉i)
]

= |e〉i .

Step 4, tune the qubit transition frequency εi such that Qi is
decoupled from Ri’s half-wave mode but dispersively coupled
to Ri’s full-wave mode. Then the state of Qi can be measured
in the basis {|g〉i , |e〉i} by applying the microwave field Um

i

to the measurement line. With the help of Qi , now we have
completed the local measurement of photonic qubit i in the
basis B(γ ) effectively.

IV. EXPERIMENTAL FEASIBILITY

In this section, we analyze the feasibility of our procedure
by some rough calculations based on the practical experimental
parameters. First, we give several necessary requirements
our architecture parameters must meet. Note that the photon
hopping between neighboring resonators will possibly make
the relevant photonic qubits run outside of the {|0〉, |1〉}
manifold. To suppress this effect, the frequency difference
|ω − ω′| of the neighboring resonators must be much larger
than the effective photon hopping rate κhop induced by the
mediator charge qubit, i.e.,

|ω − ω′| � κhop. (15)

The decoherences of the resonators and the charge qubits
play significant roles in our procedure. The charge qubits
situated in the resonators are used for state initialization and
local measurements of the photonic qubits. Each mediator
charge qubit participates in the one-way quantum computation
process when “fusing” its neighboring resonator qubits using
a conditional phase gate. To guarantee the high fidelity of the
fusing process and the measurement process, the coherence
time of the charge qubit τcha must be much longer than the
required time of the conditional phase gate tcp and the time of
a local measurement tmea, i.e.,

τcha � tcp, τcha � tmea. (16)

Finally, the resonators bear the quantum information for almost
the total computation process; thus it is required that the
photonic qubits have a coherence time, τpho, much longer than
the required time of the total procedure, ttot, i.e.,

τpho � ttot. (17)

Now, we give a brief evaluation of the time scales involved.
The qubit-resonator coupling strength up to g

2π
= 200 MHz

has been realized experimentally in Ref. [25]. In this case,
the required time of a single-qubit rotation can be estimated
as tsin ≈ π

g
= 2.5 ns. Considering neighboring resonators Ri

with ω
2π

= 6.6 GHz and Ri+1 with ω′
2π

= 7 GHz and the

mediator charge qubit Qi+1
i with εi+1

i

2π
= 8.6 GHz, the effec-

tive photon hopping rate is approximately κhop ≈ g2

|εi+1
i −ω| =

2π × 20 MHz, which is much smaller than the frequency

difference |ω − ω′| = 2π × 400 MHz. When we implement
the conditional phase gate between Ri and Ri+1, to sufficiently
suppress the errors induced by the off-resonant transitions, the
coupling strength of the Stark-shifted Rabi pulse � should
satisfy |�| � min( 2g2

|εi+1
i −ω| ,

2g2

|εi+1
i −ω′| ) = 2π × 40 MHz. Here,

we choose � = 2π × 4 MHz; then the required time of
the conditional phase gate is tcp = π

�
= 125 ns. The low-Q

full-wave resonator mode with photon decay rate κ low
pho =

2π × 20 MHz can be realized in the experiment by choosing
big coupling capacitances for the measurement line [20]. Then
the local projective measurement of Qi in the basis {|g〉i , |e〉i}
can be implemented in a time scale of tmea ≈ 1

κ low
pho

= 8 ns.

After each local measurement, the feedforward of the out-
come must be performed to determine the next measurement
basis. The measured signal has to travel to low-temperature
electronics, undergo some sort of logic processing, and then
travel back to the device. With several-meters-long connection
cables, the propagation of the signal takes about 10 ns. Using
high-speed electronic components, it is probable to complete
the logic processing in tens of nanoseconds (e.g., in the
proof-of-principle demonstration of the active feedforward
technique for the linear optical system, the logic processing
of the measured signal using electronics took about 7.5 ns
[4]). Here, we assume that the total time for an individual
feedforward step is tf = 30 ns.

To implement one-way quantum computation based on a
dD resonator cubic lattice consisting of N photonic qubits,
we need the time of two single-qubit rotations for the state
initialization, the time of 2d conditional phase gates for
creating the cluster state, and the time of four single-qubit
rotations followed by a local measurement and a feedforward
step of the measurement outcome for measuring each photonic
qubit; so the total time of the computation process ttot is
approximately

2dtcp + N (4tsin + tmea + tf ) + 2tsin = 250d + 48N + 5 (ns).

(18)

On the other hand, the charge qubit with coherence time
τcha = 1 μs and the high-Q resonator mode with coherence
time τpho = 5 μs are reasonable for the practical experimental
setup [20]. Therefore, considering the necessary conditions
[Eqs. (15)–(17)] and the practical experimental parameters, it
is possible to perform one-way quantum computation based
on a low-dimensional resonator lattice consisting of about ten
resonator qubits.

Besides decoherence sources, another significant factor
which prevents our one-way quantum computer from precise
running is the imperfect local measurement. For the conven-
tional measurement scheme discussed above, the fidelity of
a single-shot local measurement is limited to typically 40%–
60% by the amplifier noise. We can increase the measurement
fidelity by replacing the conventional commercial amplifiers
with specialized superconducting low-noise amplifiers [26],
but at a cost of additional hardware complexity. In Ref. [27],
the authors realized a high-fidelity measurement scheme which
exploits the qubit-state-dependent bright-state onset power.
Using this scheme, a single-shot measurement fidelity can be
as high as 87%, and it does not require any change in the
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conventional experimental setup. However, this measurement
scheme takes a relatively long time (more than 100 ns
for a single-shot measurement), which raises more stringent
requirements on the system coherence. Compared with the
decoherence sources, the imperfect local measurement affects
our proposal in a more serious manner. For the case of
ttot � τpho, the error induced by the decoherence of the
photonic qubits can be approximated as ttot

τpho
, which has a

linear relation with N . However, the fidelity of the computation
procedure will decrease exponentially with the number of the
needed local measurements. If we perform one-way quantum
computation of N photonic qubits, the error induced by the
imperfect local measurements is about 1 − pN , where p is
the fidelity of a single local measurement. Therefore, the
precise running of our proposed one-way quantum computer
still needs the optimization of the local measurements and the
improved engineering of the coherence. In the near future,
maybe we can use this architecture to create the large photonic
cluster states.

Our procedure is very robust with regard to the device
parameter variations, which are unavoidable in solid-state
systems. Although we have assumed the same resonance

frequency for some resonators and the same qubit-resonator
coupling strength in the preceding parts, these parameter
homogeneities are not necessary in our procedure. Therefore,
in the sample fabrication process, the requirements for ho-
mogeneity and reproducibility can be relaxed and met with
current production technology.

In conclusion, we propose to construct a scalable one-
way quantum computer using on-chip resonator qubits. The
unique feature of our architecture is the combination of good
scalability and long-lived qubits. With the recent progress in
the multiresonator experiments [28], our proposal may serve
as a guide to construct a small quantum computer consisting
of more than a handful of qubits.
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