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Optimal uncertainty relations for extremely coarse-grained measurements
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We derive two quantum uncertainty relations for position and momentum coarse-grained measurements.
Building on previous results, we first improve the lower bound for uncertainty relations using the Rényi entropy,
particularly in the case of coarse-grained measurements. We then sharpen a Heisenberg-like uncertainty relation
derived previously in [Europhys. Lett. 97, 38003 (2012)] that uses variances and reduces to the usual one in the
case of infinite precision measurements. Our sharpened uncertainty relation is meaningful for any amount of
coarse graining. That is, there is always a nontrivial uncertainty relation for coarse-grained measurement of the
noncommuting observables, even in the limit of extremely large coarse graining.
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I. INTRODUCTION

Uncertainty relations play a central role in quantum physics.
Generally, these are inequalities that limit the amount of infor-
mation that can be obtained about noncommuting observables
for identically prepared systems. From a fundamental point
of view, the fact that measurements on quantum systems
must obey uncertainty relations distinguishes them from
their classical counterparts. Since all physical quantum states
must obey them, uncertainty relations provide a method to
check the validity of an inferred quantum state that was
reconstructed from tomographic measurements. Uncertainty
relations also play an important role in applications in quantum
information science. In particular, the security of several
quantum cryptography protocols are founded on uncertainty
relations [1,2], as are several tests for detection of quan-
tum entanglement [3—8] and Einstein-Podolsky-Rosen (EPR)
steering correlations [9—12].

Historically, the most renowned uncertainty relation is

o202 > e ppp =" ey
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for position X and momentum p observables. Its existence was
first suggested in Ref. [13] and since then has been called
the Heisenberg uncertainty relation (HUR). It was proved by
Kennard in Ref. [14], and, later, Robertson [15] extended its
validity to arbitrary pairs of observables A and B. The HUR
of Eq. (1) applies to the variances o7 = (£*) — ()*and o, =
(p?) — (p)?, which quantify the uncertainty in position and
momentum measurements, respectively. Here (...) = tr[p . . .]
is the expectation value when the system is described by the
quantum state 9. This inequality follows from the fact that
the complementary operators do not commute: [X, p] = ih.
A number of additional uncertainty relations for position and
momentum have been presented [16-24].

It is important to distinguish the uncertainty relation in
Eq. (1) from the similar ones that appear (i) in the context
of joint measurement of position and momentum [25,26] and
(i) in the error-disturbance process of position measurement
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[27,28]. In case (i) we have the Heisenberg uncertainty relation

for joint measurement and in case (ii) the Heisenberg noise-
disturbance uncertainty relation, which establishes a lower
bound between the product of the estimate of a position mea-
surement error and the estimate of the resulting disturbance
in the momentum. Reference [27] provides an analysis of the
connection between these two types of uncertainty relations
and Ref. [29] describes an alternative approach to the trade-off
relation between the measurement errors of noncommuting
observables. For case (i), the joint measurement of position
and momentum, it was shown in Ref. [25] that, independently
of the strategy used to perform the joint measurement, the
lower bound of the product of variances is incremented by a
factor of 2. This is due to the fact that joint measurement of the
original noncommuting variables requires that each one must
interact with different “meter” variables that have to commute
themselves in order to be jointly measurable (in principle with
arbitrary high precision). It is this coupling of the original
variables with the meter variables that introduce the additional
noise.

Uncertainty relations are generally interpreted to express
limits to the amount of information that one can obtain about
complementary properties of a quantum system prepared in
a given quantum state and, thus, naturally invoke the notion
of measurement. However, most uncertainty relations, such
as in Eq. (1), assume perfect knowledge of the quantities
involved, which can only be obtained experimentally with
infinite precision measurements. However, in any experiment,
measurements are performed with a finite precision, and,
thus, any consistent uncertainty relation applicable to “real-
world” scenarios involving statistics of measurement results
should include aspects of the measurement process. Several
authors have considered finite precision, or “coarse-grained,”
measurements in the context of uncertainty relations involving
the Shannon [18,19] and Rényi entropy functions [22]. These
relations are meaningful up to a certain amount of coarse
graining, after which they are trivially satisified [30].

The analysis of imprecision (coarse-grained measurement)
in the context of joint measurement of position and momentum
[case (i) above] was given in Ref. [26], and a HUR-type
uncertainty relation for joint measurement was obtained for
sufficiently small values of the resolution of the detectors.
It is important to note that in this HUR inequality the joint
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measurement necessarily relates the widths of the resolutions
of position and momentum measurements. The coarse-grained
version of the HUR uncertainty relation in Eq. (1) that arises
not from joint measurement but rather from the statistical
results of the measurement of position and momentum in an
identically prepared system was recently obtained in Ref. [30].
This inequality, in contrast to the one in Ref. [26], is indeed
valid for arbitrary and independent values of the widths of the
position and momentum detectors (although for large-enough
values of coarse graining the inequality is trivially satisfied).

It is generally believed, and taught in many quantum-
mechanics textbooks [31,32], that the quantum nature of a
system is not observable when coarse-grained measurements
are performed. This has been shown in the context of Bell’s
inequality violations [33] and for the precession of a single
spin-j particle [34]. Thus, it seems natural to expect that
uncertainty relations should at some point fail to be significant
with an increasing amount of coarse graining. However, here
we derive new quantum-mechanical uncertainty relations and
show through optimization that coarse-grained measurements
are always limited by some quantum uncertainty relation. We
consider the HUR and a family of uncertainty relations using
the Rényi entropy under coarse-grained sampling. First, we
show that one can construct reliably estimated probability
distributions for coarse-grained measurements in order to
obtain reliable uncertainty relations. We provide an improved
lower bound for the Bialynicki-Birula uncertainty relations
[22] using discrete Rényi entropies and use this lower bound
to derive a new Heisenberg-like uncertainty relation for
coarse-grained measurements. By optimization, we provide a
Heisenberg-like uncertainty relation that is meaningful for any
amount of coarse graining. That is, the amount of information
that can be obtained by coarse-grained measurements of
noncommuting observables is always limited. We also prove
that this optimized uncertainty relation reduces to the usual
one in the limit of infinite precision measurements.

This paper is organized as follows. In Secs. II and III we
introduce several definitions and previously established uncer-
tainty relations. Section IV provides a method for constructing
continuous probability density functions from coarse-grained
measurements. In Sec. V we derive an improved lower bound
for the Bialynicki-Birula uncertainty relation for discrete
Rényi entropies. We show that this relation is optimal in the
case « = 1/2 and provides an improvement for the case of the
Shannon entropy (o = 1) for large coarse graining. In Sec. VI
we derive the HUR for coarse graining. Applying these new
results for entropic relations, we arrive at the HUR that restricts
measurements for any value of coarse graining.

II. UNCERTAINTY RELATIONS ASSOCIATED
WITH CONTINUOUS PROBABILITY DISTRIBUTIONS
OF POSITION AND MOMENTUM VARIABLES

For a quantum state described by a density operator 9, the
probability densities describing measurements of X and p are
given by

p(x) = (x|elx) and p(p) = (plolp). 2

Since p(x) and p(p) are probability distributions correspond-
ing to a quantum state, they obey uncertainty relations such
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as the HUR of Eq. (1), which involves variances that can be
calculated from continuous probability distributions p(x) and

A(p) as

2
af[f]z/dzz2f(z)—(/ dzzf(z)) , €))
R R

where f = p, p and z = x, p. Probability densities p(x) and
p(p) will also obey the uncertainty relation for the continuous
Rényi entropies (1/a + 1/ =2, 8 > 1) [22,35],

h halpl > ——— (L)t (P
alpl+hplp] = T —w n(%>—z(1 i n(g)
“

where the continuous Rényi entropy is defined as [36]

1
mifl= A1n< / dz[f(z)]*). )
- R

The limit A — 1 corresponds to the continuous Shannon
entropy

tim #4171 = L1 = - /ﬂ; dz f) Wf@L (6

and so the entropic uncertainty relation for Shannon entropies
is [16,19]

hlp] + h[p] = Inmen. (7)

Note that the uncertainty relations (1), (4), and (7) involve the
perfect knowledge of the continuous probability distributions
p(x) and p(p) that can be obtained only from measurements
with infinite precision.

III. UNCERTAINTY RELATIONS AND COARSE-GRAINED
MEASUREMENTS OF POSITION AND MOMENTUM

In general, measurements are performed with finite preci-
sion, so any uncertainty relation involving infinite precision
quantities has to be adapted for experimentally obtained
quantities that depend on the coarse-grained nature of the
measurement. The usual uncertainty relations should be
recovered from the coarse-grained uncertainty relations in the
limit of infinite precision. This leads to an interesting question:
What is the minimum precision (or maximum coarse graining)
that still allows for a legitimate uncertainty relation? or,
equivalently, What is the minimum number of measurements,
whose results belong to a fixed range of eigenvalues of the
complementary observables x and p that allows one to verify
an uncertainty relation? The coarse-grained measurement pro-
cess is equivalent to considering the probability distributions
p(x) and p(p) sampled in bins, with finite width A and § for
position and momentum, respectively. These parameters shall
coincide with the finite widths of the detectors used. Due to
these finite widths, the operators that are in fact measured are
the coarse-grained position and momentum operators, defined

as [30],
(k+1/2)A
* f dx |x) (x| (8)
(k=1/2)A

)
>
Il

k
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and

(I41/2)8
ps = sz/ dp Ip){pl ©)
1 (1-1/2)8

where x; = kA and p; = I are the coordinates at the center
of the sampling windows. From repeated measurements over
identically prepared systems, we can construct the probabil-
ities r/* and s} to obtain the results x; and p;, respectively.
If the position and momentum measurements are repeated
with sufficient statistics, these probabilities are expected to
be very close to the actual values. Since (Xo) = Tr(0 - X») and

(ps) = Tr( - ps), we obtain

(Ba) =Y xrd, (ps) = ps), (10)
k 1
where
(k+1/2)A (I14+1/2)8
rd = f dx p(x), s} = / dp p(p). (1)
(k—1/2)A (1-1/2)8

The discrete variances that correspond to the measurements
of the coarse-grained position and momentum operators are

2
szA = <£i) — (fa) = forkA - (wa,f) (12)
k k

and

2
op = (p3)— (ps)> =D _ pis) — (szsf) . (13)
l 1

In the case where the widths A and § are sufficiently small,
these discrete variances are approximations of the continuous
variances o> = o[ p] and 03 = opz[ﬁ] in Eq. (1):

lim o) =o,. (14)

lim sz =o?
A §—0 Ps

A0 x
However, as the sampling widths increase, the inferred
variances O’XZA and 0[%5 begin to underestimate the true variances

axz and 03. In fact, we have the limit

: 2 _0_ 1 2
Jim, ol =0= fim o a3
One possible adaptation of the HUR of Eq. (1) to finite
coarse-grained measurements could be the usual Heisenberg-
type uncertainty relation associated with any noncommuting
observables,

05,05, > §1(%a. P, (16)

Unfortunately, this lower bound depends on the state of the
quantum system and is not useful from an experimental
point of view. Furthermore, one can show that, due to the
coarse graining (A # 0 or § # 0), there are always families
of localized states for which the right-hand side of Eq. (16)
becomes equal to 0.

Another way to obtain uncertainty relations associated with
coarse-grained measurements is to investigate the properties
of the probability distributions {rkA} and {s,‘s} using the discrete
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Rényi entropies [36],

oo

1 a
Ho[r] == 3 ()", a7
k=—00
1 o0
Hy[s}] = T 3 (s (18)
[=—00

In the limit « - 1, B — 1 these definitions recover
the usual Shannon entropies H[rf] = limg_i Hy[r{] =
> rkA lnrkA, H[sf] = limg_,; Hﬂ[sf] =—->, sl‘S lnsl‘s. As
in the case of the variances above, the discrete Rényi entropy
starts to underestimate the continuous entropy when the widths
A and § are large. In fact, when the sampling widths are
extremely large, we have one r* and one s with near unit
probabilities, which are responsible for the zero uncertainty in
the discrete variables, i.e.,

: Ay _ I T $
Ah_r)rgo Ha[rk]_O_ali)rgo Hg|s?]. (19)

But in this case we have also the opposite situation, i.e.,
when the coarse-grained measurement is fine, H [rkA] and
H [sf] start to superestimate the Shannon entropies h[p]
and h[p] respectively. In fact, we have the limit situation
lima—o lims_o(H[r{]1+ H[s{]) = oo [37]. A first attempt
to establish an uncertainty relation for coarse-grained mea-
surement involving the discrete Rényi entropies, Hy [rkA] and
Hpg [sf], was done by Bialynicki-Birula [22]. In Sec. V, we will
derive an improved lower bound for this uncertainty relation.
In this paper, we will be concerned with sampling widths
that could be extremely large. In the next section we will
present the basic ingredients in order to obtain reliable
uncertainty relations for the coarse-grained measurements.

IV. CONTINUOUS COARSE-GRAINED PROBABILITY
DISTRIBUTION FUNCTIONS FOR POSITION
AND MOMENTUM

In calculations based on experimental data, we will show
that it is advantageous to adopt the following approximated
probability density functions (PDFs):

wa(¥) = Y rdDalxx0) (20)
k=—00
and
Bs(p) =Y s} Ds(p.p1). @1)
I=—00

The Da(x,x;) and Ds(p, p;), which we shall call generalized
histogram functions (GHFs), are two independent approxima-
tion to identity functions [38] with width parameters A and §,
respectively. These are normalized functions,

/dz Dy(z,zj) =1, (22)

that converge to the Dirac § function: lim, o = D,(z,z;) =
8(z — z;j). In this limit, we have lima_,o wa(x) = p(x) and
lims_, o Ws(p) = P(p). Additionally, we require that D (x,xy)
and Ds(p, p;) have finite support on the intervals [(k — 1/2)A,
(k+1/2)A] and [(I —1/2)§,(I + 1/2)8], respectively. We
also impose the restriction that the bins are centered at the
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.

wa(x), p(x)

ﬁ
A X
FIG. 1. (Color online) Example of a continuous wa(x) dis-
tribution function (blue dashed line) approximating the original
distribution function p(x) (black line) constructed from rectangle
functions.

same points z; as the functions D,(z,z;), so we can recover
these values through

(+1/2)n
zj = / dzz Dy(z,z;) = / dzz Dy(z,zj).  (23)
R (j—=1/2)n
Moreover, we assume that these functions are translationally
invariant,

Dy(z+ zj — zm»2j) = Dy(z,2m), (24)

and we place no restriction on the variance of the function
D, (z,z;).

Perhaps the simplest example of a GHF with these proper-
ties is the normalized rectangle function,

I/n forze[(j—35)n.(+3)n] '

(25)
0 elsewhere

Rect,(z,z;) =

An example of a wa (x) distribution function constructed with
rectangle functions is illustrated in Fig. 1. The PDFs wa(x)
and ws(p) represent approximations to the actual PDFs p(x)
and p(p) that are based on the results of the discretely sampled
measurements.

The advantage given by these new PDFs and the intro-
duction of the histogram functions is that they will allow us
to derive reliable and optimal uncertainty relations for the
coarse-grained variances of Egs. (12) and (13). In the first step
we shall show that there exists a simple relation between the
uncertainty associated with the approximate distribution, say,
wa(x), the uncertainty of the associated discrete distribution
rkA, and the uncertainty of the GHF D (x,x;). Let us show this
connection only for the position variable since the calculations
for the momentum variable are analogous.

The variance of wa(x) is

2
ze[wA] = / dx xzu)A(x) — (/ dx x wA(x))
R R

2
= Z rt () kp — (Z rkA(x)k,D> . (26)
k

k

where

(k+1/2)A
(Php = / dx PD(exd) QD)
k=1/2)A
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and

(k+1/2)A
(X)k.p = / dx x D(x,xi,AN). (28)
(k—1/2)A

The variance of the function D (x,x;) is, then,
ox = () — (X)ip- (29)

Note that, due to the translational invariance of the GHF
function of Eq. (24), ai, in fact, does not depend on k and
we can write,

or =Yt hp— Y (30)
k

k

Using Eq. (30) to work out the total variance ze[w A] we find
that

2
ollwal =03 + Y rix)ip — (Z rﬁ<x>k,u> Y
k

k

Taking into account the property Eq. (23) of the GHF, we
substitute (x); p = x; and, finally, obtain

ollwal =0}, + 0z, (32)

where the variance O'sz was defined in Eq. (12). From Eq. (32)
it is easy to understand the limits in Eq. (15) if we interpret
the two contributions to the variance in Eq. (32) (and in an
analogous expression for the momentum) in the following way.
First, we set the phase space origin at the center of the bins
that contain (¥ ) and (ps) (i.e., the central bins). Thus, the first
contribution in Eq. (32) is given by the discrete variances szA
corresponding to the coarse-grained measurements x; = kA
outside the central bin, since the central bin has no contribution
to the discrete variance in this case. The other contribution, ai s
can be interpreted as the variance of the GHF of the central bin.
For increasing values of coarse graining, the contribution to
axz[w a] from the central bin grows and the contribution from
discrete measurements outside the central bin decreases.

For the uncertainty quantified by the continuous Shannon
entropy, we have

hlwal = —fRdx wa(x) Infwa(x)]
= — Z / dx rkADA(x,xk)ln [rkADA(x,xk)]
 Jk
= H[rf]+ D rf hIDaCx.x)]
k

= H[rP] + ha, (33)

where the second line follows from the fact that the GHF has a
compact support on the interval, and only one term inside the
logarithm survives. Here hy = h[Da(x,x;)] is the Shannon
entropy of the continuous probability distribution D(x,x;,A),
which, according to Eq. (24), also does not depend on the
index k. As mentioned above, similar results are found for the
momentum distribution:

o, ls] =0, + 05, (34)

hlws] = H|s}] + hs. (35)
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It is important to realize that both 03 and h, do not depend on
the specific value z; of the center of each bin, so the uncertainty
measured by these quantities is associated with a generic bin
of the experimental sampling. Thus, the variance (Shannon
entropy) of the approximated PDFs are given by the sum of the
discrete variance (Shannon entropy) of the experimental points
and the GHFs used. This important property will allow us to
construct consistent uncertainty relations in the next sections.

V. ENTROPIC UNCERTAINTY RELATIONS
FOR COARSE-GRAINED OBSERVABLES

We will, first, derive new uncertainty relations for coarse-
grained measurements based on the Rényi entropy. It was
shown by Bialynicki-Birula that the discrete Rényi entropies
of Egs. (17) and (18) satisfy the following entropic uncertainty
relation [22] (1/a + 1/ =2, = 1):

Ho[r&] + Hp[s})] = B, (36)

__l Ina InB _ A_8
Bo = 2(1—(x+1—ﬂ> l"(:ﬂa)' 37

We note a full symmetry between the parameters « and S,
and, since f = o/(2a — 1), we shall treat the lower bound
B,, and further results as «-dependent increasing functions
1/2<a< ],

AS AS
—In (—) =By < By <Bi=-In <_> - (38
T meh

where

Here we prove a new uncertainty relation hypothesized in
Ref. [38],

AS As T
Hy[rd]+ Hp[s)] > —1In [ﬁ [Roo (E’lﬂ } =R,
(39)

where Ryo(&,17) [40] denotes one of the radial prolate
spheroidal wave functions of the first kind [41]. The full proof
of this new relation is given in Appendix A. Since this relation
is valid independently of Eq. (36), an improved lower bound
for the sum of the Rényi entropies Eqs. (17) and (18) reads,

Ho[r¢'] + Hp[s7] = Lo 2 0, (40)
where L, = max {B,,R}. When A§ < i we have

AS

R~ —In( 22 ) =By, 41
n<27rh> 12 (41)

so the final lower bound L, is a smooth function of A§/h.
For other values of «, especially « = 1, the L,, versus Ad/h
curve is not smooth. Figure 2 shows a plot of R, B, and B,
as functions of A§/h. Note that for « = 1 and A8/h 2 7, we
improve the lower bound B; in Eq. (36) by L; = R. We also
note that for all values of & we have a nontrivial uncertainty
relation since, unlike B; and Bj;, Ly >0 for Ad < o0
(see Fig. 2).
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FIG. 2. (Color online) We plot the lower bounds R (green solid
line), B; (red dashed line), and B, , (black dashed-dotted line). Note
that for « = 1/2 we have L;, = R.

VI. HEISENBERG UNCERTAINTY RELATIONS
FOR COARSE-GRAINED OBSERVABLES

The improved uncertainty relation Eq. (40) for the case
of the Shannon entropy (¢ = 1) will allow us to derive a
Heisenberg-like uncertainty relation for variances that is valid
for any amount of coarse graining. We, first, apply the reversed
logarithmic Sobolev inequality [40] to the approximated PDFs
[Egs. (20) and (21)] as follows:

1In(2meo}[wal) = hlwal, (42)
5In(2me o, [ws]) > hlws]. (43)
‘We now shall add these two inequalities, make use of Egs. (33)

and (35) for the continuous entropies and apply the entropic
uncertainty relation of Eq. (40) for « = § = 1. We find that

) . eXp2L1) o o, BZ €T (NS
UX[WA]UP[W5]> (2]‘[6)2 es S_Z—Azaz 8 7 s

(44)

where

() em (e(2)] )

In the case where the GHFs are the normalized rectangle
functions in Eq. (25) (n = A,5), we have the following
Heisenberg-like uncertainty relation:

) s BT [(AS

o [walo,[ws] =2 —g | — |- (46)
4 h

When A§/h < 6 we have g(AS§/h) = 1; thus, this uncertainty

relation coincides with the result presented recently in Ref. [30]

as follows:
, A2 , 8 n?
<O'xA + E) (Up5 + E) 2 Z (47)

Note that the uncertainty relation of Eq. (47) is satisfied
trivially when A§/h > 6, so the uncertainty relation of Eq. (46)
seems to be an improvement of Eq. (47) when Ad§/h > 6.
However, we have to realize that both sides of Eq. (46) grow
with coarse graining and the lower bound in Eq. (46) grows
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slower than the left-hand side. As a result, the uncertainty
relation of Eq. (46) is also trivially satisfied for A§/h > 6, and
there is no improvement with respect to the previous result.

Nevertheless, the right-hand side of the inequality in
Eq. (44) contains information about the GHFs that can be
optimized, since the variances oxz[w A] and O'[%[lj)g] are inferred
directly from measurements. We can now ask the following
question: What choice of GHFs gives us the optimal uncer-
tainty relation? To answer this, we perform an optimization
procedure over the possible functional forms of the functions
D,, and also on the values of their variances. All details are
presented in Appendix B. The solution of this optimization
procedure is obtained for a GHF given by a Gaussian function
whose support is in the interval [—7n/2,1/2],

42
e nZ

D°pt(z 0) = \/6T
Erf(y./ay/2)’

where Erf is the usual error function and a,, is an optimization
parameter related to the variance a,?. With this optimal GHF we
arrive at the optimal coarse-grained version of the Heisenberg
uncertainty relation (see Appendix B),

szA ‘7;5 weh\? AS

where

a, €R,  (48)

exp[2uM 1 (u)]
Erf[/ M~ 1(u)/2]

and M~!(-) denotes the inverse of the following invertible
function M(-):

K(u) = (50)

exp(—t/4)
27t Erf(/1/2)

A plot of M and M~! is shown in Fig. 3. In Fig. 4 we plot
the function K (#) in comparison to the linear function 1 +
2me u. In the next section, we will analyze the new uncertainty
relation (49).

M) = (51

A. Analysis of the uncertainty relation Eq. (49)

A first observation about the uncertainty relation of Eq. (49)
is that it is valid for any finite value of coarse graining
such that A £ 0 and § # 0, because in its derivation no

FIG. 3. (Color online) Plots of the M(¢) function (black solid
line) and the M~!(¢) inverse function (red dashed line).
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FIG. 4. (Color online) Comparison between the function K (u)
(red solid line) and the linear function 1 + 2 e u (black dashed line).

restrictions were made on their possible values. In the case of
the limiting situation where A,§ — 0 we recover the infinite
precision Heisenberg uncertainty relation of Eq. (1). In order
to prove this we avoid the divergence on the right-hand
side of Eq. (49) by multiplying both sides by the factor
(A8)? and calculate the limits A,8 — 0 in the following way
(g(0) = max({1,(2/e)*} = 1):

tim [A%K (02, /8%)] lim [52K (07, /5°)]

We can perform both limits in Eq. (52) separately. Let us
now introduce a new variable v = M~'(07, /A?). Taking into
account the limit of Eq. (14), we obtain

lim [A’K (07,

A—0

> (weh).  (52)

- 1 exp[ZUM(v)]]
/8] = o Lo[mv) Erf?(\/v/2)
:2neaf. (53)

The same result can be obtained for the limit § — 0, thus
Eq. (52) reads (ZJTEUXJP)Z > (mweh)?, which is equivalent to
the usual HUR in Eq. (1).

In the opposite limit of infinite coarse graining, the discrete
variances go to 0, as we mentioned in Eq. (15) and discussed
after Eq. (32) Even for finite coarse graining, it is possible that
o =0or crp = 0, if the quantum state is localized in position
or momentum (position or momentum probability distribution
has a compact support). However, the quantum state cannot
be simultaneously localized in both position and momentum
spaces. Therefore, for finite coarse graining it is forbidden that
ol =0=o02. Let us show that this fact is present in our
uncertainty relation Eq. (49). To this end, we shall calculate
the limit o, ,0, — 0. Using the same variable v as above, we
have

hm K(

Oy

) exp[2vM(v)]|
) = [T o

The same result can be obtained for the limit o,, — 0. Next,
we note that for A < oo and § < co we have L > 0. Finally,
when we put asz =0= 0135’ we obtain from Eq. (49) the
hierarchy of contradictory inequalities,

A

1 > exp2Ly) > 1. (55
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FIG. 5. (Color online) Plot of the uncertainty relation of Eq. (49)
as a function of the discrete variances o7 and 0'55 . The red forbidden
region shows that there is always an uncertainty relation for any size

coarse graining.

Thus, zero variance in both discrete variables, o7, =0 =0,
is prohibited.

The coarse-grained Heisenberg uncertainty relation is
shown graphically in Fig. 5. The red area represents forbidden
values of o7 and o, . The narrow peak of forbidden values for

small UXZA and 055 illustrates the result Eq. (55). Though this
forbidden region gets smaller as A§/h grows, there is always
some forbidden region which limits the information that can
be obtained about the noncommuting observables. Thus, there
always exists an uncertainty relation, regardless of the size of
the coarse graining.

This is surprising since it is commonly argued that in the
large quantum number limit (semiclassical regime) we should
recover classical mechanics for coarse-grained averaging
due to finite-precision detectors [32,34]. We can follow the
argumentation in a simple example of a particle with mass
M in a one-dimensional infinite square-well potential [32].
The energy eigenstates are W, (x) = +/2/Lsin(nwx/L) (0 <
x < L). The eigenenergies are E, = p?/2M and the two
values of the momentum p, = +hnm/L are equally probable
since f,(p) = |¥,(p)|* consists of a symmetric probability
distribution function peaked at p,, with oscillatory tails that
go to £o0. It is easy to see that, for some finite coarse graining,
we recover the classical probability distributions inside each
bin, both in position and momentum, in the limit of large
quantum numbers, i.e., n — o0. In the position representation
we recover a constant value inside each bin. In the momentum
representation we obtain a zero value for each bin, except for
the bins that contain the values p,, corresponding to Dirac
8 functions that move away to infinity. However, the limit
n — oo has only a formal meaning and, in fact, does not
appear in real systems. For large but finite quantum number
n, the position and momentum probability distributions are
close but not equal to the classical distributions. Thus, even if
we choose coarse graining in the position representation that
is equal to the size L of the potential well, so O'XZA =0, and

extremely large coarse graining in momentum, the value of

o*pza will contain contributions from the bins at the tails of the
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distribution g, (p) that differ from zero for —oco < p < oo.
In other words, 6[%5 # 0 and, in fact, must be limited by the
uncertainty relation in Eq. (49).

VII. CONCLUSIONS

We have derived several new uncertainty relations for
continuous-variable quantum systems when coarse-grained
measurements are performed. First, we show a new bound
for the uncertainty relation involving Rényi entropy. This
bound is an improvement for all entropy orders « for larger
coarse graining and is optimal for order o = 1/2. Using
this result, we derive a new Heisenberg-like uncertainty
relation. Surprisingly, there is always a meaningful uncertainty
relation for any amount of finite coarse graining. Thus, even
coarse-grained measurements never commute, and informa-
tion obtained about one observable increases uncertainty in
the other. These results are interesting from a fundamental
point of view and also may find application in a quantum
information scenario. In particular, the security of several
quantum key distribution schemes with continuous variables
rely on uncertainty relations.
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APPENDIX A: DERIVATION OF THE ENTROPIC
UNCERTAINTY RELATION (39)

To begin, let us consider a normalized, pure quantum
state described in position space by a one-dimensional wave
function v (x). The same state is described in momentum space
by U ( p), the Fourier transform of ¥ (x). These wave functions
provide two probability distributions,

g =1YWP  &p) = plP,

in position and momentum space, respectively. For Eq. (A1)
we shall define, analogously to Eq. (11), the following discrete
probability distributions:

(k+1/2)A (+1/2)8
o = / dxg(x), pi= / dp 3(p).
(k—=1/2)A (-1/2)8

(AD)

(A2)

The starting point of our derivation shall be the definition
of two new probability distributions {|a,,|*} and {|b;,|?} that
are distinct from Eq. (A2), where [39]

(k+1/2)A
o = f dx Y (0, (x), (A3)
k=1/2)A
(I+1/2) 3
b = / dp TP (D). (Ad)
(I—1/2)8
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Functions ¢,,(x) have been arbitrarily chosen to form an
orthonormal basis in the kth bin as follows:

(k+1/2)A
/ dx DPkm (x)(p/jm’ (x) = 8mm’ . (AS)

(k—1/2)A

Similarly, in momentum space, we introduce the functions
01,(p), which are orthonormal in the /th bin,

(+1/2)8
/ dp Gln (P)Q;,;/(P) = (Srm’ . (A6)

(I-1/2)

For the probability distributions {|ay,,|*} and {|b;, |}, the Riesz
theorem [43] reads (1/x +1/8 =2,8 > 1),

1/8 1/a
|:C Z |bln|2ﬁi| < |:C Z |akm|2a:| s

where the constant C is

(AT)

(k+1/2)A (+1/2)8 oiPx/h
C= sup / dx/ dp ——@;n(X)01 (P)‘
(em.ln) |J (k—1/2)A (I-1/2)8 V2rh km !

(A8)

Using the well-known Maassen-Uffink result [21] it was
shown that [39]

Hyllaw "] + Hglbp|*] > —21nC, (A9)

where the Rényi entropies Hyl[|a,|*] and Hgl|b,|*] are
related to the probability distributions {|ay,|*} and {|b;,|?}. To
obtain this uncertainty relation one needs to take the logarithm
of both sides of Eq. (A7) and recognize the definitions of the
Rényi entropies. In [39,44] it was also shown that

A5 ASl
27n P\ an )

The integral equation leading to this result appears in signal
processing theory and also in entropic uncertainty relations
[18]. Since the inequality (A10) is independent of the choice
of the functions ¢y, (x) and 6;,(p), we can take

C <exp(—R/2) = (A10)

Pn (%) = {(ﬁiﬁi/g:)/lz(l functions Z # 8 (Al
and
On(p) = {(ﬁiﬁigﬂ functions Z £ 8 - @Al
In this particular choice, we have
Akm = Som~/qks  bin = Son/P1 (A13)
and
Hollakn’] = Halail.  Hpllbwl’] = Hglpil.  (Al4)

This observation, together with Egs. (A9) and (A10), leads to
the result Hy[qi] + Hg[pi] = R.

In order to extend this uncertainty relation to the case
of the probability distributions Eq. (2) related to the mixed
state density operator 9, we note that Eq. (2) can always be
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represented in the following way (3, A; = 1):
Y higix) and  p(p) =Y M&(p),

where g;(x) and g;(p) are probability distributions of the
form of Eq. (Al). Equation (A15) immediately implies the
same decomposition of the probability distributions {rkA}

and {s}
Z )"l pl )

where g; and p; are calculated for the probability distributions
gi(x) and g;(p), respectively. Using the arguments provided
in Refs. [22,45], it follows from the Minkowski inequality

that
Z Ai

which finishes the derivation.

px) = (A15)

r¢ _ZA gi and )= (A16)

Ho[r*] + Hp[s7] Wai] + He[pl]).  (A1D)

APPENDIX B: OPTIMIZATION LEADING TO EQS. (49)—(51)

In the uncertainty relation of Eq. (44) there are two
pairs of parameters that are independent of the state 9, i.e.,
{h A,oi} and {h,;,oaz}. We will perform an optimization over
these parameters, but since they are not independent among
themselves we shall do this procedure in two steps. First,
we maximize the Shannon entropies i and /s, keeping the
variances ai, 0’82 constant. We can consider the position and
momentum variables separately; thus, we will perform all
calculations for the general case of the D,(z,0) function.
To this end, we shall solve the variational equation as
follows:

) n/2
3D,(2,0) (‘ /_ 42 Daf&.0)In(Dy (2,00

n/2 n/2
_)"r] / dz DU(Z’O) — a']/ dz ZZDU(Z’0)> =0

-n/2 -n/2
(B1)

Here A, and a, are n-dependent Lagrange multipliers associ-
ated with the normalization and constant variance constraints.
The solution is a Gaussian function with the support only in
the interval [—n/2,1n/2],

a e~
D0y = |T__¢
@O =\ Bt /iy/2)

where Erf(y) = \/%? Jo dt exp(—t?) denotes the usual error

function. The normalization constraint gives the value of A, as
a function of the a,, parameter

n./a
Ap(ay) =1n [\/ZErf( f>:| —1.

The variance constraint imposes a relation between a, and the
variance 0,7 of the following form:

sy L[ FM
o, (ay) = 2a, |:1 n Erf(n,/a,;/2) ] D

a, €R, (B2)

(B3)
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The right-hand side is a monotonically decreasing invertible
function of the a, parameter. Moreover, this relation restricts
the values of the variance to 0 < 0,72 < 172 /4, which is a natural
consequence of the fact that the maximal value of z> on
the interval [—7/2,1/2] is equal to 52 /4. It is worth noting that
the case o2 = 172 /12, which is equivalent to a,, = 0, describes
the case of the rectangle function of Eq. (25). Therefore,
according to the relation of Eq. (B4), we now shall use the
a, parameter instead of the variance 03. Due to the results of
Egs. (B2) and (B4) we have

hy(ay) = 1+ ky(ay) + ay0, (). (BS)

This entropy attains its maximal value equal to In# fora,, =0
[the rectangle function (25)].

Thus, we can rewrite the uncertainty relation of Eq. (44)
optimized with respect to both entropies in the following way:

asz +02(an) Gﬁa + oi(as) exp(2L1)
exp[2ha(an)] exp[2hs(as)] ~  (Qme)®

(B6)

PHYSICAL REVIEW A 85, 042115 (2012)

Substituting the results of Eqgs. (B4) and (BYS), this relation
reads,

o2 o,
F( Axg ,AzaA)F<8_p;»3zas> > exp(2Ly), (B7)

where

2t — M)+ 1
M= Er )

and the M(-) function has been defined in Eq. (51). The
second task in the optimization procedure is to find the minimal
value of F(u,t) with respect to t € R, where u > 0 plays the
role of an independent parameter. Differentiation of Eq. (B8)
leads to the minimum (the second derivative with respect to
t is a positive function for u > 0) at point ti, = M~ ().
Unfortunately, there is no analytical expression for the M~!(-)
function. In order to finish the derivation of the optimal
uncertainty relation of Eq. (49), we shall take the function
of Eq. (50) to be K (1) = F(u, M~ (u)).

exp(2t M(1)), (B8)
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