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We investigate the relation between unextendible product bases (UPB) and Bell inequalities found recently in
R. Augusiak et al. [Phys. Rev. Lett. 107, 070401 (2011)]. We, first, review the procedure introduced there that
associates to any set of mutually orthogonal product vectors in a many-qubit Hilbert space a Bell inequality. We
then show that if a set of mutually orthogonal product vectors can be completed to a full basis, then the associated
Bell inequality is trivial, in the sense of not being violated by any nonsignalling correlations. This implies that
the relevant Bell inequalities that arise from the construction all come from UPBs, which adds additional weight
to the significance of UPBs for Bell inequalities. Then, we provide additional examples of tight Bell inequalities
with no quantum violation constructed from UPBs in this way. Finally, it is proven that the Bell inequalities with
no quantum violation introduced recently in M. Almeida et al. [Phys. Rev. Lett. 104, 230404 (2010)] are tight
for any odd number of parties.
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I. INTRODUCTION

It is well established that quantum correlations (QC), i.e.,
correlations that can be obtained by local measurements on
quantum states, offer applications with no classical analog. For
instance, they provide cryptographic security not achievable
by any classical cryptographic protocol [1–3], they enable
the certification of the presence of randomness [4,5], and,
last but not least, outperform classical correlations (CC) at
communication complexity tasks (see, e.g., Ref. [6]).

It is then interesting to ask whether quantum correlations
are always more powerful than classical correlations. In other
words, is it possible to find tasks at which classical correlations
perform equally well as quantum? Such instances can be
identified with the aid of Bell inequalities [7], which are
constraints satisfied by all CC. Any Bell inequality can be
interpreted as the success probability of a task in which distant
noncommunicating parties are each given a certain input and
then must compute, in a distributed manner, the correct value
of a certain known function of the inputs. The violation
of a Bell inequality by some correlations indicates that the
corresponding task can be performed more efficiently by
these correlations than by any CC. Consequently, correlations
leading to a Bell violation do not have a classical realiza-
tion. On the other hand, Bell inequalities with no quantum
violation provide tasks at which QC offer no advantage
over CC.

The first examples of Bell inequalities that cannot be
violated by quantum theory were derived in Ref. [8]. These
inequalities are nontrivial, as they are violated by nonsignalling
correlations, which, necessarily, do not have a quantum
realization. The set of nonsignalling correlations (NC) is
defined to be the set of all those correlations which do not
allow any instantaneous communication. However, the Bell
inequalities found in Ref. [8] are not tight, which is an
important feature in the present context (see Fig. 1). Recall

that a Bell inequality is called tight when it defines a facet of
the convex set of CC (see, e.g., Ref. [9]).

To our knowledge, the first nontrivial tight Bell inequalities
which are not violated by quantum theory were those proposed
in Ref. [10]. From a geometric point of view, the existence of
such Bell inequalities implies that the convex sets of quantum
and classical correlations can share facets. These inequalities
were also used in a different context to prove that, contrary
to the bipartite scenario [11,12], local quantum measurements
and the no-signalling principle do not imply that correlations
are quantum in a general multipartite scenario [12].

More recently, some of us have proposed a systematic
construction of nontrivial Bell inequalities with no quantum
violation [13]. The construction exploits the concept of
unextendible product bases (UPBs) [14]. This connection is
remarkable, as UPBs are a notion of entanglement theory and
heavily rely on the structure of tensor products of Hilbert
spaces. Interestingly, this construction reproduces the Bell
inequalities previously derived in Ref. [10], thus proving that it
may lead to tight Bell inequalities with no quantum violation.
Unfortunately, these have so far been the only examples of
tight Bell inequalities found via the construction. The main
aim of this paper is to provide new examples of tight Bell
inequalities with no quantum violation that arise from UPBs.
To this end, we discuss in more detail how Bell inequalities
can be derived from any set of mutually orthogonal product
vectors in many-qubit Hilbert spaces and prove that the concept
of unextendibility plays a crucial role for the nontriviality of
the associated Bell inequality. In particular, we show that the
only nontrivial Bell inequalities that can be constructed in this
way are those coming from UPBs or sets that can be completed
only to a UPB. We also prove that the Bell inequalities from
Ref. [10] are tight for any odd number of parties.

This paper is structured as follows. Section II introduces
all concepts relevant for the upcoming sections. In Sec. III, we
recall the construction from Ref. [13] which associates to a set
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FIG. 1. (Color online) Schematic depiction of the sets of classical
CC, quantum QC, and nonsignalling correlations NC. Tight Bell
inequalities correspond to facets of the classical set. B denotes a
Bell inequality with no quantum violation which is (a) not tight and
(b) tight. Note that only tightness guarantees the existence of a non-
trivial region in which quantum and classical correlations coincide.

of mutually orthogonal product vectors a Bell inequality and
study its properties in more detail. We prove that whenever the
initial set of product vectors can be completed to a full basis of
product vectors, then the resulting Bell inequality is trivial in
the sense that it cannot be violated by any NC. In Sec. IV we
show in more detail that the Bell inequalities from Ref. [10]
can be constructed from UPBs and prove their tightness for
any odd n. Section V presents new tight Bell inequalities with
no quantum violation constructed from UPB, while Sec. VI
concludes the paper.

II. PRELIMINARIES

Before getting to the results, let us, first, establish some
terminology and notation and recall concepts and facts
concerning unextendible product bases and nonsignalling
correlations. We use the term vector in the context of quantum
states always in the sense of “one-dimensional subspace of a
complex Hilbert space.” Phrased differently, this means that
we take our vectors to be unit vectors, and we identify two
unit vectors whenever they differ only by a complex phase. By
“basis,” we always mean an orthonormal basis.

A. Unextendible product bases

Consider a product n-partite Hilbert space,

H = Cd1 ⊗ . . . ⊗ Cdn , (1)

with di (i = 1, . . . ,n) denoting local dimensions. Following
Ref. [14], an unextendible product basis (UPB) is a collection
of mutually orthogonal fully product vectors in H,

U = {∣∣φ(1)
j

〉 ⊗ . . . ⊗ ∣∣φ(n)
j

〉}|U |
j=1, (2)

obeying two conditions: (i) |U | < dimH = �n
i=1di (U does

not span H) and (ii) (span U )⊥ does not contain any product
vector, or, in other words, is a completely entangled subspace.

UPBs were introduced in the context of entanglement
theory in Ref. [14], where they were used to obtain one of
the first constructions of bound entangled states [14,15]. More
precisely, the state

ρU = 1H − �U

D − |U | , (3)

where �U denotes the sum of projectors onto vectors from U ,
has positive partial transpose with respect to any bipartition
but, nevertheless, is entangled. While the former follows from
the fact that the application of partial transposition with respect

to any subset of parties to �U returns another projector, the
latter is a consequence of the lack of product vectors in
(span U )⊥ and, hence, the range criterion applies here [16].
UPBs are interesting and intriguing objects and, hence, there
has been some effort toward understanding their properties and
structure (see, e.g., Refs. [14,15,17,18]).

To illustrate the above definition, let us provide two
examples of UPBs.

Example 1. First, we consider one of the earliest examples
of a bipartite UPB, the so-called pyramid [14], UPyr = {|vj 〉 ⊗
|v2j mod 5〉}4

j=0 ⊂ C3 ⊗ C3, with

|vj 〉 = N (cos ϕj |0〉 + sin ϕj |1〉 + h|2〉), (4)

where N = 2/
√

5 + √
5, h = (1/2)

√
1 + √

5, and ϕj =
2πj/5. One easily finds that there is no product vector in
(spanUPyr)⊥ and, hence, UPyr is a UPB in H = C3 ⊗ C3.
Let us also note that, in the bipartite case, UPyr is the
lowest-dimensional example of a UPB: In C2 ⊗ Cd there are
no UPBs for any d.

Example 2. Let us now take the following four-element set
of three-qubit vectors [14]:

UShifts = {|000〉,|1ee〉,|e1e〉,|ee1〉}, (5)

where |e〉 ∈ C2 is an arbitrary unit vector that differs from |0〉
and |1〉 and |e〉 stands for the unit vector orthogonal to |e〉
(unique up to phase). This set is a slight generalization of the
“Shifts” UPB found in Ref. [14] and then generalized to more
parties in Ref. [15]. Notice also that, for each qubit, we can
replace {|e〉,|e〉} with a different basis {|ei〉,|ei〉} (i = 1,2,3)
independent of |0〉 and |1〉. Up to local unitary equivalence,
there are no other UPBs in C2 ⊗ C2 ⊗ C2 [18].

B. Nonsignalling correlations

Let us consider n observers having access to n correlated
systems. The ith observer (i = 1, . . . ,n) can perform on his
system one of mi possible measurements with r

xi

i outcomes,
henceforward denoted ai , where xi ∈ {0, . . . ,mi − 1} stands
for the measurement choice of the ith observer. The correla-
tions established in this way are determined by the collection
of conditional probabilities

{p(a|x) ≡ p(a1, . . . ,an|x1, . . . ,xn)}, (6)

where a = (a1, . . . ,an) and x = (x1, . . . ,xn). The usual way
of dealing with these objects is to treat them as a vector in RD

with D = ∏n
i=1

∑mi−1
xi=0 r

xi

i .

Clearly, the probabilities p(a|x) are non-negative and
normalized in the sense that

∑
a p(a|x) = 1 holds for any

x. Additionally, as it is assumed that no communication
among the parties can take place when the measurements are
performed, the obtained correlations must obey the principle
of no signalling: The choices of observables by a set of
parties cannot influence the statistics seen by the remaining
parties. Formally, this can be stated as a set of equations of
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the form ∑
ai

p(a1 . . . ai . . . an|x1 . . . xi . . . xn)

=
∑
ai

p(a1 . . . ai . . . an|x1 . . . x ′
i . . . xn) (7)

for all xi,x
′
i and a1, . . . ,ai−1,ai+1, . . . ,an and

x1, . . . ,xi−1,xi+1, . . . ,xn and all i. The conditional
probabilities (6) constrained by the positivity, normalization,
and nonsignalling conditions (7) form a polytope (see, e.g.,
Ref. [9]) whose dimension depends on the considered scenario
and is given by [19]:

d =
n∏

i=1

⎡
⎣mi−1∑

xi=0

(
r

xi

i − 1
) + 1

⎤
⎦ − 1. (8)

Quantum correlations (QC). Assume now that the parties
have access to correlated quantum particles. The resulting
correlations are then guaranteed to satisfy the no-signalling
equations and read

p(a1, . . . ,an|x1, . . . ,xn) = Tr
[
� P a1

x1
⊗ . . . ⊗ P an

xn

]
, (9)

where � stands for a density matrix and P ai
xi

denote positive
operators representing the measurement outcomes at the ith
site. For each xi , they need to satisfy∑

ai

P ai

xi
= 1 (i = 1, . . . ,n). (10)

Since any quantum measurement can be realized as a pro-
jective measurement on a Hilbert space of sufficiently large
dimension, we can always assume that all P ai

xi
are orthogonal

projectors.
Classical correlations. Let us now consider correlations

that can be established by the n observers when they have
access only to shared classical information in the form of
shared randomness λ, which is a random variable with arbitrary
distribution p(λ). This defines the set of classical correlations
(CC). It is the set of all those conditional probabilities which
can be written in the form

p(a|x) =
∑

λ

p(λ)
n∏

i=1

pi(ai |xi,λ), (11)

where each pi(ai |xi,λ) is an arbitrary conditional probability
distribution. It follows that, analogously to the case of NC, the
set of all CC is a polytope in the same space. Its extremal points
are the deterministic probabilities p(a|x) = ∏n

i=1 pi(ai |xi)
where each probability pi(ai |xi) equals either zero or 1. The
set of CC is strictly smaller than the set of QC which [7], in
turn, is strictly smaller than the set of NC [20].

Bell inequalities. Consider a linear combination of the
conditional probabilities,

∑
a,x Ta,xp(a|x), with Ta,x being

some 2n-index tensor Ta,x . Finding the maximal value, written
as βC , of this expression over all local probabilities (11), one
arrives at the Bell inequality [7]:∑

a,x

Ta,xp(a|x) � βC. (12)

We say that a Bell inequality is nontrivial if it is violated
by some NC, that is, there exist NC, p(a|x) such that∑

a,x Ta,xp(a|x) > βC .
Geometrically, nontrivial Bell inequalities are hyperplanes

that separate CC from some NC and possibly also from some
QC. A Bell inequality is said to be tight whenever it defines a
facet of the polytope of CC. Like any other polytope [9], the
polytope of CC can be fully described in terms of its facets,
that is, by all the tight Bell inequalities. If some correlations
do not have a classical realization, they necessarily violate a
tight Bell inequality. This explains our interest in tightness.

Given a Bell inequality, how does one find out whether it is
tight? It is tight if, and only if, those CC which saturate the Bell
inequality span, when treated as vectors from RD , an affine
subspace of dimension d − 1. So, in order to check tightness,
one has to see whether the models attaining the maximum
value βC constitute a set of d linearly independent vectors (for
more detail see, e.g., Refs. [19,21]).

Finally, let us mention that when rewritten in an appropriate
form (entries of Ta,x are non-negative and normalized), every
Bell inequality can be understood as a nonlocal game as
follows. On receiving, in a distributed manner, the input x
(from some fixed set of possible inputs), the parties determine
an output a and receive a payoff Ta,x . The left-hand side of Eq.
(12) then corresponds to the value of the game. Accordingly,
the classical bound βC stands for the maximal value of the
game in the case when the only resource at a disposal of
the parties is a shared randomness. Then, violation of a
Bell inequality by some QC means that there exist quantum
resources allowing the parties to perform the corresponding
task with greater efficiency than allowed by classical physics.

III. BELL INEQUALITIES WITH NO QUANTUM
VIOLATION FROM UPBS

In this section we recall and study in some more detail the
scheme from Ref. [13] for constructing Bell inequalities from
sets of orthogonal product vectors. Also, we prove that if the
set of orthogonal product vectors can be completed to a full
basis of product vectors (or already constitutes a full basis
itself), then the associated Bell inequality is trivial in the sense
that it cannot be violated by any NC.

A. The construction

We now restrict to an n-qubit Hilbert space H = (C2)⊗n.
Suppose that

S = {|ψj 〉 = ∣∣ψ (1)
j

〉 ⊗ . . . ⊗ ∣∣ψ (n)
j

〉}|S|
j=1 (13)

is a set of product vectors inH, where each |ψ (i)
j 〉 ∈ C2 is a unit

vector. In the following, we assume that the |ψj 〉 are mutually
orthogonal. This implies an upper bound on the number of
elements of S given by |S| � 2n. For the time being, however,
we do not assume S to be a UPB.

For each i, we now take the |ψ (i)
j 〉 to be ordered in such a

way that the vectors in the local set

S (i) = {∣∣ψ (i)
1

〉
, . . . ,

∣∣ψ (i)
si

〉}
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all differ and such that each |ψ (i)
j 〉 for j > si is already

contained in this list. In general, either of si < |S| or si = |S|
is possible.

Then we partition each S (i) into disjoint subsets

S (i) = S (i)
1 ∪ . . . ∪ S (i)

mi
,

such that two vectors in S (i) are orthogonal if and only if they
lie in the same subset of the partition. This is possible because
of the following property of C2: If |φ′〉 is neither orthogonal to
nor equal to |φ〉, then it is also neither orthogonal to nor equal to
|φ⊥〉. Alternatively speaking, orthogonality is an equivalence
relation on vectors in C2.

In the framework of Ref. [13], this has been called property
(P), and it has also been noted that it is automatic in the qubit
case. Since here we consider the qubit case only, each local
subset S (i)

j contains at most two vectors. As example 2 shows,
there exist sets of orthogonal product vectors without property
(P) when the local Hilbert spaces have dimension higher
than 2.

Resuming the construction of the Bell inequality, we also
need to fix an arbitrary ordering of each subset S (i)

j . Now the
Bell scenario associated to this S is given by n parties, where
party i has mi measurement settings and every measurement
has two possible outcomes.

The Bell inequality associated to S in this scenario is
defined as follows. We assign to every product vector |ψj 〉 ∈ S
a certain term p(aj |xj ). This term is defined by a list of
settings, xj = (x(1)

j , . . . ,x
(n)
j ), and a list of outcomes, aj =

(a(1)
j , . . . ,a

(n)
j ). These are obtained through the procedure of

(a) determining the local vector |ψ (i)
j 〉 appearing at the ith

site of |ψj 〉 for each i and
(b) setting x

(i)
j to be the number k for which |ψ (i)

j 〉 ∈ S (i)
k ,

while taking a
(i)
j to be the position of |ψ (i)

j 〉 within S (i)
k .

Let us now take a linear combination of these terms, β =∑
i qip(ai |xi), with non-negative weights qi , which always

can be assumed to obey 0 � qi � 1. This leads us to the Bell
inequality,

|S|∑
i=1

qip(ai |xi) � βC, (14)

where, as before, βC stands for the maximal value of the left-
hand side of (14) over classical probability distributions (6).

Our main aim throughout the present paper is to investigate
these inequalities and, in particular, how their properties are
related to the properties of the underlying sets S. First, we
prove that any such inequality cannot be violated by quantum
theory. Denoting by βQ the maximal value achievable by the
left-hand side of (14) within quantum theory, we have the
following fact.

Theorem 1. Let S be the set of mutually orthogonal vectors
from H. Then, for the corresponding Bell inequality (14),
βC = βQ = max{qi}.

Proof. Orthogonality of any pair of vectors from S implies
that at some position they have different vectors from the same
local subset S (i)

k . This means that any pair of the associated
conditional probabilities has at some site the same inputs but
different outputs (different outcomes of the same observable).

Consequently, for any deterministic local model (recall that
to get βC one can restrict to these models), if one of the
conditional probabilities equals unity, the remaining ones van-
ish (let us call such probabilities orthogonal). Consequently,
βC = max{qi}.

In order to prove that βQ = max{qi}, we can always restrict
to local von Neumann measurements and assign the product
projectors

Pj =
n⊗

i=1

P
(i)
j (15)

to the conditional probabilities p(aj |xj ). Then, orthogonality
of the conditional probabilities then directly implies that Pj ⊥
Pk for j �= k. Consequently, the corresponding Bell operator,

B =
|S|∑
j=1

qj

n⊗
i=1

P
(i)
j , (16)

is a positive operator whose eigenvalues are the qj ’s, meaning
that βQ = max{qj }. This completes the proof.

Corollary 1. An immediate consequence of this fact is that,
for a given set S, the strongest Bell inequality it generates (14)
is the one with equal q’s. This is because the left-hand side of
(14) can always be upper bounded by max{qi}

∑|S|
j=1 p(aj |xj )

and the latter expression give rise to a Bell inequality with
the same classical bound as (14). Along the same lines, it
is fairly easy to see that a Bell inequality with unequal q’s
cannot be tight. Consequently, from now on, we restrict to
Bell inequalities with equal q’s, i.e., to

|S|∑
i=1

p(ai |xi) � 1. (17)

Let us illustrate the above construction by applying it to
two particular sets of vectors.

Example 3. First, consider the set UShifts (5). Clearly, it
has the property (P) and at each site we can distinguish
two local sets, S (i)

0 ≡ S0 = {|0〉,|1〉} and S (i)
1 ≡ S1 = {|e〉,|e〉}

(i = 1,2,3). Then, to each element of UShifts we assign
conditional probabilities in the following way: |000〉 �→
p(000|000), |1ee〉 �→ p(110|011), |e1e〉 �→ p(011|101), and
|ee1〉 �→ p(101|110). Summing up these probabilities, we get
the tight Bell inequality with no quantum violation found in
Ref. [22] and studied in Ref. [10]:

p(000|000) + p(110|011) + p(101|110) + p(011|101) � 1.

(18)

Example 4. Second, we take the full basis in the three-
qubit Hilbert spaceH = (C2)⊗3 giving rise to the phenomenon
called nonlocality without entanglement [23]:

S = {|000〉,|e01〉,|01e〉,|01e〉,|1e0〉,|e01〉,|1e0〉,|111〉}.
(19)

As before, we partition the set of local vectors into subsets; in
this case, the local vectors are the same for each party, and the
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subsets are

S0 = {|0〉,|1〉} , S1 = {|e〉,|e〉} .

Associating conditional probabilities to every element of S
and following the above procedure, we then arrive at the Bell
inequality

p(000|000) + p(001|100) + p(010|001) + p(011|001)

+p(100|010) + p(101|100) + p(110|000)

+p(111|000) � 1. (20)

This one, however, is trivial as it cannot be violated by any NC.
Indeed, using nonsignalling conditions (7), it can be shown that
the left-hand side of Eq. (20) is exactly 1. This, as we will see
shortly, is a consequence of the fact that S is a basis in (C2)⊗3.

These two examples reflect the importance of the notion of
UPB in our construction. Any set of product orthogonal vectors
S ⊆ H is either a UPB (or a set that can be completed only to
a UPB) or completable to a full basis in H (or already one). In
the second case, we will call the set completable. Interestingly,
any Bell inequality constructed from the completable set is
trivial in the sense that it cannot be violated by any NC. On the
other hand, Bell inequalities associated to UPBs are always
nontrivial as there exist NC violating them. The following two
theorems formalize the above statements.

Theorem 2. Let S be a set of orthogonal product vectors
in an n-qubit Hilbert space H. If S is completable, then the
resulting Bell inequality (14) cannot be violated by any NC.

Proof. Let us start by noting that any Bell inequality which
is saturated by some interior point of the CC polytope is trivial.
The left-hand side of (12) then has a constant value, equal to
βC , on the whole affine subspace spanned by all CC, and this
subspace contains all nonsignalling correlations.

To see this more explicitly, assume that a given Bell
inequality (12) is saturated by an interior point {p̃(a|x)} of
the corresponding CC polytope, i.e.,∑

a,x

Ta,xp̃(a|x) = βC. (21)

We can always represent {p̃(a|x)} as a convex combination
of some extremal point (deterministic local point), denoted
{pex(a|x)}, of this polytope and some other point lying on its
boundary. This, when substituted into Eq. (21), directly implies
that {pex(a|x)} must saturate [Eq. (12)]. Since any extremal
point of the CC polytope can be used in this decomposition,
Eq. (12) must be saturated by all of them. Consequently, any
affine combination of the vertices of the CC polytope, and in
particular any NC, also saturates (12).

Let us now assume that S is a full basis in an n-qubit Hilbert
space H and consider the associated Bell inequality

dimH∑
j=1

p(aj |xj ) � 1. (22)

Let us then take the uniform probability distribution, i.e.,
p(a|x) = 1/dimH for any a and x. On the one hand, it clearly
saturates the Bell inequality (22). On the other hand, it belongs
to the interior of the corresponding CC polytope, which, in
view of what we have just said, implies that (22) cannot be
violated by any NC.

Finally, let us assume that S is not a full basis in H but can
be completed to one. Let us write S = {|φj 〉}dimH−|S|

j=1 for the
completing set of mutually orthogonal product vectors. Again,
S ∪ S is a set of mutually orthogonal product vectors and,
therefore, has an associated Bell inequality,

dimH∑
j=1

p(aj |xj ) � 1.

In the previous paragraph, we showed that this inequality is
trivial in the sense that all NC satisfy it with equality. We
can now upper bound the left-hand side of (17) for any NC
p(a|x) by

|S|∑
j=1

p(aj |xj ) �
dimH∑
j=1

p(aj |xj ) = 1. (23)

Therefore, any NC satisfy (14). This completes the proof.
Remark 1. For completeness, let us present here an

alternative but less general way of proving the above statement.
It uses the particular form of the considered Bell inequalities
(17) and provides some additional insight into the relationship
between UPBs and Bell inequalities.

Let us assume that S is a full basis in H but the associated
Bell inequality (17) is not saturated by some extreme point
{p̃(a|x)} of the associated polytope of CC. This means that for
this point (recall that probabilities representing deterministic
local models can equal only 0 or 1),

dimH∑
j=1

p̃(aj |xj ) = 0, (24)

and, consequently,

p̃(aj |xj ) = 0 (25)

for every j = 1, . . . ,dimH. By assumption, {p̃(a|x)} is local
and deterministic, so p̃(a|x) = p̃(a1|x1) . . . p̃(an|xn) for any a
and x. For concreteness, but without loss of generality, we can
assume that whenever p̃(ai |xi) = 0 for some observable xi at
site i, then ai = 0. This amounts to labeling the outcomes of
each observable such that p̃(1|xi) = 1.

Now the orthogonality of the vectors in S, from which
the inequality was constructed, means that any two outcome
strings aj1 and aj2 which appear in (24) differ: Any two
vectors in S have orthogonal components at some site i.
At this site i, the associated outcome strings necessarily
have to differ, so aj1,i �= aj2,i (where now the second index
enumerates the parties, i = 1, . . . ,n). However, since there
are only 2n = dimH possible outcome strings, all of these
do appear in (24). In particular, the constant outcome string
1 . . . 1 also occurs in (25) for some j . This is a contradiction to
p̃(1 . . . 1|x) = 1 for all x. Therefore, the Bell inequality (17)
associated to a full basis in H is saturated by all the extreme
points of the corresponding CC polytope and, hence, trivial.

Theorem 3. Let S be an n-qubit UPB. Then, the corre-
sponding Bell inequality (17) is nontrivial, i.e., there exist NC
violating it.
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Proof. Let us denote by �UPB the projector onto the UPB
S and introduce a normalized entanglement witness

W = 1

|S| − dimH (�UPB − ε1H) , (26)

where ε is the positive number defined as

ε = min
|ψprod〉∈H

〈ψprod|�UPB|ψprod〉 (27)

with the minimum going over all fully product vectors in H
and 1H standing for the identity acting on H.

This witness detects entanglement of the bound entangled
state (3) in the sense that

Tr (WρS ) < 0. (28)

Using the explicit form of ρS [cf. Eq. (3)], we can rewrite the
above in the following way:

Tr (W�UPB) > 1. (29)

To complete the proof, one notices, first, that �UPB is exactly a
Bell operator corresponding to Bell inequality (17) constructed
from the UPB S. Second, it is known that any entangle-
ment witness represents some nonsignalling correlations (see,
e.g., Ref. [12]). These two facts together imply that the
Bell inequality constructed from the UPB S is violated by
some NC.

Corollary 2. An immediate consequence of both the above
theorems is that a Bell inequality (17) constructed from S is
nontrivial if, and only if, S is a UPB or can be completed only
to a UPB (in the sense that there still exists a product vector in
H orthogonal to S; however, one is unable to complete S to a
full basis in H).

It should also be noted that one can easily increase the
violation of (14) by the W from (26) with ε replaced by

ε′ = min
|ψprod〉∈S ′

〈ψprod|�S |ψprod〉, (30)

where S ′ is a finite set of product vectors constructed by taking
all the possible tensor products of vectors from the local sets
S (i). In other words, S ′ is a set of product vectors representing
local measurement operators and allowing one to obtain NC
from W . The non-negativity condition of these conditional
probabilities leads to (30). For instance, for the Bell inequality
(18) one can put ε′ = 1/8 and get a violation 7/6, which is
still, however, less than the maximal nonsignalling violation
of 4/3 [10].

IV. GUESS YOUR NEIGHBOR’S INPUT BELL
INEQUALITIES AND n-QUBIT UPBS

Our construction connects UPBs and nontrivial Bell in-
equalities. It is now tempting to ask whether it is possible to
get tight Bell inequalities in this way. In Ref. [13], some of us
showed that the recently introduced tight Bell inequalities [10]
correspond to a new class of many-qubit UPBs. It is still,
however, unknown whether these Bell inequalities are tight
for an arbitrary number of parties. In Ref. [10], tightness was
verified only for 3 � n � 7. Here, we prove tightness for all
odd n � 3.

Let us consider a particular example of games described
above (cf. Sec. II B). Assume that we have n parties and each

of them is given a bit xi ∈ {0,1}, forming a string of settings x.
The overall goal is that every party guesses the next party’s bit
xi+1, thus, the name guess your neighbor’s input (GYNI) [10].
Additionally, we demand that all strings x of settings xi are
randomly chosen, with equal probabilities, from those which
satisfy

x1 ⊕ . . . ⊕ xn = 0, for odd n

x2 ⊕ . . . ⊕ xn = 0, for even n
. (31)

For given NC p(a|x), the probability of success in this game
is given by

Psucc = 1

2n−1

∑
i

p(̂xi |xi), (32)

where for a string of settings x, the notation x̂ stands for
the string of settings with x̂i = xi and the sum goes over all
input vectors xi whose components obey (31). (Note that the
index in xi now enumerates the strings of settings instead of
the components of such a string.) It was shown in Ref. [10]
that the maximal value of (32) over all classical strategies is
P CC

succ = 1/2n−1. This, after simple algebra, leads us to the Bell
inequalities which can be written as

(n−1)/2∑
k=0

n∑
1=i1<...<i2k

Di1...i2k
p(0|0) � 1 (33)

and

(n−2)/2∑
k=0

n∑
2=i1<...<i2k

Di1...i2k
[p(0|0) + p(0 . . . 01|10 . . . 0)] � 1,

(34)

for odd and even n, respectively. Here 0 = (0, . . . ,0) and
Di1,...,ik flips (0 ↔ 1) input bits and output bits at positions
i1, . . . ,ik and i1 − 1, . . . ,ik − 1 (if i1 = 1, then i1 − 1 = n),
respectively. We call this inequality GYNIn.

Notice that for n = 3, Eq. (33) reproduces the Bell
inequality (18), while for n = 4, Eq. (34) gives

p(0000|0000) + p(0001|1000) + p(0110|0011)

+p(0111|1011) + p(1010|0101) + p(1011|1101)

+p(0111|1011) + p(1100|0110) + p(1101|1110) � 1.

(35)

It was shown in Ref. [10] that GYNIn cannot be violated
by quantum theory, meaning that the maximum of the
probability Psucc (32) over all quantum strategies is exactly the
same as P CC

succ, i.e., P QC
succ = P CC

succ = 1/2n−1. Moreover, these
inequalities are tight for 3 � n � 7 [10], providing the first
examples of tight Bell inequalities with no quantum violation.

It is then interesting to study these inequalities from the
point of view of our construction. Below, we will show that the
product vectors corresponding to the Bell inequalities (33) and
(34) constitute an n-qubit UPB. For this purpose, first notice
that the conditional probabilities have two possible settings
inputs and outcomes for each party. This means that the Hilbert
space supporting the product vectors is H = (C2)⊗n and at
each site we have two bases, which, for simplicity, we can
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take to be the same for all sites and given as S0 = {|0〉,|1〉}
and S1 = {|e〉,|e〉} with |e〉 differing from |0〉 and |1〉. Clearly,
one can consider bases that differ at each site leading to more
general UPBs.

Let now V denote the unitary operator mapping S0 to
S1, that is, V |0〉 = |e〉 and V |1〉 = |e〉; we write Vi for an
application of V on the ith qubit. Following the rules described
above, one then sees that the product vectors corresponding to
(33) read, with σi standing for the Pauli operator σx |0〉 = |1〉
and σx |1〉 = |0〉 acting on qubit i,

Vi1 . . . Vikσi1−1 . . . σik−1|0〉⊗n,
(36)

i1 < . . . < ik ∈ {1, . . . ,n}, k = 0, 2,4, . . . ,n − 1,

while those corresponding to (34) read

Vi1 . . . Vik σi1−1 . . . σik−1|0〉⊗n,

V1Vi1 . . . Vik σi1−1 . . . σik−1σn|0〉⊗n, (37)

i1 < . . . < ik ∈ {2, . . . ,n}, k = 0,2,4, . . . ,n − 2.

Let us denote the set of these vectors by Un. We will show in
Theorem 4 that Un is a UPB.

In the particular cases of n = 3, Eq. (36) give the Shifts
UPB (5). For n = 4, Eq. (37) gives

U4 = {|0000〉,|1ee0〉,|e001〉,|eee1〉,
× |01ee〉,|1e1e〉,|e1ee〉,|ee1e〉}. (38)

A direct check shows that U4 is also a UPB in (C2)⊗4. Below
we show that this is the case for any n. To this end, let us, first,
state two simple facts.

Lemma 1. Let U be an n-qubit UPB. Then, the set Ũ

obtained from U by substituting some local basis at site i

by some other basis different from the other local bases at this
site is also a UPB.

Proof. The proof is trivial. As said before (cf. Sec. III A),
every n-qubit UPB has the property (P), or, in other words, the
property of being UPB in qubit Hilbert spaces is independent
of the choice of local bases. Hence, by replacing any local
basis with any other independent basis, we just get another
UPB.

Lemma 2. Let U1 and U2 be two n-qubit UPBs. Assume that
both can be divided into k subsets U

(i)
1 and U

(i)
2 (i = 1, . . . ,k)

obeying the following orthogonality rules

U
(i)
1 ⊥ U

(j )
2 (i,j = 1, . . . ,k; i �= j ). (39)

Then the set of vectors

|0〉 ⊗ U
(1)
1 , |1〉 ⊗ U

(1)
2 ,

|e1〉 ⊗ U
(2)
1 , |e1〉 ⊗ U

(2)
2 ,

...
...

|ek−1〉 ⊗ U
(k)
1 , |ek−1〉 ⊗ U

(k)
2 ,

(40)

where {|0〉,|1〉} and {|ei〉,|ei〉} (i = 1, . . . ,k − 1) are different
bases in C2, constitutes a (n + 1)-qubit UPB.

Proof. It follows directly from the assumptions that all
vectors in this set are mutually orthogonal. Now assume that
the vectors (40) are not a UPB but that there exists a product
vector |ψ〉 ∈ (C2)⊗(n+1) orthogonal to all of them. Writing this
vector as |ψ〉 = |x〉 ⊗ |ψ̃〉 with |ψ̃〉 ∈ (C2)⊗n and |x〉 being

a one-qubit vector, |x〉 may or may not belong to one of the
local bases {|0〉,|1〉}, {|ei〉,|ei〉} (i = 1, . . . ,k − 1). If it does,
|ψ̃〉 has to be orthogonal to one of the sets U1 or U2, while, if
it does not, |ψ̃〉 must be orthogonal to both of them. In either
case, this contradicts the assumption that U1 and U2 are UPBs.

Theorem 4. The product vectors given in Eqs. (36) and (37)
constitute a 2n−1-element UPB in (C2)⊗n.

Proof. We use induction on n. For the base case n = 3,
U3 = UShifts is already known to be a UPB.

For the induction step, we partition Un+1 into the four
subsets

|0〉 ⊗ U (0)
n , |1〉 ⊗ Ũ (1)

n ,

|e〉 ⊗ U (1)
n , |e〉 ⊗ Ũ (0)

n ,
(41)

for certain n-qubit sets of vectors U (0)
n , U (1)

n , Ũ (0)
n , and Ũ (1)

n . We
now establish the assertions of Lemma 2. The first observation
is that

Un = U (0)
n ∪ U (1)

n ,

which follows from the definitions (36) and (37) by consider-
ing the cases of even and odd n separately. This Un is known
to be an n-qubit UPB by the induction assumption.

Similarly, it can be shown that

Ũn = Ũ (0)
n ∪ Ũ (1)

n

is the set which for odd n one obtains from Un by replacing
|0〉 ↔ |1〉 and |e〉 ↔ |e〉 in the last qubit, while, for even n, by
replacing |0〉 ↔ |1〉 and |e〉 ↔ |e〉 in the second-to-last qubit
and |0〉 ↔ |e〉 and |1〉 ↔ |e〉 in the last one. In the following,
we denote this operation by Fn. An application of Lemma 1
shows that Ũn is also a UPB.

In order to complete the proof by an application of Lemma
2, we need to show the orthogonality relations

U (0)
n ⊥ Ũ (0)

n , U (1)
n ⊥ Ũ (1)

n .

Since the proof of the second relation is analogous, we prove
only the first. Let us consider the cases of odd n and even
n separately and start with odd n. As follows from Eq. (36),
the last qubit of elements of U (0)

n is either |0〉 or |e〉, meaning
that orthogonality of any two vectors |ψj 〉,|ψk〉 ∈ U (0)

n (j �= k)
comes from one of the first n − 1 qubits. Now, on the one hand,
Fn acts on the last qubit, and, therefore, |ψj 〉 ⊥ Fn|ψk〉 ∈ Ũ (0)

n

for any k �= j . On the other hand, as Fn replaces the last
qubit with an orthogonal one, |ψj 〉 ⊥ Fn|ψj 〉 ∈ Ũ (0)

n . These
two facts together imply that an arbitrary vector |ψj 〉 ∈ U (0)

n is
orthogonal to any elements of Ũ (0)

n , hence, U (0)
n ⊥ Ũ (0)

n .
In the case of even n, the operation Fn acts on the last two

qubits. Nevertheless, it follows from Eq. (37) [cf. Eq. (34)]
that the orthogonality of any two vectors |ψj 〉,|ψk〉 ∈ U (0)

n

(j �= k) comes from one of the first n − 2 qubits. Precisely,
as already stated, they cannot be orthogonal at the last qubit.
Assume, then, that they are orthogonal at the second-to-last
one. In this case, the corresponding conditional probabilities
have the same input bits at this site but they differ at the last
one. Taking into account Eq. (31), this means that at some
other site k (1 < k < n − 2), these conditional probabilities
have again different inputs, but at site k − 1 their inputs are
equal. Consequently, due to the fact that the outputs of these
conditional probabilities are inputs shifted to the left, they
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must be “orthogonal” at one of the first n − 2 sites. Hence,
the orthogonality of the corresponding vectors |ψj 〉 and |ψk〉
comes from one of the first n − 2 qubits. Having this, we
just apply the reasoning developed for odd n, concluding that
U (0)

n ⊥ Ũ (0)
n .

Theorem 5. For odd n, the GYNIn Bell inequalities (33) are
tight.

Proof. The proof is moved to the appendix.
Let us finally notice that, as shown in Ref. [10], the maximal

NC value of the GYNI Bell inequalities is, irrespectively of
the number of parties, always upper bounded by 2. In general,
however, one is able to find Bell inequalities constructed
from UPBs having arbitrarily large nonsignalling violation.
Let us consider for this purpose an n-partite UPB U and its
associated Bell inequality (17). It is violated by the witness
(26) constructed from U . We write β > 1 for the value of the
Bell inequality on W .

It then follows from Ref. [15] that the k-fold tensor product
of U , i.e., U⊗k , is a kn-partite UPB. Via our construction,
this new UPB turns into a kn-partite Bell inequality (17),
which is the k-fold product of the n-partite Bell inequality
associated to U . Nevertheless, its value on the kn-partite
witness W⊗k amounts to βk , which in the limit of large k

becomes arbitrarily large. Therefore, the NC violation of Bell
inequalities constructed from UPBs is unbounded and may
grow exponentially in the number of parties.

V. NEW TIGHT BELL INEQUALITIES WITH NO
QUANTUM VIOLATION FROM UPBS

The purpose of this section is to provide new examples of
tight Bell inequalities without quantum violation from UPBs.
In order to do this, we, first, construct new examples of
four-qubit UPBs and later map them into Bell inequalities. We
then discuss simple methods allowing one to extend n-partite
UPBs to (n + 1)-partite ones. Interestingly, these methods, on
the level of Bell inequalities, allow us to construct (n + 1)-
partite Bell inequalities from n-partite ones; our computations
show that this construction frequently produces tight Bell
inequalities.

A. The four-qubit UPBs

Recall that in the case of two qubits, there are no UPBs.
Moving to three qubits, it is known that there is only one class
of UPBs [18], which we have found in example (18) to give
rise to the GYNI3 inequality, the only tight and nontrivial Bell
inequality with no quantum violation in the tripartite scenario
with two settings and two outcomes [10]. Thus, the first still
unexplored case to be analyzed is the four-qubit case.

In order to search for four-qubit UPBs, we used a brute-
force numerical procedure. In this way, we found many new
examples of UPBs, some of which allowed us to construct
nontrivial tight Bell inequalities. In particular, we have found
four-qubit UPBs providing tight Bell inequalities with two
settings per site which are inequivalent to GYNI4 (34). We
have also obtained some Bell inequalities with two and three
observables at some sites.

In Table I, we have collected some of these UPBs. Table II
shows the corresponding Bell inequalities and their maximal

violations by NC, as computed by linear programming.
The first nine Bell inequalities are tight. For the sake of
completeness, we also present a four-qubit UPB, denoted
U10, leading to a nontight Bell inequality. Notice that U10 =
{|0〉 ⊗ UShifts,|1〉 ⊗ UShifts}, i.e., it is just a tensor product of
the standard basis in C2 and the three-qubit Shifts UPB (5),
which implies that the associated Bell inequality has only one
observable at the first site. In Tables I and II, by (i,j,k,l) we
denote the number of bases or observables per site (recall that
we always have two outcomes) and by {|0〉,|1〉}, {|e〉,|e〉}, and
{|f 〉,|f 〉} we denote the independent local bases (in the sense
of the property (P)).

B. Going to more parties

Here we discuss some methods for extending n-partite Bell
inequalities, which are assumed to be associated to n-qubit
UPBs, to (n + 1)-partite ones.

Method 1. Let Ui (i = 1,2) be two, in general, different,
n-partite UPBs. Consider then the (n + 1)-qubit set of vectors
{U1 ⊗ |0〉,U2 ⊗ |1〉}. One immediately checks that the latter is
an (n + 1)-partite UPB and, therefore, allows one to construct
a nontrivial (n + 1)-partite Bell inequality with no quantum
violation. Nevertheless, the additional party has only one
measurement at his choice, and, moreover, the obtained Bell
inequality does not have to be tight, even if the ones associated
to Ui were tight. A particular example of such a UPB (the
associated Bell inequality is not tight) is U10 (see Table I).

In order to obtain a tight Bell inequality in this way, one
has to replace one of the UPBs, say U2, with a full basis B (say
the standard one) in (C2)⊗n. Then, the set

{U1 ⊗ |0〉,B ⊗ |1〉} (42)

is again a UPB; however, this time it leads to a tight Bell
inequality, provided that the Bell inequality associated to U1

is tight. This is because, on the level of Bell inequalities,
such a construction corresponds to the lifting to one more
observer studied in Ref. [19]. It is proven there that such a
procedure always gives a tight Bell inequality if the initial one
was tight. Consequently, if the UPB U1 corresponds to a tight
n-partite Bell inequality, the UPB (42) always leads to a tight
(n + 1)-partite Bell inequality.

A simple example of a Bell inequality constructed in this
way is the one associated to the UPB U4 (see Table II).
A direct check allows one to conclude that U4 = {UShifts ⊗
|0〉,B ⊗ |1〉}, where UShifts is given by Eq. (5), while B denotes
the standard basis in (C2)⊗3. Notice that with the aid of the
nonsignalling conditions (7), the associated Bell inequality can
be rewritten as

p(0000|0000) + p(1100|0110) + p(0110|1010)

+p(1010|1100) � pA4 (0|0), (43)

where pA4 (0|0) = ∑
a1,a2,a3

p(a1a2a30|x1x2x30) with arbitrary
binary xi (i = 1,2,3).

This method, however, produces a Bell inequality with a
single observable at the new site. Now we describe a method
which allows us to add an observer with more observables at
his or her choice.
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TABLE I. New four-qubit UPBs Ui (i = 1, . . . ,9) leading to tight nontrivial Bell inequalities with no quantum violation. Notice that U4

takes the simple form {UShifts ⊗ |0〉,B ⊗ |1〉} with B denoting the standard basis in (C2)⊗3. For completeness we also present a UPB U10 for
which the associated Bell inequality is not tight. The first column contains the number of independent bases per site. One can check by hand
that each Ui is a set of mutually orthogonal product vectors and that there is no other product vector orthogonal to all of them.

No. bases per site UPB

(2,2,2,2) U1 = {|0000〉,|1ee0〉,|ee10〉,|e1ee〉,|0001〉,|01e1〉,|1e0e〉,|0011〉,|1011〉}
(2,2,2,2) U2 = {|0000〉,|ee1e〉,|e1e1〉,|e11e〉,|eee1〉,|1eee〉,|10ee〉,|e10e〉,|e1e0〉},
(2,2,2,2) U3 = {|0000〉,|1ee0〉,|ee10〉,|e1ee〉,|0001〉,|0011〉,|1001〉,|1011〉,|010e〉,|11e1〉}
(2,2,2,1)

U4 = {|0000〉,|1ee0〉,|e1e10〉,|ee10〉,|0001〉,|0011〉,|0101〉,|0111〉,|1001〉,|1011〉,|1101〉,|1111〉}
= {UShifts ⊗ |0〉,B ⊗ |1〉},

(2,2,2,3) U5 = {|0000〉,|1eee〉,|e1ef 〉,|0ee1〉,|101e〉,|1e0f 〉,|ee1e〉},
(2,2,2,3) U6 = {|0000〉,|1eee〉,|ee1e〉,|e1ef 〉,|0ee1〉,|1eee〉,|e1ee〉,|ee1f 〉},
(2,2,2,3) U7 = {|0000〉,|eee1〉,|e11e〉,|e1ef 〉,|1000〉,|e001〉,|e10e〉,|e010〉,|e011〉,|e11e〉,|ee1f 〉,|e10e〉},
(2,2,3,3) U8 = {|0000〉,|e1ee〉,|1eef 〉,|eef 1〉,|e01f 〉,|01f e〉}
(2,2,3,3) U9 = {|0000〉,|1eee〉,|ee1f 〉,|10ef 〉,|0ef 1〉,|01f f 〉,|1e0f 〉,|1eee〉,|1eef 〉,|1eef 〉,|11ef 〉,|ee1f 〉}
(1,2,2,2) U10 = {|0000〉,|01ee〉,|0e1e〉,|0ee1〉,|1000〉,|11ee〉,|1e1e〉,|1ee1〉} = {|0〉 ⊗ UShifts,|1〉 ⊗ UShifts}

Method 2. Another simple and general method follows from
Lemmas 1 and 2 and resembles the methods already used in
the literature (see, e.g., Ref. [24]).

Before we make it explicit, let us recall that if two given
n-qubit UPBs Ui (i = 1,2) obey the assumptions of Lemma
2, then the set of vectors (40) forms an (n + 1)-qubit UPB.
On the level of Bell inequalities, this procedure allows us to
construct an (n + 1)-partite Bell inequality from two n-partite
ones associated to Ui(i = 1,2). One way to chose U2 is to start
from a UPB U1 and then apply Lemma 1. Moreover, as we will
see below, it is always possible to do this in such a way that U1

and U2 satisfy the assumptions of Lemma 2. These two facts

give a quite general method of extending nontrivial n-partite
Bell inequalities with no quantum violation to (n + 1)-partite
ones. A particular example of such an approach is the recursive
method relating GYNIn+1 to GYNIn described in the previous
section. Here, we show another simple way to obtain a UPB
U2 from a given UPB U1 such that (39) holds and illustrate it
with examples of five-partite tight Bell inequalities.

Consider an n-qubit UPB U1 which has k different bases
S (i)

j (j = 1, . . . ,k) at the ith site. By replacing, at the site i,
all local vectors by their orthogonal complements, we turn
U1 into another set of vectors U2, which, due to Lemma 1,
is also a UPB. Then, we divide both UPBs Ui (i = 1,2) into

TABLE II. Tight four-partite Bell inequalities with no quantum violation (third column) constructed from the UPBs Ui (i = 1, . . . ,9) given
in Table I. The fourth one is a lifting of GYNI3 (18) (see Sec. V B). For completeness, we also present a nontight Bell inequality, constructed
from the UPB U10. Noticeably, in this case, the first observer has only one observable at his disposal. The second column contains the number
of observables per site. Neither of the inequalities is equivalent to the GYNI’s Bell inequalities (34). Moreover, all have the same maximal NC
violation of 4/3.

UPB Scenario Bell inequality

U1 (2,2,2,2) p(0000|0000) + p(1010|0110) + p(0110|1100) + p(1100|1011) + p(0001|0000) + p(0111|0010)
+ p(1101|0101) + p(0011|0000) + p(1011|0000) � 1

U2 (2,2,2,3) p(0000|0000) + p(1010|1101) + p(0101|1010) + p(1111|1001) + p(0011|1110) + p(1110|0111)
+ p(1001|0011) + p(1101|1001) + p(0100|1010) � 1

U3 (2,2,2,2) p(0000|0000) + p(1010|0110) + p(0110|1100) + p(1100|1011) + p(0001|0000) + p(0011|0000)
+ p(1011|0000) + p(1001|0000) + p(0101|0001) + p(1111|0010) � 1

U4 (2,2,2,2) p(0000|0000) + p(1100|0110) + p(0110|1010) + p(1010|1100) + p(1101|0000) + p(0001|0000)
+ p(0011|0000) + p(0101|0000) + p(0111|0000) + p(1001|0000) + p(1011|0000) + p(1111|0000) � 1

U5 (2,2,2,3) p(0000|0000) + p(1000|0111) + p(0110|1012) + p(0001|0110) + p(1011|0001) + p(1101|0102)
+ p(1110|1101) � 1

U6 (2,2,2,3) p(0000|0000) + p(1010|0111) + p(0111|1101) + p(1100|1012) + p(0011|0110) + p(1011|0111)
+ p(0100|1011) + p(1111|1102) � 1

U7 (2,2,2,3) p(0000|0000) + p(1001|1110) + p(0110|1001) + p(1111|1012) + p(1000|0000) + p(0001|1000)
+ p(0101|1001) + p(0010|1000) + p(0011|1000) + p(0111|1001) + p(1110|1102) + p(0100|1001) � 1

U8 (2,2,3,3) p(0000|0000) + p(0101|1011) + p(1010|0112) + p(1111|1120) + p(0011|1002) + p(0100|0021) � 1

U9 (2,2,3,3) p(0000|0000) + p(1000|0111) + p(0110|1102) + p(1011|0012) + p(0001|0120) + p(0111|0022)
+ p(1100|0102) + p(1001|0111) + p(1101|0112) + p(1010|0112) + p(1111|0012) + p(1110|1102) � 1

U10 (1,2,2,2) p(0000|0000) + p(0110|0011) + p(0011|0101) + p(0101|0110) + p(1000|0000) + p(1101|0011)
+ p(1011|0101) + p(1101|0110) � 1
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TABLE III. Five-partite Bell inequalities obtained by applying our method to some of the UPB listed in Table I. The first column contains
the UPB used to construct the Bell inequality together with the number of party to which we applied our method (in the last case we put the fifth
party at the end), while the second column contains the number of observables per site. Our calculations have shown all these Bell inequalities
to be tight.

UPB Scenario Bell inequality

(2,U1) (2,2,2,2,2) p(00000|00000) + p(00001|00000) + p(00011|00000) + p(01011|00000) + p(00111|00010) + p(01100|01011)
+ p(01101|10101) + p(01010|10110) + p(00110|11100) + p(10100|00000) + p(10101|00000)
+ p(10111|00000) + p(11111|00000) + p(10011|00010) + p(11000|01011) + p(11001|10101)
+ p(11110|10110) + p(10010|11100) � 1

(1,U6) (2,2,2,2,3) p(00000|00000) + p(11000|00000) + p(00011|00110) + p(11011|00110) + p(01010|00111) + p(10010|00111)
+ p(01011|00111) + p(10011|00111) + p(00111|11101) + p(11111|11101) + p(00100|11011)
+ p(11100|11011)p(01100|11012) + p(10100|11012) + p(01111|11102) + p(10111|11102) � 1

(4,U8) (2,2,3,3,3) p(00000|00000) + p(11110|11200) + p(01010|10111) + p(01000|00211) + p(10100|01122)
+ p(00110|10022)p(00011|00000) + p(11101|11200) + p(01001|10111) + p(01011|00211) + p(10111|01122)
+ p(00101|10022) � 1

k subsets U
(j )
i j = 1, . . . ,k, each having at the ith site vector

from S (i)
j . One immediately sees that the sets U

(j )
1 and U

(j )
2

(j = 1, . . . ,k) obey the assumptions of Lemma 2. Therefore,
the vectors (40) form an (n + 1)-partite UPB.

This method translates to Bell inequalities and allows one
to obtain an (n + 1)-partite Bell inequality from an n-partite
one of the form (17). More importantly, at least in some cases,
this procedure preserves tightness. We applied it to some of the
Bell inequalities presented in Table II and the resulting tight
Bell inequalities are collected in Table III.

VI. CONCLUSION

Let us briefly summarize the obtained results and outline
possible directions for further research.

In this work, we have investigated in more detail the
relation between UPBs and nontrivial Bell inequalities with
no quantum violation which had been discovered recently in
Ref. [13]. We have restricted ourselves to qubit Hilbert spaces,
since, in this case, the sets of product vectors always have
the property (P). First, we have proven that a Bell inequality
associated to any n-qubit set of orthogonal product vectors
S that can be completed to a full basis is trivial in the sense
that it cannot be violated by any nonsignalling correlations.
This result, on the one hand, significantly supplements the
characterization done in Ref. [13]. On the other hand, it adds
additional weight to the significance of the concept of UPB in
our construction. The only nontrivial Bell inequalities that can
be obtained by our method from sets of product vectors are
precisely those associated to UPBs or sets of vectors that can
be extended only to UPBs.

Second, and more importantly, we have provided new
examples of tight Bell inequalities with no quantum violation
constructed from UPBs. So far, the only known examples have
been the GYNI’s Bell inequalities [10]; whether UPBs can be
used for the construction of tight Bell inequalities remained
an open question. Here we have investigated the simplest
nontrivial case (four qubits) and found several examples.
Finally, we have presented methods allowing one to extend
an n-qubit UPB to an (n + 1)-qubit one. On the level of Bell
inequalities, these methods enable to lift an n-partite Bell

inequality associated to a UPB to an (n + 1)-partite one, and
in some cases they preserve tightness.

Third, we have proven tightness of the GYNI’s Bell in-
equalities for an arbitrary odd number of parties. Nevertheless,
many questions remain unanswered. A similar analysis is
missing in the case when the local dimensions are higher
than two. As already stated in Ref. [13], Theorems 1 and
3 remain valid in arbitrary Hilbert spaces. It is, however,
unclear if, in higher-dimensional Hilbert spaces, the only sets
of mutually orthogonal product vectors that lead to nontrivial
Bell inequalities with no quantum violation are UPBs or those
that can be completed only to UPBs.

More importantly, it would be of interest to understand
when our construction leads to tight Bell inequalities. Al-
though we already have many examples of such inequalities,
there still exist UPBs that do not correspond to tight inequali-
ties. It is unclear which property of a UPB guarantees the tight-
ness of the associated Bell inequality. Since the only known
examples of tight Bell inequalities with no quantum violation
are those obtained from many-qubit UPBs, it is reasonable to
hypothesize that all such Bell inequalities arise from UPBs.
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APPENDIX: TIGHTNESS OF GYNI’S BELL INEQUALITIES

Before turning to the proof of Theorem 4, we need some
preparation.

In order to study whether a given Bell inequality defines a
facet of the polytope of CC, it needs to be determined which
of the local deterministic points (which we also call strategies;
they are the extremal points of the polytope of CC) saturate the
Bell inequality, i.e., which of them satisfy the inequality with
equality. In the Bell scenario with n parties, one input bit per
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party and one output bit per party, the possible local strategies
are as follows:

(i) The constant strategy outputting 0, independently of
the input. By abuse of notation, we write 0 for this strategy.

(ii) Similarly, the constant strategy always outputting 1, for
which we write 1.

(iii) The “identity” strategy, under which the output equals
the input. We denote this strategy by i.

(iv) The “flip” strategy, under which the output equals the
negation of the input. We denote this strategy by f .

An n-partite strategy then is defined by a string s =
[s1 . . . sn], with sj ∈ {0,1,i,f }. In order to clarify notation,
we use square brackets to emphasize that the string denotes a
strategy. For example,

[i0f ] (A1)

stands for the strategy where the first party outputs their input,
the second party is always 0, and the third party is the negation
of their input. Here, and in the following, we always regard
the index j as defined modulo n, so sj+n = sj .

While i and f are functions which map a bit to a bit, we
may think of 0 also as a function or, alternatively, as the value
of a bit and likewise for 1. It will be clear from the context
which point of view is required.

Given a strategy s such that sk ∈ {0,1} for some k, we define
its evaluation, denoted by s′ = [s ′

1 . . . s ′
n], by setting s ′

k = sk

and recursively taking s ′
j = sj (s ′

j−1), starting at j = k + 1.
Here, sj (s ′

j−1) is the bit obtained by applying the function sj

to the bit s ′
j−1,. If there are several k for which sk ∈ {0,1}, then

the evaluation does not depend on the choice of k. Evaluation
assigns to any strategy containing at least one numerical entry
a strategy consisting only of numerical entries. For example,
[i0f ]′ = [101].

Lemma 3. A strategy s saturates GYNIn for odd n if, and
only if,

(1) sk ∈ {0,1} for some k, and the evaluation s′ has even
parity, or

(2) sk ∈ {i,f } for all k, and the number of f ’s in s is even.
Proof. By definition of GYNIn, the strategy s saturates

whenever there is a string of settings x having even parity
(31) such that xj+1 = sj (xj ). When sk ∈ {0,1} for some k,
this means that xk+1 = sk , which can then be generalized to
xj+1 = s ′

j for all j using xj+1 = sj (xj ) and the definition of
s′. Therefore, x has even parity if and only if s′ does.

If, on the other hand, sk ∈ {i,f } for all k, we then can use
the equation

x1 = sn(xn) = (sn ◦ sn−1)(xn−1) = . . . = (sn ◦ . . . ◦ s1)(x1)

to see that sn ◦ . . . s1 = i, which implies that the number of
f ’s in s is even. Conversely, if the number of f ’s is even, one
can take x1 = 0 and recursively define xj+1 = sj (xj ), which
will give settings x satisfying xj+1 = sj (xj ) for all j . If the
parity of x is odd, then flipping all xj will do the job.

We are now in a position to prove Theorem 4. Assuming n

odd, we need to prove that the set of strategies which saturate
GYNIn has a linear hull of codimension 1 within the linear
hull of the polytope of CC. To achieve this, we will show
that every strategy can be written as a linear combination
of those strategies saturating GYNIn together with the single

nonsaturating strategy

[11 . . . 11]. (A2)

To ease the notation, we call two (nonsaturating) strategies x

and y congruent, written as x ∼= y, if their difference x − y

is a linear combination of saturating strategies. Our goal is to
show that all nonsaturating strategies are congruent to (A2).

The main tool in the proof is the single-party relation

[0] + [1] = [i] + [f ], (A3)

which holds since both the mixture 1
2 ([0] + [1]) and the

mixture 1
2 ([i] + [f ]) represent pure noise, which is the local

strategy which outputs a random bit independent of the setting.
This relation can be used to express every strategy as a linear
combination of strategies which do not involve f . For example,

[i0f ] = [i00] + [i01] − [i0i].

Thanks to the relation (A3), it is enough to prove the desired
congruence only for those nonsaturating strategies which do
not contain f . Every such strategy contains at least one 0 or
1; for, if not, then it would necessarily be equal to [i . . . i],
which is saturating.

We prove the congruence to (A2) in three steps:
Claim 1. Every nonsaturating strategy containing some 0

or 1 is congruent to its evaluation. In particular, it is congruent
to a constant nonsaturating strategy.

Subproof. Equation (A3) implies

[si0t] + [sf 0t] = [s00t] + [s10t],
(A4)

[si1t] + [sf 1t] = [s11t] + [s01t],

for all strings s,t ∈ {0,1,i,f }∗, where here and below the
notation X∗ for a set X refers to the set of strings of any
length over X. For both equations, the left-hand side contains
exactly one saturating term and, likewise, the right-hand side.
Therefore, the nonsaturating term on the left-hand side is
congruent to the nonsaturating term on the right-hand side,
in which the number of occurrences of i or f is less by 1.
These congruences can be applied until no further occurrences
of i or f remain. The resulting constant strategy turns out to
be precisely the evaluation of the strategy we started with.

In the following two steps, we will routinely make use of
this congruence.

Claim 2. Every constant nonsaturating strategy is congruent
to one of the form

[0 . . . 01 . . . 10 . . . 0] (A5)

with an odd number of 1’s.
Subproof. If s ∈ {0,1}∗ is any string of odd length with an

even number of 1’s, then there is a congruence

[10s] ∼= [11s], (A6)

where s stands for s with all bits flipped. We show this by
writing s = [t0] or s = [t1] and considering the two cases

[10t0] ∼= [11t1], [10t1] ∼= [11t0] (A7)

separately. In the first case, t has an even number of 1’s and
an even number of 0’s. Let u ∈ {i,f }n−2 be such that [10u]′ =
[10t0]; this u contains an even number of f ’s. Then [ff u]
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saturates, and we can apply (A3) to expand

[ff u] = [00u] + [01u] + [10u] + [11u]

−[0iu] − [1iu] − [i0u] − [i1u] + [iiu]. (A8)

By the assumption [10u]′ = [10t0], we have

[00u]′ = [00t0], [01u]′ = [01t1],

[10u]′ = [10t0], [11u]′ = [11t1],

[0iu]′ = [00t0], [1iu]′ = [11t1],

[i0u]′ = [00t0], [i1u]′ = [11t1].

Since t contains an even number of 1’s and an even number of
0’s, the only nonsaturating strategies on the right-hand sides
of these equations are [10t0] and [11t1]. Since each of the first
eight terms on the right-hand side of (A8) is congruent to its
evaluation, we obtain

0 ∼= 0 + 0 + [10t0] + [11t1]

− 0 − [11t1] − 0 − [11t1] + 0,

which proves [10t0] ∼= [11t1], as claimed. The second case of
(A7) works similarly, on choosing u such that [10u]′ = [10t1].
Then u contains an odd number of f ’s, so [if u] is saturating.
Using the expansion

[if u] = [00u] + [01u] + [10u] + [11u]

−[0iu] − [1iu] − [f 0u] − [f 1u] + [f iu] (A9)

and applying reasoning analogous to the previous case shows
[10t1] ∼= [11t0].

Due to cyclic symmetry, (A6) actually implies

[s10t] ∼= [s11t] ∀s,t ∈ {0,1}∗.
For any r,u ∈ {0,1}∗ of appropriate length and number of 1’s,
applying this transformation yields the congruences

[r100u] ∼= [r111u] ∼= [r010u],

[r101u] ∼= [r110u] ∼= [r011u].

In both cases, the right-hand side is equal to the left-hand
side, except for one 1, which has been transported one position
to the right. Repeated application of these congruences
transforms any constant nonsaturating strategy into one of the
form (A5).

Claim 3. Every strategy of the form (A5) is congruent to
the strategy [1 . . . 1].

Subproof. To see this, we consider the saturating strategy

[i . . . if i . . . if i . . . i],

where the number of i’s in the middle is assumed to be one
less than the number of 1’s in (A5). Expanding the two f ’s by
(A3) and keeping only the nonsaturating terms gives

0 ∼= [i . . . i1i . . . i0i . . . 1] + [i . . . i1i . . . i1i . . . i]

− [i . . . i1i . . . iii . . . i] − [i . . . iii . . . i1i . . . i].

The first term evaluates to Eq. (A5), while the others evaluate
to 1 . . . 1, thereby proving the desired congruence.

In conclusion, any nonsaturating strategy can be written as
a linear combination of saturating strategies and [1 . . . 1] by
first expanding all f ’s by (A3) and then applying steps 1 to 3
to each of the resulting terms.
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