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Time correlation of two γ rays resulting from positronium annihilation
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We have obtained the wave function and time correlation of two γ rays resulting from the annihilation of a
spin-singlet positronium. We have modified the calculations made by Gauthier and Hawton [Phys. Rev. A 81,
062121 (2010)] in consideration of the real experimental conditions. It has been found that the time correlation is
determined by the center-of-mass motion of the positronium, and that the exponential decay component shown
by Gauthier and Hawton does not appear in the time-correlation function. We have also conducted an experiment
focused on the exponential component in the time-correlation function. The experimental results are consistent
with our calculation.
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I. INTRODUCTION

Two annihilation γ rays resulting from a positron-electron
pair have an energy of 511 keV each and therefore they behave
more like particles than waves. For all practical purposes
they can be considered as a pair of simultaneously generated
particles. Still, the wave nature and the wave function of the
γ -ray photons are at times essential, as in studies on time
correlation or interference properties of γ rays.

Recently, Gauthier and Hawton [1] developed an expression
for the wave function of two γ rays resulting from the
annihilation of a spin-singlet positronium (para-positronium),
which is the bound state of a positron and an electron. By
means of the wave function and a few assumptions, they
concluded that the time-correlation function is proportional to
exp(−|t1 − t2|/τ ), where τ is 125 ps and t1, t2 are arrival times
to the measuring points. Although their result is consistent with
Irby’s experiment [2,3], no other experimental support could
be found. They detected γ rays with multichannel plates. Since
the signal-to-noise ratio and the detection efficiency of the
multichannel plates are very low, the systematic and statistical
accuracy is poor. It is known that a scintillation detector is best
for γ -ray timing measurements [4,5]. Moreover, no care was
taken to form positronium in the experiment. The γ rays in the
experiment mainly resulted from the annihilation of unbound
positrons with electrons.

In the present paper, we obtain the time-correlation function
of two annihilation γ rays without the assumptions made by
Gauthier and Hawton [1]. We also perform an experiment to
accurately determine the exponential component in the time-
correlation function.

II. THEORY

A. Wave function

The positronium wave function �Ps is the product of the
center-of-mass wave function �Ps,c and the wave function of
the relative motion �Ps,r:

�Ps(xp,xe) = �Ps,c(xc)�Ps,r(xr), (1)

*saitou@youshi.c.u-tokyo.ac.jp

where xp and xe are the coordinates of the positron and the
electron, respectively. The center-of-mass coordinate xc and
the relative coordinate xr are defined as

xc = 1
2 (xp + xe), xr = xp − xe. (2)

In the momentum representation, Eq. (1) becomes

ψPs( pp, pe) = ψPs,c( pc)ψPs,r( pr), (3)

where pp and pe are the momentum of the positron and the
electron, respectively. The center-of-mass momentum pc and
the relative momentum pr are defined as

pc = pp + pe, pr = 1
2 ( pp − pe).

The para-positronium annihilates into two γ rays with a
lifetime of 125 ps. The γ -ray wave function can be written
similarly as

φγ (k1,k2) = φγ,c(kc)φγ,r(kr ), (4)

where k1 and k2 are the wave vector of the first and the second
γ ray, respectively. kc and kr are defined as

kc = k1 + k2, kr = 1
2 (k1 − k2). (5)

The center-of-mass momentum is unchanged before and
after the annihilation. Therefore, we have

pc = h̄kc (6)

and

ψPs,c( pc) = φγ,c(kc). (7)

These are the principles of the two-photon angular correlation
method [6].

The relative part of the γ -ray wave function represents
the two γ rays resulting from the annihilation of the para-
positronium at rest (kc = �0). Therefore, the state vector |φγ,r〉
which correspond to φγ,r(kr ) can be written as

|φγ,r〉 = C
∑

k

φγ,r(k)â†
kâ

†
−k|0〉, (8)

where â
†
k is the creation operator of a photon of the wave

vector k, C is a constant parameter for normalization, and
|0〉 is the vacuum state. In the present study, normalization is
not important and the same notation C is used for different
functions.
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As shown later, φγ,r(k) for large t without a phase factor
has the form

φγ,r(k) = C
1

E(k) − E0 + i�/2
. (9)

Here � is the decay width of the para-positronium and is given
by

� = h̄

τs
= h̄

125 ps
, (10)

E(k) is the total energy of the two γ rays, which equals
to 2h̄c|k| with c = the speed of light in vacuum and E0 is
the rest mass of an electron and a positron, which is 2mc2.
Equation (9) has the same form as Eq. (6) on page 181 of
Ref. [7] by Heitler by setting t = ∞. It is also identical to
equation (6.3.18) in Ref. [8]. The expression in Refs. [7,8] is
obtained for the first-order process. As shown below, Eq. (9)
also holds for the para-positronium annihilation into two γ -ray
photons, which is the second-order process.

In this paragraph we perform the second-order calculation
to obtain Eq. (9). According to Sec. 14 in Ref. [7], the
Hamiltonian H is

H = H0 + Hint. (11)

H0 is the Hamiltonian without the interaction between the ra-
diation field and the electron (positron). Hint is the contribution
from the interaction. Schrödinger’s equation in the interaction
representation is

ih̄
∂	′

∂t
= H ′

int	
′,

(12)
H ′

int = exp(iH0t/h̄)Hint exp(−iH0t/h̄).

The solution of Eq. (12) can be expanded as

	′(t) =
∑

n

bn(t)	n, (13)

where 	n is the nth eigenstate of H0 with the energy eigenvalue
of En. 	0 represents the initial state in which no photon is
present. We have a positron and an electron. In the intermediate
state 	n′ we have one photon, a positron, and an electron. In
the final state we have two photons and no positron-electron
pair. The initial conditions for Schrödinger’s equation are

b0(t = 0) = 1, bn(t = 0) = 0 (n �= 0). (14)

Since H0 is diagonal for 	n, we have

ih̄ḃn′ = Hn′|0b0(t) exp[i (En′ − E0) t/h̄], (15)

for the intermediate states and

ih̄ḃn =
∑
n′

Hn|n′bn′ (t) exp[i(En − En′)t/h̄] (16)

for the final states. Hi|j is a matrix element of H . We know
that the probability of finding the system in the initial state
decays exponentially; thus, we have

b0(t) = exp

(
− γ

2
t

)
, (17)

where γ = 1/125 ps = �/h̄. From Eqs. (15) and (17), we
obtain

bn′(t) = Hn′ |0
exp[i(E′

n − E0)t/h̄ − γ t/2] − 1

i(E′
n − E0)/h̄ − γ /2

. (18)

In the final state we have two γ rays with wave vectors kn′

and −kn′ due to the momentum conservation law. This implies
that the summation over n′ in Eq. (16) is not necessary. The
intermediate and final states are in one-to-one correspondence.
Then, for the final state, we have

ih̄ḃn = Hn|n′bn′ (t) exp[i(En − En′)t/h̄],

En = 2h̄c|kn|, (19)

En′ = 2mc2 + h̄c|kn|.
En′ is approximately 3mc2. Using Eqs. (18) and (19), we have

bn(t)∝ exp[i(En − E0)t/h̄ − γ t/2] − 1

i(En − E0)/h̄ − γ /2

1

i(E′
n − E0)/h̄ − γ /2

+ the second term. (20)

The second term is negligible. Because γ � mc2/h̄, the energy
dependence in Hn|n′ and Hn′|0 is neglected. In addition, En′ −
E0 is approximately equal to mc2, and the denominator i(E′

n −
E0)/h̄ − γ /2 is almost constant. Letting t → ∞ in Eq. (20)
we obtain Eq. (9).

From Eq. (9) we obtain

φγ,r(k) = C
1

2

1

h̄c|k| − mc2 + i�/4
(21)

and

|φγ,r〉 = C
∑

k

1

h̄c|k| − mc2 + i�/4
â
†
kâ

†
−k|0〉. (22)

Equation (22) has the same form as Eq. (10) in Ref. [1].
However, the coefficient of � in Ref. [1] is twice that of � in
Eq. (22), and is not explained in Ref. [1]. This difference will
affect the remaining results.

B. Time-correlation function

The time-correlation function can be obtained from the
second-order Glauber correlation function [9]

G12(r1,t1,r2,t2) = 〈	|Ê(−)
1 (r1,t1)Ê(−)

2 (r2,t2)

× Ê
(+)
2 (r2,t2)Ê(+)

1 (r1,t1)|	〉, (23)

where r1 and r2 are the position vectors of detectors 1 and 2,
respectively. The electric field operators Ê

(±)
i (r i ,ti), i = 1,2

are given by

Ê
(+)
i (r i ,ti) = 1

L3/2

∑
k

√
h̄ω

2ε0
âk exp[i(k · r i − ωti)] (24)

and

Ê
(−)
i (r i ,ti) = 1

L3/2

∑
k

√
h̄ω

2ε0
â
†
k exp[−i(k · r i − ωti)], (25)

where ω = c|k|, ε0 is the vacuum dielectric constant, and L is
the period of the boundary condition.
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The time-correlation function is given by

R12(τ ) =
∫

dt1G12(r1,t1,r2,t1 + τ ). (26)

We can limit ourselves to one-dimensional problems by putting
the γ -ray detectors on the x axis at x1 (�0) and x2 (�0). The
detectors detect the γ rays having k vectors parallel to the x

axis.
First let us try to put Eq. (22) into Eq. (23). We calculate

the right part |R〉 of Eq. (23) as

|R〉 = E
(+)
2 (x2,t2)E(+)

1 (x1,t1)|φγ,r〉

= 1

L3

{∑
k

√
h̄ω

2ε0
âk exp [i(kx2 − ωt2)]

}

×
{∑

k

√
h̄ω

2ε0
âk exp [i(kx1 − ωt1)]

}

×
{∑

kr

C

h̄c|kr| − mc2 + i�/4
â
†
kr
â
†
−kr

|0〉
}

. (27)

Here, kr is the x component of kr. Due to the symmetry, the
summations over kr > 0 and kr < 0 are equal. We calculate for
kr > 0. |R〉 is divided into two parts as

|R〉 = |R+〉 + |R−〉 (28)

and

|R+〉 ∝
∑
kr>0

exp [i(−krx2 − ωt2)] exp [i(krx1 − ωt1)]

× 1

h̄ckr − mc2 + i�/4
|0〉

=
∑
kr>0

exp [ikr(x1 − x2 − ct1 − ct2)]

h̄ckr − mc2 + i�/4
. (29)

Similarly,

|R−〉 ∝
∑
kr>0

exp[ikr(x2 − x1 − ct1 − ct2)]

h̄ckr − mc2 + i�/4
. (30)

We used âkâ
†
l − â

†
l âk = δkl and â|0〉 = 0. Since � � mc2, the

energy dependence in
√

ω is negligible. The right-hand sides of
Eqs. (29) and (30) can be determined via the residue theorem.
We have a pole at

h̄ckr = mc2 − i
�

4
. (31)

If x1 − x2 − ct1 − ct2 > 0, |R+〉 equals zero. Similarly, |R−〉
is zero when x2 − x1 − ct1 − ct2 > 0. After integration we
obtain

|R〉 ∝ |R+〉 + |R−〉 = 
 (−(x1 − x2 − ct1 − ct2))

× exp

[
γ

4c
(x1 − x2 − ct1 − ct2)

]
+
 (−(x2 − x1 − ct1 − ct2))

× exp

[
γ

4c
(x2 − x1 − ct1 − ct2)

]
(32)

FIG. 1. (Color online) Second-order Glauber correlation function
plotted against x1 and x2 for t = t1 = t2. Panel (a) is for Eq. (33) and
panel (b) is for Eq. (41).

and

G12(x1,x2,t1,t2) ∝ 
 ((−x1 + x2)/c + t1 + t2)

× exp

{
−γ

2
[(−x1 + x2)/c + t1 + t2]

}
+
 ((−x2 + x1)/c + t1 + t2)

× exp

{
−γ

2
[(−x2 + x1)/c + t1 + t2]

}
.

(33)

When we put detectors at x1 (>0) and x2 (<0), time correlation
is determined by the first term of (33) as

R12(τ ) =
∫

dtG12(x1,t,x2,t + τ ) = constant. (34)

This equation gives no information on the time correlation.
The reason is clear from Fig. 1(a) in which G12(x1,x2,t1,t2)
from Eq. (33) at t = t1 = t2 is shown as a function of x1 and
x2. In this calculation we use only φγ,r in Eq. (27) and assume
kc = 0. This implies that the spatial distribution of the initial
positronium is infinite and wider than the detector distance.
Therefore, this calculation does not correspond to the real
experimental conditions.

Instead we should use

	 = φγ,rφγ,c (35)

and

|	〉 =
∑
kr

∑
kc

φγ,c(kc)φγ,r(kr )â†
kr+kc/2â

†
−kr+kc/2|0〉 (36)

042111-3



HARUO SAITO AND KENGO SHIBUYA PHYSICAL REVIEW A 85, 042111 (2012)

in Eq. (23). We obtain

|R′〉 = E
(+)
2 (x2,t2)E(+)

1 (x1,t1)|	〉 = |R′
+〉 + |R′

−〉 ∝
{∑

k

âk exp[i(kx2 − ωt2)]

}{∑
k

âk exp[i(kx1 − ωt1)]

}

×
{∑

kr

∑
kc

φγ,c(kc)
1

h̄c|kr| − mc2 + i�/4
â
†
kr+kc/2â

†
−kr+kc/2|0〉

}
. (37)

Using âkâ
†
l − â

†
l âk = δkl and â|0〉 = 0, we obtain

|R′+〉 ∝
∑

h̄kr≈mc

∑
kc

exp

[
i

(
kr + kc

2

)
(x1 − ct1) −

(
kr − kc

2

)
(x2 + ct2)

]
φγ,c(kc)

1

h̄ckr − mc2 + i�/4
|0〉

=
∑

h̄kr≈mc

∑
kc

exp

[
ikr (x1 − ct1 − x2 − ct2) + i

kc

2
(x1 − ct1 + x2 + ct2)

]
φγ,c(kc)

1

h̄ckr − mc2 + i�/4
|0〉. (38)

This can be separated into two parts as

|R′+〉 ∝
{ ∑

h̄kr≈mc

exp [ikr (x1 − ct1 − x2 − ct2)]

h̄ckr − mc2 + i�/4

} {∑
kc

exp

[
i
kc

2
(x1 − ct1 + x2 + ct2)

]
φγ,c(kc)|0〉

}
. (39)

From Eq. (7) φγ,c = ψPs,c. Putting this into Eq. (39), we obtain

|R′+〉 ∝ 
 (−(x1 − x2 − ct1 − ct2))

× exp

[
γ

4c
(x1 − x2 − ct1 − ct2)

]

×�Ps,c

[
1

2
(x1 − ct1 + x2 + ct2)

]
. (40)

|R′−〉 is obtained by interchanging (x1,t1) and (x2,t2) in the
above.

Thus we have

G12(x1,x2,t1,t2) = 〈R′+|R′+〉 + 〈R′−|R′−〉
∝ 
 (−(x1 − x2 − ct1 − ct2))

× exp

[
γ

2c
(x1 − x2 − ct1 − ct2)

]

×
∣∣∣∣�Ps,c

(
x1 + x2 − ct1 + ct2

2

)∣∣∣∣
2

+
 (−(x2 − x1 − ct1 − ct2))

× exp

[
γ

2c
(x2 − x1 − ct1 − ct2)

]

×
∣∣∣∣�Ps,c

(
x1 + x2 + ct1 − ct2

2

)∣∣∣∣
2

. (41)

G12(x1,x2,t1,t2) in Eq. (41) is shown in Fig. 1(b). In the figure
we assume that Ps is confined between −LPs and +LPs (LPs �
cτs = 3.75 cm) and |�Ps,c|2 is constant for −LPs < xc < LPs.

The time correlation R12(τ ) is determined by the first term
of Eq. (41) because we put detectors at x1 (>0) and x2 (<0).

We have

R12(τ ) =
∫

dtG12(x1,t,x2,t + τ )

∝
∣∣∣∣�Ps,c

(
x1 + x2 + cτ

2

)∣∣∣∣
2

. (42)

The time-correlation function R12(τ ) is determined by the
initial Ps center-of-mass distribution |�Ps,c|2. An example is
shown in Fig. 2.

pe
r

per

per

pe
r

FIG. 2. Relation between the center-of-mass wave function of
positronium and the time-correlation function.
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C. Positron annihilation lifetime spectrum

The positron annihilation lifetime spectrum can be obtained
from G12. At t = 0 we have a para-positronium confined
between −LPs and LPs. Since LPs is small (typically LPs ≈
1 Å � cτs), we have

G12(x1,x2,t1,t2) ∝ 
 (−(x1 − x2 − ct1 − ct2))

× exp

[
γ

2c
(x1 − x2 − ct1 − ct2)

]

× δ

(
1

2
(x1 + x2 − ct1 + ct2)

)
. (43)

The positron annihilation lifetime spectrum P (t1,x1) is pro-
portional to the probability for detecting the γ ray at t1 and x1.
This probability is obtained by integrating G12 over t2. Thus
we have

P (t1,x1) ∝
∫

dt2G12 = 
 (−2(x1 − ct1)) exp

[
γ

c
(x1 − ct1)

]
.

(44)

Thus we should obtain the mean lifetime τ from the positron
annihilation lifetime spectrum as

τ = 1

γ
= 125 ps. (45)

The same value is obtained in Ref. [1]. This is because two
effects due to error or artifact in Ref. [1] cancel each other out.
The linewidth in relative motion in Ref. [1] is as twice that
of ours and no explanation is given in Ref. [1]. This factor of
2 is canceled during the integration of the wave function in
Eq. (22) in Ref. [1]. Their wave function, which is essentially
the same as Eq. (33) in the present paper, seems not to be
consistent with the real experiment.

III. EXPERIMENT

Positronium atoms were formed using a 22Na positron
source (700 kBq) and MgO ultrafine powder or silica aerogel.
To enhance the intensity of the para-positronium, the sample
and source assembly was placed in air. Spin-triplet positronium
was converted into spin-singlet positronium via positronium-
O2 collisions. The time-correlation function was measured
with a digital positron lifetime spectrometer using BaF2

scintillators and fast photomultipliers [4,5]. The full width at
half maximum of the time resolution was 180 to 190 ps. Two
detectors were set at a distance of 20 cm from the positronium.
We performed two measurements. In the first run, positronium
was formed using MgO ultrafine powder. The intensity of
the para-positronium was estimated to be 30% taking into
account the effect of the spin conversion. In the second run,
positronium was formed using silica aerogel under a magnetic
field of 0.16 tesla. The intensity of the para-positronium was
estimated to be 35%. The magnetic field was applied to induce
Zeeman mixing of the positronium. Each run lasted about 10
days.

The measured time-correlation function is plotted in
Figs. 3(a) and 3(b) for the first and second runs, respectively.
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(no positronium)
(c) Al

FIG. 3. Time correlation of the two γ rays detected by two BaF2

scintillators. A 22Na positron source was placed at the center of the
two detectors, and was (a) surrounded by MgO ultrafine powder, (b)
sandwiched by silica aerogel, and (c) sandwiched by Al plates. Time
per channel equals 50 ps. Data with zero count are not plotted. The
exponential components obtained in Ref. [1] are shown for τ = 125
and 250 ps by solid lines with the expected intensity of spin-singlet
positronium in each condition.

The random coincidence background, estimated to be less
than 0.5 counts per channel, is not subtracted in Fig. 3.
Data with zero count are not plotted. This measurement is
very sensitive for the long exponential component shown
in Ref. [1].

We also measured the time correlation for γ rays due to
unbound positrons. The 22Na positron source was sandwiched
by Al. The result is shown in Fig. 3(c).
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As can be seen, Figs. 3(a), 3(b), and 3(c) are almost
identical. Lines with slopes of 125 and 250 ps are guides for
the eye. No long exponential component with a decay of 125
or 250 ps was found. One hundred and twenty-five ps were
proposed in Ref. [1], and it should be modified to 250 ps due
to Eq. (22). Thus, this experiment supports our calculations.

When looking in more detail, all spectra have short single-
exponential components in the tail part. The decay rates
are 16 ± 3 ps, 23 ± 3 ps, and 19 ± 3 ps for Figs. 3(a), 3(b),
and 3(c), respectively. From these values, the upper limit of
the decay of the exponential component is less than 10 ps,
which is not consistent with [1].

IV. DISCUSSION

We have seen that the center of mass of the positronium
is of great importance for two-photon time correlation. This
permits us to consider the time correlation from a classical
mechanical viewpoint with Newton’s laws of motion and
special relativity. Suppose that we have a positronium atom
at rest at x = 0. This is possible in classical mechanics. We
have two detectors on the x axis. The first detector M1 having
a mass of M1 is put at L1 (>0). The second detector M2

of M2 is put at L2 = −L1(M1/M2). In the initial state the
center of mass of the total system is at x = 0. The positronium
annihilates into two γ rays. Each γ ray has an energy of mc2.
The momentum of the first γ ray is mcux and that of the
second γ ray is −mcux , where ux is the unit vector in the
x direction. At t = t1, M1 absorbs the first γ ray. The mass
of M1 increases from M1 to M1 + m. The velocity of M1

becomes mc/(M1 + m). Similarly, the second γ ray arrives
on M2 at t2. The center of mass at t (>t1, t2) is unchanged.
Therefore,

0 = (M1 + m)

[
L1 + mc

M1 + m
(t − t1)

]

+ (M2 + m)

[
L2 − mc

M2 + m
(t − t2)

]
. (46)

We obtain

t2 − t1 = −1

c
(L1 + L2) = 1

c
(|L2| − |L1|). (47)

This shows clearly that the time difference is determined by
the detector distance. Any inconsistent result with Eq. (47)
contradicts Newton’s law of motion. Equation (47) is evidently
consistent with our calculation (42).

Irby [2] states that “collapse of the spatial part of the
photon’s wave function, due to detection of the other photon,
does not occur.” Now we can study this statement using our
wave function. We put a detector at x1 (>0). When we detect
the first γ ray at x1 and t1, the γ -ray state reduces to δ(x − x1).
The state vector |φ1〉 is thus given by

|φ1〉 = φ̂1|0〉 =
∑

k

exp(−ikx1)â†
k|0〉. (48)

After the detection of the first γ ray, the state vector of the
second γ ray |φ2〉 becomes

|φ2〉 = φ̂+
1 |	〉, (49)

where |	〉 is the two-photon wave function which is given
by

|	〉 =
∑
kr

∑
kc

φγ,c(kc)φγ,r(kr )â†
kr+kc/2â

†
−kr+kc/2|0〉. (50)

The probability of finding the second γ ray at x2 and t2 is

P ′(x2,t2) = 〈φ2|Ê(−)
2 (x2,t

′
2)Ê(+)

2 (x2,t
′
2)|φ2〉, (51)

where t ′2 = t2 − t1. Using Eqs. (22), (24), (48)–(51) and the
calculations similar to (35)–(42), we can obtain

P ′(x2,t2) ∝
∣∣∣∣�Ps,c

(
x2 + x1 + c(t2 − t1)

2

)∣∣∣∣
2

. (52)

As expected, this is identical to the time-correlation function
in Eq. (42). This is the way to collapse the wave function
of one photon due to the detection of the position of another
photon. This shows clearly that the statement by Irby [2] is not
appropriate. In order to measure the arrival time of the γ ray,
confinement of positronium is essential. The arrival time has
no meaning without the confinement, and the confinement
cannot coexist with the fixed total momentum due to the
uncertainty principle. Therefore, speculations with the fixed
total momentum, as in Ref. [2], do not correspond with the
real experimental condition.

The wave function of two γ rays resulting from the
positronium annihilation is completely different from that of
another entangled two-photon system, such as emitted with
parametric down conversion [10] and from a 2s-1s transition of
a hydrogen atom. The reason for the “simultaneous detection of
two photons” is also completely different. The main difference
lies in the fact that the total momentum is not conserved in these
processes. In parametric down conversion, the two-photon
wave function is written as

|	〉 =
∑

g(ω)|E − ω〉|ω〉. (53)

The time correlation is determined by g(ω). When the
linewidth is broad, 	 can be expanded by two nearly localized
photons, and we have a narrow time correlation. Compared to
the positronium case, the contrast is very striking.

The wave function is indispensable to consider the Bragg
reflection of γ rays. Para-positronium formed in some single
crystals is known to have a spatially broad wave function.
In some cases the diffusion length reaches 1 μm [11]. It is
possible that the annihilation γ rays from these positronium
atoms have high coherence and that the Bragg reflection of
these γ rays can be prominent. This has been ignored so far
because the γ -ray Bragg peaks are hidden by the positronium
Bragg peak [12].

V. CONCLUSION

We have obtained the wave function of two γ -ray photons
resulting from the annihilation of spin-singlet positronium.
The theory proposed by Gauthier and Hawton is modified
to fit the real experimental conditions. It is found that the

042111-6



TIME CORRELATION OF TWO γ RAYS RESULTING . . . PHYSICAL REVIEW A 85, 042111 (2012)

width in the two-photon time-correlation function equals 2/c

times the spatial distribution of the positronium center of mass.
The spatial distribution of the positronium center of mass also
determines the coherent length of the annihilation γ ray. The
experimental results are consistent with the theory.
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