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For the last 20 years, the question of what are the fundamental capabilities of quantum precision measurements
has sparked a lively debate throughout the scientific community. Typically, the ultimate limits in quantum
metrology are associated with the notion of the Heisenberg limit expressed in terms of the physical resources
used in the measurement procedure. Over the years, a variety of different physical resources were introduced,
leading to a confusion about the meaning of the Heisenberg limit. Here, we review the mainstream definitions of
the relevant resources and introduce the universal resource count, that is, the expectation value of the generator
(above its ground state) of translations in the parameter we wish to estimate, that applies to all measurement
strategies. This leads to the ultimate formulation of the Heisenberg limit for quantum metrology. We prove that
this limit holds for the generators of translations with an upper-bounded spectrum.
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I. INTRODUCTION

Quantum metrology, or quantum parameter estimation
theory, is an important branch of science that has received a
lot of attention in recent years [1–10]. It studies high-precision
measurements of physical parameters, such as phase, based
on systems and physical evolutions that are governed by
the principles of quantum mechanics. The main theoretical
objective of this field is to establish the ultimate physical
limits on the amount of information we can gain from a
measurement [1–3,5,6]. From an experimental perspective,
quantum-enhanced metrology promises many advances in
science and technology, since an optimally designed quantum
measurement procedure outperforms any classical procedure
[11,12]. Furthermore, improved measurement techniques fre-
quently lead not only to technological advancement, but also
to a fundamentally deeper understanding of nature. The main
figure of merit in the field of quantum metrology for both
theorists and experimentalists is the precision with which the
value of an unknown parameter can be estimated.

From this perspective, one of the most prominent concepts
in quantum metrology is the Fisher information and the
quantum Cramér-Rao bound. The Fisher information F (φ) is
a quantity that measures the amount of information about the
parameter φ we wish to estimate revealed by the measurement
procedure. Given the Fisher information, we can bound the
minimal value of mean square error in the parameter with
the quantum Cramér-Rao bound. There exist two important
regimes of the quantum Cramér-Rao bound, the so-called
shot-noise limit (SNL) that scales as 1/

√
N and the Heisenberg

limit that scales as 1/N , where N is the resource count.
The SNL is a limit attained by purely classical strategies
(the term itself has its origin in quantum optics, where the
detection of quanta of light is manifested as “shots” in a photon
counter operating in Geiger mode [10]). The Heisenberg limit
is imposed by the laws of quantum mechanics, namely, the
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generalized Heisenberg uncertainty relation, and for many
years it was considered optimal and unbreakable. However,
due to the unclear nature of the resource count, the optimality
of the Heisenberg limit has recently been questioned [13–15].

A quantum measurement procedure can employ physical
resources in a number of quantum states interacting with the
measured system via various interaction mechanisms (e.g.,
linear, nonlinear, or exponential) and operation strategies
(either parallel or sequential). Therefore, in the literature a
variety of meanings and definitions have been associated with
N . In order to meaningfully compare different quantum and
classical measurement procedures, it is essential to determine
the relevant resources. The most versatile definition identifies
N with the number of times that the measured system is
sampled. Although remarkably useful, this definition is not
universal (e.g., when the number of quantum systems used
in the measurement procedure is ill defined). In this paper,
we introduce a universal definition of the physical resources
which leads to the ultimate and optimal formulation of the
Heisenberg limit for quantum metrology.

The paper is organized as follows. In Sec. II, we review
various formulations of the Heisenberg limit for a fixed and
limited amount of resources used in measurement procedures.
In Sec. III, we explain the concept of the query complexity,
that is, the number of times the measured system is sampled,
and demonstrate how it applies to a variety of well-known
measurement procedures. In Sec. IV, we introduce a universal
resource count for quantum metrology which leads to a new
formulation of the Heisenberg limit. Finally, in Sec. V, we give
some concluding remarks.

II. VARIOUS FORMULATIONS OF THE
HEISENBERG LIMIT

In this section, we present a brief review of two definitions
(and their interpretations) that are commonly associated
with the term ”Heisenberg limit” [6,10,16]. Not all of the
interpretations are widely accepted. However, in our opinion
this review properly reflects the present status quo (i.e., the
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present confusion about the meaning) of the term “Heisenberg
limit” in quantum metrology. What is the so-called Heisenberg
limit or Heisenberg scaling?

In relation to the fundamental limitations of quantum
metrology at least two interesting questions that are relevant
for this field can be posed:

(1) Given a fixed amount of resources, what is the best
possible precision achievable in principle, that is, the precision
that we aspire to reach?

(2) (Given a physical setup), what is the precision that is
actually obtained?

The first question is usually answered by an appropriate
expression of the quantum Cramér-Rao bound leading to
the Heisenberg scaling. The problem of attainability of
the quantum Cramér-Rao bound (and equivalently of the
Heisenberg limit itself) is addressed by the second question.
Given a physical setup, that is, a physical interaction between
the probe and the sampled system, we minimize the error in a
value of the parameter by employing optimal probe states and
measurement observables. The mean-square error in parameter
φ is then given by the error propagation formula:

�φ = �X

|d〈X〉/dφ| , (1)

where the average and standard deviation of an observable X

are calculated in an optimal state [8]. The derivative accounts
for a possible change in units between the average value of the
observable X and parameter φ. In this article, we are mainly
concerned with finding an answer to the first question.

For many years, the notion of the Heisenberg limit 1/N

has been linked with the best possible precision achievable in
principle. This association was widely accepted and uncontro-
versial. The recent developments in quantum metrology seem
to refute this claim, mainly as a consequence of the unclear
nature of the resource count N [13–15]. It is clear that the
measurement procedure offering an arbitrarily high precision
is physically unfeasible. In fact, it is possible to estimate
the value of a parameter with perfect resolution only when
there is some prior information available about the parameter,
that is, when φ is a priori limited to a particular range of
values [17]. In order to estimate the value of a truly continuous
physical quantity distributed randomly with an unbounded
precision it is necessary to employ a probe with either an
infinite number of constituents (e.g., a probe with an infinite
number of photons) or an unbounded energy (e.g., an idealized
continuous variable). Naturally, this approach is unphysical.
In computer science the unbounded precision in representing
the value of a continuous quantity is associated with an analog
computer. It is well known that the idealized analog computers
are capable of solving problems that are intractable on digital
computers, e.g., the NP-hard problems. The concept of the
unbounded precision can also be linked with a digital machine
(i.e., a Turing machine with an infinite memory capacity),
wherein one can access infinitely many information carries
(i.e., the classical or quantum bits) or execute the computation
for infinitely many time steps. All those scenarios are clearly
unphysical by being idealizations of a real-world phenomena.
Both in physics and computer science the unbounded precision
necessarily leads to the violations of elementary laws.

Historically the term “Heisenberg limit” was introduced
by Holland and Burnett [16], who referred to the number-
phase uncertainty relation in Heitler [18]. Hence, the very
first formulation (recognized mainly by physicists) identifies
N with the number of physical systems in the probe, e.g.,
(average) photon number, which then can be easily related to
the (average) energy of the probe. This formulation is clearly
associated with the Heisenberg uncertainty relation and leads
us to the first general definition of the Heisenberg limit.

HL 1. The uncertainty in the value of an unknown parameter
estimated with a single-shot Heisenberg-limited measurement
procedure scales as

�φ � 1

2�H , (2)

where �H is the standard deviation of the operator H
that generates the translations of the probe state with the
parameter φ.

To be more specific, this definition originates from the
Mandelstam-Tamm type uncertainty relations �φ�H � 1/2
that are a manifestation of the generalized Heisenberg uncer-
tainty relation with h̄ = 1 [6,19,20]. For most of the measure-
ment procedures, the standard deviation �H can be easily
expressed in terms of a variety of resources, including the
number of quantum systems in the probe. As a consequence,
the most well-known definition of the Heisenberg limit takes
the following form.

HL 2. The uncertainty in the value of an unknown parameter
estimated with a single-shot Heisenberg-limited measurement
procedure scales as

�φ � 1

N
, (3)

where N denotes the number (i.e., amount) of resources,
typically, the (average) number of physical systems (e.g.,
photons) in the probe.

Taking the (average) number of quantum systems in the
probe as the fundamental resource count is appropriate and
intuitively appealing in many important and practical measure-
ment procedures. However, it has been clearly demonstrated
that this expression of the Heisenberg limit is not universally
valid [13,14,21].

Given the abundance of different quantum and classical
measurement procedures, a variety of resources were intro-
duced, such as the already-mentioned number of quantum
systems in the probe, the average energy of the probe, or
the measurement time [10]. In the spirit of Landauer’s famous
conviction that information is inseparably connected with the
underlying physical world, yet another formulation of the
Heisenberg limit associates N with the query complexity of
a quantum network representing the measurement procedure
[8,9]. From the “physical perspective,” query complexity is
equivalent to the number of fundamental physical interactions
occurring between the probe and the sampled system. In most
situations, the query complexity can be easily related to the
number of physical systems in the probe, thus encompassing
the earlier formulation. However, it is the formulation of the
Heisenberg limit via the query complexity and not the number
of quantum systems in the probe that properly captures the
fundamental precision of most measurement procedures.
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In the following section, we show that the Heisenberg limit
is optimal with respect to the relevant resource count. To this
end, we introduce the most general measurement procedure
and then reduce it to a number of important measurement
procedures, analyzing their performance with respect to the
relevant resource count identified with the query complexity
of a quantum network.

III. QUERY COMPLEXITY AS THE RESOURCE COUNT

Let us briefly recall the structure of the most general
measurement procedure (see Fig. 1). Any estimation procedure
can be divided into three basic steps:

(1) A probe system (sensitive to the parameter we wish to
estimate) is prepared in an initial quantum state ρ(0). The probe
consists of a fixed and limited number of physical systems that
can be either well defined or known on average.

(2) The state of the probe system is evolved to a state
ρ(φ) by U (φ) = exp(−iφH). The Hermitian operator H is
the generator of translations in φ, the parameter we wish
to estimate. Physically, this corresponds to the interaction
between the probe system and the sampled system.

(3) The probe system is subjected to a generalized mea-
surement M , described by a positive operator valued measure
(POVM), and the value of φ is extrapolated using data
processing of the measurement results [10].

Note that in general, any process (including any quantum
estimation procedure) can be represented as an instance of a
quantum computation involving state preparation, evolution,
and measurement. Due to this universality, any estimation
procedure can be written as a quantum network. It is, therefore,
intuitively clear that the query complexity of quantum net-
works should offer a valuable insight into the inner workings
and the performance of measurement procedures based on
those networks.

Quantum networks arise naturally in the circuit model of
quantum computation. A quantum network can be represented
or intuitively understood as a series of geometric figures.
These figures consist of horizontal wires representing qubits
(or in general any quantum systems) and quantum gates. The
gates perform simple computational tasks on the information
carried by the quantum systems. Typically, a quantum network
involves many quantum systems and many quantum gates
(see Fig. 2). We represent a quantum gate as a function
f (x1, . . . ,xN ) with a fixed number of input parameters and
a fixed number of output parameters. Here, we employ a
special type of the quantum gate called a black box or a
quantum oracle. A black box is a unitary operator defined
by its action on quantum systems whose internal workings are
usually unknown. Crucially, a black box acts in a consistent

FIG. 1. (Color online) The general parameter estimation proce-
dure involving state preparation P , evolution U (φ), and generalized
measurement M with outcomes x, which produces a probability
distribution p(x|φ).

Q

I

NP

O

FIG. 2. An example of a quantum network consisting of single
(Q, P , O) and many-body (I , N ) quantum gates.

way on a well-defined set of quantum systems. As a result,
we can associate with any quantum network (acting on a
well-defined number of quantum systems) the concept of the
query complexity representing the number of times the black
box appears in this network. Mathematically, a black box
is a function than can be univariate or multivariate. When
the function is multivariate, e.g., a bivariate function of two
arguments, then a query to the black box must consist of
two input parameters. This reasoning extends to many-body
black-box operators that in the setting of quantum metrology
describe the basic interactions between the probe and the
sampled system.

Giovannetti, Lloyd, and Maccone were the first to show that
there exists a fundamental connection between the concept of
the query complexity and the field of quantum metrology [8].
The key insight of their result was that the precision of any
(nonentangling) measurement procedure should be given in
terms of the number of black-box interactions, that is, the
query complexity [8]. The versatility of this approach was also
emphasized by Braunstein, who advocated that the language of
black boxes (each introducing the same unknown parameter)
is general and can be applied to a rich class of measurement
strategies [22]. Similarly, van Dam et al. addressed the problem
of estimating the phase given N copies of the (black-box)
phase rotation gate [23]. The connection between the query
complexity and the precision in estimating the value of the
parameter was clarified and formalized for higher-order (or
many-body) generators of translations in the parameter [9].
While query complexity had been used before in the context
of quantum metrology [8], this paper is the first to analyze
the most general interaction that governs the evolution of the
probe system in this light.

Here, we focus on the query complexity of the quantum
network that governs the evolution stage of the measurement
procedure. Let us consider a completely general quantum
network that encompasses all possible measurement strategies.
The most general quantum evolution acting on the probe sys-
tem generated by the operator H is represented by the unitary
transformation U (φ), which can be graphically represented by

V0 O( ) V1 O( ) . . . O( ) VQ . (4)

This general interaction consists of Q applications of a black-
box operator O(φ) = exp(−iφH ) (where H is a positive Her-
mitian generator), interspersed with Q + 1 arbitrary unitary
gates Vj . The arbitrary unitary gates Vj together with ancillary
systems may be used to introduce adaptive (feed-forward)
strategies to the estimation procedure. For a general interaction
U (φ), we can use an argument by Giovannetti, Lloyd, and
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Maccone [8] to show that the generator of U (φ) is given by

H = i

(
∂U (φ)

∂φ

)
U †(φ) =

Q∑
j=1

Aj , (5)

where

Aj = iVQ O(φ) . . . Vj+1 O(φ) Vj

∂O(φ)

∂φ

× V
†
j O†(φ) V

†
j+1 . . . . . . O†(φ) V

†
Q. (6)

Therefore, the number of terms in the generator H is always
equal to the number of black-box operators appearing in the
quantum network, that is, Q. Also note that the spectrum of the
generator of a black-box operator O(φ) is unchanged by the
unitary operators Vj . As a result, the spectrum of the generator
H depends solely on the spectrum of the black-box operator. In
the following we reduce this most general quantum network
to specific quantum networks corresponding to some of the
most well-known measurement procedures and relate their
performance to the query complexity of underlying quantum
networks.

A. Linear measurement procedure

Let us begin with a standard (nonentangling) linear proce-
dure. Those kinds of procedures were described by Giovan-
netti, Lloyd, and Maccone [8]. In the linear case, the same
parameter φ is applied independently on N indistinguishable
quantum systems (see Fig. 3). Here, each fundamental physical
interaction of the form Oj (φ) = exp(−iφHj ), where j denotes
the quantum system, represents a single query. Consequently,
the joint generator of the evolution operator U (φ) can be
written as a sum of commuting generators Hj , that is,

HGLM =
N∑

j=1

Hj . (7)

Since the query complexity corresponds to the number of
terms in the joint generator HGLM , we have Q = N . The
fundamental precision then scales as [8]

�φ � c1

Q
= c1

N
= O(N−1), (8)

with c1 = 1/(λmax − λmin) with λmax and λmin being the
maximal and minimal eigenvalues of H . Typically, c1 is a
constant of order one. This bound is saturated by the following

FIG. 3. The evolution stage of a linear (nonentangling) mea-
surement procedure involving N = 3 quantum systems. The query
complexity is linear in the number of quantum systems, that is,
Q = N .

family of maximally entangled states of the probe [8]:

|ψ〉 = 1√
2

(|hmax〉 + eiϕ |hmin〉), (9)

where |hmax〉 = |λmax〉1 · · · |λmax〉N and |hmin〉 = |λmin〉1 · · ·
|λmin〉N are the eigenstates corresponding to the maximal
and minimal eigenvalues of H, respectively (with |λmax〉 and
|λmin〉 being the eigenstates corresponding to the maximal
and minimal eigenvalues of H , respectively). In the setting of
quantum interferometry, the formal analog of the maximally
entangled state given by Eq. (9) is a NOON state [7,24],

|ψ〉 = 1√
2

(|N,0〉 + |0,N〉), (10)

in which N photons are propagating along the first or the
second optical path of the Mach-Zehnder interferometer [10].

B. Many-body measurement procedure

The evolution operator U (φ) can also act on the constituents
of the probe in a nontrivial (nonlinear) way. In the case of the
so-called many-body or higher-order measurement procedures
introduced by Boixo, Flammia, Caves, and Geremia [14],
the fundamental interactions are applied to multiple quantum
systems. For example, a two-body joint generator HBFCG then
takes two quantum systems as an input,

HBFCG =
N∑

l=1

l∑
j=1

Hj ⊗ Hl, (11)

and is depicted in Fig. 4 (with N = 3) as a collection
of bivariate black-box operators Ojl(φ) = exp(−iφHj ⊗ Hl)
(where j and l label the quantum systems) that constitute
fundamental two-body interactions. In this case a single query
is necessarily applied to two input quantum systems. From this
it follows that given a probe consisting of N quantum systems
a total number of queries is the number of possible pairs from a
set of size N , that is, Q = (N

2 ) = 1
2N (N − 1). It is, therefore,

clear that the number of queries Q is not always identical to the
number of physical systems N in the probe. The fundamental
precision of a two-body measurement procedure expressed in
terms of the query complexity is given by

�φ � c2

Q
= c2

(
N

2

)−1

= O(N−2), (12)

where c2 = 1/(λ2
max − λ2

min), with λmax and λmin being the
maximal and minimal eigenvalues of H [14]. Typically, c2

FIG. 4. The evolution stage of a two-body (entangling) mea-
surement procedure involving N = 3 quantum systems. The query
complexity scales quadratically with the number of quantum systems,
that is, Q = 1

2 N (N − 1).
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is a constant of order one. Note that the error in φ is linear
in the query complexity Q. At the same time, Q has a
superlinear scaling with N attributed to the entangling power
that the evolution operator has over the constituents of the
probe. This approach naturally extends to generators of any
degree k � N/2. A k-body measurement procedure offers the
following scaling [14]:

�φ � ck

Q
= ck

(
N

k

)−1

= O(N−k), (13)

where ck = 1/(λk
max − λk

min). This bound is also saturated by
the family of maximally entangled state of the probe given by
Eq. (9).

C. Exponential measurement procedure

The finite number of quantum systems in the probe imposes
restrictions on the dimensionality of the probe’s Hilbert space.
By exploiting the whole Hilbert space, Roy and Braunstein
introduced the exponential measurement procedure [21]. In
Fig. 5, we present this procedure translated to the language
of the query complexity. Here, the query complexity scales
exponentially with the number of quantum systems, that is,
Q = 2N − 1. The fundamental precision of the exponential
measurement procedure expressed in terms of the query
complexity is given by

�φ � ce

Q
= O(2−N ), (14)

where ce is a constant of order one [21]. Interestingly, this
bound is saturated by separable states due to the fact that all
necessary entanglement is being generated at the evolution
stage of the measurement procedure.

Kitaev’s famous phase estimation algorithm on discrete
quantum systems, e.g., qubits, is another example of a
measurement procedure which offers precision that scales
exponentially with the number of employed qubits [25,26].
However, as in the previous case, this procedure requires an
exponential number of fundamental unitary evolution gates,
that is, black boxes. As a result, the precision is again bounded
by Eq. (14).

We emphasize that the bounds expressed in terms of the
number of queries Q are saturated by the appropriate optimal
states, that is,

�φ � 1

Q
, (15)

FIG. 5. The evolution stage of an exponential (highly entangling)
measurement procedure involving N = 3 quantum systems. The
query complexity scales exponentially with the number of quantum
systems, that is, Q = 2N − 1.

for all measurement procedure with well-defined Q. There-
fore, the relevant resource count can be identified with the
query complexity offering the linear scaling of the root-mean-
square error in φ. This indicates that the query complexity may
be considered a good resource count. However, does this mean
that the query complexity is the proper physical resource count
for quantum metrology? We give the answer to this question
in the next section.

D. Query complexity and the shot-noise limit

First, however, we need to remark that the concept of the
query complexity is much more natural for quantum-enhanced
metrology and generally does not apply to the classically
limited procedures. The main reason for this is the problematic
nature of the SNL itself.

In the case of a linear strategy, the shot-noise-limited
(classical) measurement procedure consists of N independent
measurement repetitions, each involving a single black-box
interaction offering the following scaling:

�φ � c1√
Q

= c1√
N

, (16)

as prescribed by the quantum Cramér-Rao bound. The same
scaling is found by calculating the standard deviation of the
generator H in the separable state of N quantum systems,

that is, �H =
√∑N

j=1 �2Hj = c1

√
N = c1

√
Q. However,

these approaches fail in the case of many-body (nonlinear)
measurement strategies. For example, the shot-noise-limited
k-body measurement procedure can be defined (in analogy
to the linear case) as N independent measurement repetitions,
each involving a single k-variate black-box interaction yielding
the same scaling as the scaling given by Eq. (16). On the other
hand, Boixo et al. [27] more formally derived an O(Nk−1/2)
scaling offered by a k-body measurement procedure fed with
the separable state of N quantum systems. Here, because of
the Big O notation it is impossible to calculate a well-defined
number of queries. Also, the two approaches no longer predict
the same scaling with N . (As a side remark, in the case of the
exponential measurement procedure it is even nonsensical to
consider the SNL as there is no single, basic black box that
can be repeated N times and the separable state is the optimal
state for this procedure.) As a consequence, the concept of the
query complexity does not apply to the classical procedures. It
seems that the main difficulty in extending the language of the
query complexity to the classical domain lies in the fact that
it is unclear what is the universal definition of the shot-noise
limit that would apply to all types of measurement strategies.
If the SNL is a limit obtained in a procedure consisting of N

independent repetitions of a basic black box, then it yields
a trivial bound, that is, it always scales as 1/

√
Q, with

Q = N (the advantage of this approach is a well-defined query
complexity). If the SNL is a limit obtained in a procedure that
employs a separable state, then for the k-body procedure the
query complexity is ill defined.

What is the universal definition of the SNL limit that can be
consistently applied to any estimation procedure and can it be
expressed in terms of the query complexity? We leave these as
open questions.
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IV. UNIVERSAL RESOURCE COUNT

The concept of the query complexity proved extremely
useful in setting fundamental limits on the capabilities of a
variety of measurement procedures and relating these to the
number of employed quantum systems. We demonstrated that
the query complexity can be used to meaningfully compare the
precision offered by these measurement procedures. Moreover,
we showed that the error in the parameter scales linearly with
Q for a number of important measurement procedures. Also, it
is straightforward to tie the query complexity with the number
of physical systems in the probe. This implies that the query
complexity is a good resource count. Unfortunately, the query
complexity can be ill defined. Some measurement procedures
have an ill-defined number of physical systems in the probe,
and as a result, the exact number of queries is unknown. For
example, for an optical measurement procedure employing
coherent states, the number of photons in the probe is known
only on average and there is no such quantity as an average
number of queries. Therefore, we need to find a universal
resource count that can deal with these cases properly.

Any universal resource count for quantum metrology
should fulfill some basic requirements. First, for any mea-
surement procedure the minimal uncertainty in the value of
the parameter must scale linearly with a universal resource
count. Second, in order to find this resource count, and by
implication a universal formulation of the Heisenberg limit,
we cannot refer to a specific physical implementation. Instead,
we should derive the fundamental resource count from the
general description of a measurement procedure. Finally, for
purely physical reasons a good candidate for a universal
resource count should also relate in a straightforward manner
to some quantum-mechanical observable such as the number
of physical systems in the probe or its (average) energy.

Traditionally, the Heisenberg limit on the interferometric
precision of estimating a phase φ is generally understood as
the following scaling relation:

�φ � c

〈N〉 , (17)

where c is a constant of order one and 〈N〉 is the average of
the number operator N = a†a which generates the phase shift,
that is, the total number of photons in the probe [17]. This
is a well-established relation [17,28,29] and its achievability
has been recently proved [30]. For general quantum parameter
estimation the number operator is replaced by the operator H
which generates the translations in the parameter.

Given the traditional formulation of the Heisenberg limit
(and keeping in mind the above requirements), it is natural to
formalize the universal resource count for quantum metrology
as the expectation value of the generator of translations in the
parameter 〈H〉. Note that it is necessary to set the minimal
eigenvalue (the ground-state eigenvalue) of the generator H
to zero. The necessity of rescaling the value of the resource
count stems from the fact that when H corresponds to a
proper Hamiltonian, the origin of the energy scale has no
physical meaning and as a consequence, we must fix the scale
such that the ground state has zero energy. Therefore, the
universal resource count is given by the expectation value of
the generator H above its ground state denoted as |〈H〉|. We

can also formulate our resource count without any shift in
terms of 〈H − hminI 〉, where hmin is the minimal eigenvalue
of H and I is the identity operator. When H does not have a
minimum eigenvalue, as in the case of position or momentum
operators, the only possible values for 〈H〉 are relative position
and momentum.

As we show in the following subsections, the proposed
resource count fulfils all the requirements of a universal
resource count and applies to any conceivable measurement
procedure, even when apparently no query complexity can
be defined. We argue that |〈H〉| is a more fundamental
resource count than Q, since it can deal with these cases as
well. Nevertheless, whenever the query complexity exists, it
is desirable to find an exact relation between the universal
resource count and Q (and by implication N ).

A. Standard deviation of the generator H
It can be argued that the standard deviation of the generator

H can also serve as a universal resource count [31,32]. Indeed,
in the next subsection we show that �H is related to the query
complexity and by implication, to the number of quantum
systems in the probe. However, |〈H〉| is the only moment
that fits the right category, given the question of how many
resources are required to attain a certain precision. Resources
are “a certain amount of something.” Thus, when dealing with
probabilistic situations the physical amount is given by the first
moment, while the higher-order moments describe the shape
of the distribution. Also, it is important to note that the first
moment represents a fundamental conserved quantity [33].
This distinction captures a physical intuition that goes beyond
the pure mathematics of quantum metrology.

In order to quantitatively capture the distinction between
the expectation value of the generator H above the ground
state and the standard deviation of the generator H, let us
consider the (important for quantum metrology) family of pure
superpositions given by

|ψ〉 = √
μ|hmax〉 +

√
1 − μ eiϕ|hmin〉, (18)

where |hmax〉 and |hmin〉 are the eigenstates corresponding to
the maximal and minimal eigenvalues of H, respectively. The
expectation value of the generator H in the above state can be
written as

〈H〉 = μhmax + (1 − μ)hmin, (19)

where hmax and hmin are the maximal and minimal eigenvalues
ofH, respectively. The expectation value ofH above its ground
state and the standard deviation of H are then given by

|〈H〉| ≡ 〈H − hminI 〉 = μ(hmax − hmin) = μ‖H‖,
�H =

√
μ(1 − μ)(hmax − hmin) =

√
μ(1 − μ)‖H‖,

where ‖H‖ is the seminorm of the generator H. In Fig. 6, we
depict the above relations (with ‖H‖ = 1 a.u.). Note that both
quantities are upper bounded by ‖H‖,

|〈H〉| � ‖H‖, �H � ‖H‖
2

,

and coincide for μ = 1
2 . Alas, even for as specific a family of

superpositions as the one given by Eq. (18), no definite relation
between |〈H〉| and �H can be established.
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FIG. 6. (Color online) The expectation value of the generator H
above the ground state versus the standard deviation of the generator
H as a function of μ [with ‖H‖ = 1 a.u.].

The importance of the standard deviation �H stems from
the fact that this quantity provides the achievable bounds in
quantum metrology, that is, it gives the answer to the second
question posed in Sec. II. On the other hand, the expectation
value |〈H〉| being a universal physical resource count provides
the bound on the best possible precision achievable in principle
(see the first question posed in Sec. II).

In the next subsection, we derive a lower bound on the error
in the parameter φ in terms of a new resource count |〈H〉|. We
also present the exact relations between the query complexity,
the expectation value of H above its ground state, and the
standard deviation of H for the most relevant measurement
strategies.

B. New formulation of the Heisenberg limit

Having established the proper resource count, we present a
new formulation of the Heisenberg limit with respect to this
resource count. We consider here the most general quantum
measurement procedure corresponding to the unitary transfor-
mation U (φ) presented in Sec. III. Since the Heisenberg limit
should refer to the optimal scaling behavior of the error with
the resource count (it is a bound that we aspire to reach, not
the actual achievable bound in any given experimental setup),
we can restrict our discussion to the case of optimal states
for quantum metrology, such as the textbook case of NOON

states [7,24]. The optimal states in quantum metrology are the
families of balanced superpositions of the eigenvectors |hmax〉
and |hmin〉 of H, that is, the state given by Eq. (18) with μ = 1

2 .
For the optimal states we have the property that

2�H = 2|〈H〉| = ‖H‖ = hmax − hmin. (20)

Combining this with Eq. (2), the error in parameter φ in a
single-shot experiment is then given by

�φ � 1

2|〈H〉| . (21)

This inequality holds (and is tight) for the quantum states that
are optimal for quantum metrology, and is therefore an ex-
pression for the minimum error �φ that can be achieved in an
optimal measurement. While the derivation is mathematically
valid only for generators with an upper-bounded spectrum,
physically this bound will generally be satisfied since we
can always truncate the Hilbert space at sufficiently high

energy states. Therefore, given a system evolution described
by U (φ) = exp(−iφH), for any (numerical) value for |〈H〉|
(i.e., the resource amount), the best attainable precision for a
measurement of φ is bounded by Eq. (21). This is a universal
formulation of the Heisenberg limit. The new bound is just as
tight as the bound provided by the standard deviation of H,
and whenever the latter exists both are identical.

In the following, we present the exact relations between
�H, |〈H〉| and the query complexity Q that applies to the most
relevant measurement strategies presented in Sec. III. Given
the arguments about the spectrum of the generator H for the
most general quantum measurement procedure (see Sec. III),
for the optimal states the maximal and minimal eigenvalues H
are given by

hmax = Qλk
max and hmin = Qλk

min, (22)

where λmax and λmin are the maximal and minimal eigen-
values of H , respectively. The power k denotes the order of
the black-box interaction, with k = 1 representing a linear
(nonentangling) black-box interaction. Since the exponential
measurement procedures have a more complex structure, their
corresponding hmax and hmin have a more compound form as
well:

hmax =
N∑

j=1

Qjλ
j
max and hmin =

N∑
j=1

Qjλ
j
min, (23)

with

Qj =
(

N

j

)
and Q =

N∑
j=1

Qj = 2N − 1. (24)

Therefore, for the sake of clarity, we present our final result
using bounds given by Eq. (22). Combing these with Eq. (20),
we have

2�H = 2|〈H〉| = ‖H‖ = Q
(
λk

max − λk
min

)
. (25)

This leads to a bound on the error in parameter φ, expressed
in terms of the query complexity

�φ � 1

2|〈H〉| = ck

Q
, (26)

with ck = 1/(λk
max − λk

min) being the inverse of the largest gap
in the spectrum of the generator H. Regardless of whether a
well-defined number of queries exists or not, the first bound
always holds. Given a particular measurement procedure, it
is then straightforward to express the error in the parameter
in terms of the number of quantum systems in the probe via
the query complexity. For example, in the standard cases of
linear (nonentangling) evolutions, the query complexity (and
by implication 2|〈H〉|) reduces to the number of physical
systems in the probe.

Finally, we note that our result applies to both parallel and
sequential (or “multi-round”) measurement strategies, always
giving a well-defined bound that can be expressed in terms
of either |〈H〉| or Q. (Whenever the query complexity can be
defined, it is always a finite number.) For a parallel procedure
(i.e., no sequential repetitions of the evolution gate U (φ) are
allowed), the query complexity is limited by the dimensionality
of probe’s Hilbert space; thus, Q � 2N − 1. In the case of a
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sequential strategy (i.e., sequential repetitions of the evolution
gate U (φ) possibly interspersed with some arbitrary unitaries
are allowed), the total number of queries is limited by the di-
mensionality of the probe’s Hilbert space and the measurement
time T (i.e., the number of repetitions); thus, Q � T (2N − 1).
In general, the sequential strategies may be looked upon as
a way of estimating a value of a rescaled parameter. In these
cases, one can argue that a value of the parameter θ = T φ

is being estimated rather than φ. Nevertheless, it is worth
emphasizing that the sequential strategies are more general
and often offer some advantages over the parallel strategies,
e.g., through the simplicity of their implementation [10].

V. CONCLUSIONS

Proper resource accounting is crucial when investigating
the precision of various quantum measurement strategies and

formulating the ultimate limits in quantum metrology. In this
work, we applied the concept of the query complexity repre-
senting the number of times the measured system is sampled
to a variety of well-known measurement procedures analyzing
their performance. This leads to a universal definition of the
physical resources (formalized as the expectation value of
the generator of H above its ground state) and the ultimate
formulation of the Heisenberg limit for quantum metrology.
The new bound holds only for optimal states and is just as
tight as the bound provided by the standard deviation of H
(whenever the latter exists, both are identical).
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