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Charge asymmetry in the differential cross section of high-energy e+e− photoproduction
in the field of a heavy atom
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Quasiclassical correction to the differential cross section of high-energy electron-positron photoproduction in
the electric field of a heavy atom is obtained with the exact account of the field. This correction is responsible
for the charge asymmetry A in this process. When the transverse momentum of at least one of the produced
particles is much larger than the electron mass m, the charge asymmetry can be as large as tens percent. We also
estimate the contribution Ã to the charge asymmetry coming from the Compton-type diagram. For heavy nuclei,
this contribution is negligible. For light nuclei, Ã is noticeable only when the angle between the momenta of the
electron and positron is of order of m/ω (ω is the photon energy) while the transverse momenta of both particles
are much larger than m.
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I. INTRODUCTION

The production of an electron-positron pair by a photon
in an atomic field is one of the most important processes
of QED. Because of its importance for various applications
[1,2], this process has been investigated in numerous theoreti-
cal and experimental papers. The cross section of the process
in the Born approximation is known for arbitrary energy ω of
the incoming photon [3,4] (we set h̄ = c = 1 throughout the
paper). For heavy atoms, it is necessary to take into account
the higher-order terms of the perturbation theory with respect
to the parameter Zα (Coulomb corrections), where Z is the
atomic charge number, α = e2 ≈ 1/137 is the fine-structure
constant, and e is the electron charge. The formal expression
for the Coulomb corrections, exact in Zα and ω, was derived
in Ref. [5]. However, the numerical computations based on
this expression become more and more difficult when ω is
increasing, and the numerical results have been obtained so
far only for ω < 12.5 MeV [6].

Fortunately, in the high-energy region ω � m (m is the
electron mass), a completely different approach, which greatly
simplifies the calculations, can be used. As a result of this
approach, a simple expression for the Coulomb corrections
was obtained in Refs. [7,8] in the leading approximation with
respect to m/ω. However, this result has good accuracy only
at energies ω � 100 MeV. For a long time, the description
of the Coulomb corrections for the total cross section at
intermediate photon energies (5–100 MeV) was based on the
expression obtained in Ref. [9]. This expression is actually an
extrapolation of the results obtained at ω < 5 MeV. Recently,
corrections of the order of m/ω to the spectrum, as well as to
the total cross section, of e+e− photoproduction in a strong
atomic field were derived in Ref. [10]. The correction to the
spectrum was obtained in the region where both produced
particles are relativistic. It turns out that this correction is
antisymmetric with respect to replacement ε+ ↔ ε−, where
ε+ and ε− are the energies of the positron and the electron,
respectively, so that the correction to the total cross section
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comes from the region close to the end of spectrum where
ε+ ∼ m or ε− ∼ m. In Ref. [10], the correction to the total
cross section was obtained by means of the dispersion relation
for the forward Delbrück scattering amplitude. The account
for this correction leads to agreement between the theoretical
prediction and available experimental data at intermediate
photon energies [11]. The electron (positron) spectrum in the
process of e+e− photoproduction in a strong Coulomb field
in the case ε+ ∼ m or ε− ∼ m and ω � m was investigated
in Ref. [12]. It was shown that the Coulomb corrections
drastically differ from those obtained in the region where
ε+ � m and ε− � m. Integration of the spectrum in Ref. [12]
has confirmed the result for the correction to the total cross
section obtained in Ref. [11] by means of the dispersion
relation.

For many purposes it is very important to know the differen-
tial cross section of e+e− photoproduction cross section with
high accuracy for ω � 100 MeV, where the accuracy of the
results obtained in the leading quasiclassical approximation
is not sufficient. In particular, this is very important for
the detectors of elementary particles, for correct estimation
of efficiency of positron sources. In addition, the e+e−
photoproduction cross section calculated with high accuracy
reveals the charge asymmetry, which is a strong background
in the experimental investigation of the charge asymmetry at
the decays of elementary particles. The latter is considered
as a possible test of the standard model [13]. In the present
paper, we calculate, exactly in η = Zα, the quasiclassical
correction to the differential cross section dσ ( p, q, η) of
electron-positron pair production by a high-energy photon
in a strong atomic field; p and q are the electron and
positron momenta, respectively. This correction to the cross
section significantly increases the accuracy of the theoretical
predictions at ω � 100 MeV in comparison with that given by
the leading term.

The cross section dσ ( p, q, η) can be represented as

dσ ( p, q, η) = dσs( p, q, η) + dσa( p, q, η),

dσs( p, q, η) = dσ ( p, q, η) + dσ (q, p, η)

2
, (1)

dσa( p, q, η) = dσ ( p, q, η) − dσ (q, p, η)

2
.
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Thus, dσs( p, q, η) is the symmetric quantity with respect to
replacement p ↔ q and dσa( p, q, η) is the antisymmetric one
with respect to this replacement. Using charge conjugation, we
have dσ ( p, q, η) = dσ (q, p, − η), so that dσs( p, q, η) is an
even function of η and dσa( p, q, η) is an odd function of η.
The leading quasiclassical term of the cross section obtained
in Refs. [7,8] is the even function of η and contributes only to
the symmetric part dσs( p, q, η). The quasiclassical correction
obtained in the present paper appears to be the odd function of
η and, therefore, contributes only to dσa( p, q, η), i.e., to the
charge asymmetry in the process. Our result is the exact-in-Zα

prediction for the charge asymmetry in the differential cross
section of e+e− photoproduction.

It is known that the atomic screening essentially modifies
only the lowest Born contribution (proportional to η2) to the
cross section, while the Coulomb corrections (the higher-
order-in-η terms) are not sensitive to it (see, e.g., Ref. [8]).
The expansion of dσs( p, q, η) over η starts from the term
proportional to η2 and, therefore, the symmetric part of the
cross section is sensitive to screening. The expansion of
dσa( p, q, η) over η starts from the term proportional to η3

and dσa( p, q, η) is not sensitive to screening. So, our result
for dσa( p, q, η) obtained for the case of a pure Coulomb field
is also valid for the atomic field.

For the photon energy below the threshold of π -meson
photoproduction, we also estimate the contribution of the
Compton-type amplitude to the e+e− photoproduction cross
section. The corresponding term contributes to the charge
asymmetry as well.

II. GENERAL DISCUSSION

The cross section of e+e− pair production by a photon in
an external field reads (see, e.g., Ref. [14])

dσ ( p, q, η) = α

(2π )4ω
d p dq δ(ω − εp − εq)

∣∣Mλ1λ2

∣∣2
, (2)

FIG. 1. Diagram for pair production by a photon in a strong
Coulomb field. Thick lines correspond to the positive- and
negative-energy solutions of the Dirac equation in the Coulomb
field.

where εp =
√

p2 + m2. The matrix element Mλ1λ2 , cor-
responding to the diagram shown in Fig. 1, has the
form

Mλ1λ2 =
∫

d r ū
(out)
λ1 p (r) γ · e v

(in)
λ2q(r) exp(ik · r). (3)

Here u
(out)
λ1 p (r) is a positive-energy solution and v

(in)
λ2q(r) is a

negative-energy solution of the Dirac equation in the external
field, λ1 = ±1 and λ2 = ±1 enumerate the independent solu-
tions of the Dirac equation, e is the photon polarization vector,
k is the photon momentum, and γ μ are the Dirac matrices. We
remind that the asymptotic forms of u

(out)
λ p (r) and v

(out)
λ p (r) at

large r contain the plane waves and the spherical convergent
waves, while the asymptotic forms of u

(in)
λ p (r) and v

(in)
λq (r) at

large r contain the plane waves and the spherical divergent
waves. In order to obtain the wave functions in the leading
quasiclassical approximation and the first quasiclassical cor-
rection to it, we exploit the convenient integral representation
for the exact wave functions in the Coulomb field suggested in
Ref. [15]. The derivation of this representation is based on the
relations

lim
r1→∞ G(r2,r1|εp) = −exp[ipr1 + iηp ln(2pr1)]

4πr1

∑
λ=1,2

2εpu
(in)
λp (r2)ūλp, p = −pn1,

lim
r1→∞ G(r2,r1| − εp) = exp[ipr1 − iηp ln(2pr1)]

4πr1

∑
λ=1,2

2εpv
(in)
λp (r2)v̄λp, p = pn1, (4)

uλp =
√

εp + m

2εp

(
φλ

σ · p
εp+m

φλ

)
, vλp =

√
εp + m

2εp

( σ · p
εp+m

χλ

χλ

)
, ηp = Zα

εp

p
,

and also

lim
r2→∞ G(r2,r1|εp) = −exp[ipr2 + iηp ln(2pr2)]

4πr2

∑
λ=1,2

2εpuλpū
(out)
λp (r1), p = pn2,

(5)

lim
r2→∞ G(r2,r1| − εp) = exp[ipr2 − iηp ln(2pr2)]

4πr2

∑
λ=1,2

2εpvλpv̄
(out)
λp (r1), p = −pn2,

where G(r2,r1|ε) is the Green function of the Dirac equation in the Coulomb field, n1 = r1/r1, and n2 = r2/r2. A convenient
integral representation for G(r2,r1|ε) was obtained in Ref. [16]. Using Eqs. (19)–(22) of that paper, we arrive at the following
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result for the wave functions u
(in)
λp (r) and v

(in)
λp (r):

u
(in)
λp (r) = exp(ipr)

pr

∫ ∞

0
dt t−2iηp−1 exp(it2)

[
SB(−x p, pr)

(
t2 − Zα

m

p
γ 0

)
(1 − R1) + iSA(−x p, pr)(1 + R1)

]
uλp,

v
(in)
λp (r) = exp(ipr)

pr

∫ ∞

0
dt t2iηp−1 exp(it2)

[
SB(x p, pr)

(
t2 − Zα

m

p
γ 0

)
(1 − R2) + iSA(x p, pr)(1 + R2)

]
vλp,

(6)

SA(x, ρ) =
∞∑
l=1

e−iπνJ2ν(2t
√

2ρ) l
d

dx
[Pl(x) + Pl−1(x)], SB(x, ρ) =

∞∑
l=1

e−iπνJ2ν(2t
√

2ρ)
d

dx
[Pl(x) − Pl−1(x)],

x p = r · p
rp

, R1,2 = (m ± γ 0εp)
γ · r
pr

.

Here Pl(x) is the Legendre polynomial, J2ν is the Bessel function, and ν =
√

l2 − (Zα)2. For the wave functions ū
(out)
λp (r) and

v̄
(out)
λp (r) we obtain

ū
(out)
λp (r) = exp(ipr)

pr

∫ ∞

0
dt t−2iηp−1 exp(it2)ūλp

[
SB(x p, pr)(1 + R2)

(
t2 − Zα

m

p
γ 0

)
+ iSA(x p, pr)(1 − R2)

]
,

(7)

v̄
(out)
λp (r) = exp(ipr)

pr

∫ ∞

0
dt t2iηp−1 exp(it2)v̄λp

[
SB(−x p, pr)(1 + R1)

(
t2 − Zα

m

p
γ 0

)
+ iSA(−x p, pr)(1 − R1)

]
.

The integrals over the variable t in Eqs. (6) and (7) can be expressed via the confluent hypergeometric functions. However, the
forms (6) and (7) of the wave functions are more convenient for applications than the conventional ones. The results (6) and (7)
are in agreement with the well-known solutions of the Dirac equation in the Coulomb field.

III. CALCULATION OF THE MATRIX ELEMENT

Let us introduce the functions

FA(r, p, η) = i
exp(ipr)

pr

∫ ∞

0
dt t−2iη−1 exp(it2)SA(x p, pr), FB(r, p, η) = exp(ipr)

pr

∫ ∞

0
dt t−2iη−1 exp(it2)SB(x p, pr),

(8)

F̃B(r, p, η) = exp(ipr)

pr

∫ ∞

0
dt t−2iη+1 exp(it2)SB(x p, pr).

In terms of the functions (8), the wave functions v
(in)
λp (r) and ū

(out)
λp (r) have the form

ū
(out)
λp (r) = (φ+R(+)

1 ,−φ+
λ R

(+)
2 ), v

(in)
λq (r) =

(
R(−)

2 χλ

R(−)
1 χλ

)
,

R(+)
1 =

√
εp + m

2εp

[(
F̃

(+)
B − Zαm

p
F

(+)
B

)
(1 + σ · p̂ σ · n) + F

(+)
A (1 − σ · p̂ σ · n)

]
,

R(+)
2 =

√
εp − m

2εp

[(
F̃

(+)
B + Zαm

p
F

(+)
B

)
(σ · p̂ + σ · n) + F

(+)
A (σ · p̂ − σ · n)

]
, (9)

R(−)
1 =

√
εq + m

2εq

[(
F̃

(−)
B + Zαm

q
F

(−)
B

)
(1 + σ · n σ · q̂) + F

(−)
A (1 − σ · n σ · q̂)

]
,

R(−)
2 =

√
εq − m

2εq

[(
F̃

(−)
B − Zαm

q
F

(−)
B

)
(σ · q̂ + σ · n) + F

(−)
A (σ · q̂ − σ · n)

]
,

where n = r/r , p̂ = p/p, q̂ = q/q, and

F
(+)
A = FA(r, p, ηp), F

(+)
B = FB(r, p, ηp), F̃

(+)
B = F̃B(r, p, ηp),

(10)
F

(−)
A = FA(r, q,−ηq), F

(−)
B = FB(r, q,−ηq), F̃

(−)
B = F̃B(r, q,−ηq).

Then the matrix element Mλ1λ2 , Eq. (3), is

Mλ1λ2 =
∫

d r exp(ik · r)φ+
λ1

[R(+)
1 σ · eR(−)

1 + R(+)
2 σ · eR(−)

2 ]χλ2 . (11)
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For any vector X we introduce the notation X⊥ = X − (ν · X)ν, ν = k/k, and we write the matrix element Mλ1λ2 in the
form

Mλ1λ2 = φ+
λ1

[(a0 + a1) + σ · (b0 + b1)]χλ2, (12)

where a0 and b0 are linear in θp = p̂⊥, θq = q̂⊥, m/εp, and m/εq , while a1 and b1 are quadratic in these variables. We
have

a0 = 2i[ν × e] · g(−), b0 = 2e · g(+) ν + 2g e, a1 = i[ν × e] · (θp − θq) g,
(13)

b1 = e · g(+) (θp + θq) + e · (θp − θq) g(−) − (θp − θq) · g(−) e − e · (θp + θq) gν.

Here

g(±) =
∫

d r exp(ik · r)F (+)
A [(n⊥ + θq)F̃ (−)

B − n⊥F
(−)
A ] ±

∫
d r exp(ik · r)F (−)

A [(n⊥ + θp)F̃ (+)
B − n⊥F

(+)
A ],

(14)
g = mω

εpεq

∫
d r exp(ik · r)F (+)

A F
(−)
A .

In Ref. [10], the following expressions for the sum SA and SB , which take into account the leading terms and first quasiclassical
corrections, have been obtained:

SA(x,ρ) = −y2

8
J0

(
y

√
1 + x

2

) [
1 + iπ (Zα)2

y

]
, SB(x,ρ) = − y

2
√

2(1 + x)
J1

(
y

√
1 + x

2

) [
1 + iπ (Zα)2

y

]
, (15)

where y = 2t
√

2ρ. These formulas are obtained for y � 1 and 1 + x 
 1. Substituting Eq. (15) into Eq. (8) and taking the
integrals over the variable t we find

FA(r, p, η) = 1

2
exp

(
πη

2
− i p · r

)[
�(1 − iη)F (iη,1, i(pr + p · r))

+ πη2 exp
(
i π

4

)
2
√

2pr
�(1/2 − iη)F (1/2 + iη,1, i(pr + p · r))

]
,

FB(r, p, η) = − i

2
exp

(
πη

2
− i p · r

)[
�(1 − iη)F (1 + iη, 2, i(pr + p · r))

(16)

+ πη2 exp
(
i π

4

)
2
√

2pr
�(1/2 − iη)F (3/2 + iη, 2, i(pr + p · r))

]
,

F̃B(r, p, η) = 1

2
exp

(
πη

2
− i p · r

)[
�(2 − iη)F (iη, 2, i(pr + p · r))

+ πη2 exp
(
i π

4

)
2
√

2pr
�(3/2 − iη)F (1/2 + iη,2, i(pr + p · r))

]
.

Here �(x) is the Euler gamma function, and F (α,β,x) is the confluent hypergeometric function. Then we use the approach of
Ref. [17] based on the integral taken in Ref. [18],∫

d r
r

exp

[
−i Q · r − i

m2ω

2εpεq

λr

]
F (−ia1, 1, i(qr + q · r)) F (ia2, 1, i(pr + p · r))

= 4π

Q2

(
m2ω(1 + ξpλ)

εpξpQ2

)ia1 (
m2ω(1 + ξqλ)

εqξqQ2

)−ia2

F (−ia1,ia2,1,z), (17)

z = 1 − Q2ξpξq(1 + λ)

m2(1 + ξpλ)(1 + ξqλ)
, ξp = 1

1 + δ2
p

, ξq = 1

1 + δ2
q

, δp = εpθp

m
, δq = εqθq

m
, Q = p + q − k.

Here we assume that |λ| ∼ 1. We write g = g0 + δg and g(±) = g(±)
0 + δg(±), where the leading terms are

g0 = N [(ξq − ξp) iηF + (1 − ξp − ξq) (1 − u)F ′], g(±)
0 = N

(εp ∓ εq)

ω
[(ξpδp + ξqδq) iηF + (ξpδp − ξqδq) (1 − u)F ′],

(18)

N = −i
2π

mQ2

(
εqξq

εpξp

)iη

|�(1 − iη)|2, F = F (−iη, iη, 1, u), F ′ = ∂F
∂u

, u = 1 − Q2
⊥

m2
ξpξq.

Here η = Zα and F (a,b,c,x) is the hypergeometric function.
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The first quasiclassical corrections, δg and δg(±), are given by the integrals

δg = πη2 exp
(
i π

4

)
8
√

2

∫
d r√

r
exp(−i Q · r)

{
1√
εq

�(1 − iη)�(1/2 + iη)

×F (iη, 1, i(pr + p · r))F (1/2 − iη, 1, i(qr + q · r)) + ( p ↔ q , η → −η)

}
,

δg(±) = πη2 exp
(
i π

4

)
(εp ∓ εq)

8
√

2εpεq

∫
d r√

r
exp(−i Q · r)

{
1√
εp

�(1 − iη)�(1/2 + iη) (19)

×F (iη, 1, i(pr + p · r))[(n⊥ + θq)(1/2 + iη)F (1/2 − iη, 2, i(qr + q · r))

−n⊥ F (1/2 − iη, 1, i(qr + q · r))] − ( p ↔ q , η → −η)

}
.

In order to take the integral over r , we use the parametrization

1√
r

= exp(iπ/4)√
π

∫ ∞

0

dλ√
λ

exp(−iλr). (20)

Then, we obtain

δg = π3/2η2

2mQ

(
εqξq

εpξp

)iη ∫ ∞

0

dλ√
λ

(
1 + ξpλ

1 + ξqλ

)iη {√
ξp�(1 − iη)�(1/2 + iη)

εq

√
1 + ξpλ

[(
(1/2 − iη)

ξp

1 + ξpλ
+ iη

ξq

1 + ξqλ

)
G

+
(

1

1 + λ
− ξp

1 + ξpλ
− ξq

1 + ξqλ

)
(1 − z)G ′

]
+ ( p ↔ q , η → −η)

}
,

δg(±) = π3/2η2(εp ∓ εq)

2mQω

(
εqξq

εpξp

)iη ∫ ∞

0

dλ√
λ

(
1 + ξpλ

1 + ξqλ

)iη {√
ξp�(1 − iη)�(1/2 + iη)

εq

√
1 + ξpλ

(21)

×
[(

−(1/2 − iη)
ξpδp

1 + ξpλ
+ iη

ξqδq

1 + ξqλ

)
G +

(
ξpδp

1 + ξpλ
− ξqδq

1 + ξqλ

)
(1 − z)G ′

]
− ( p ↔ q , η → −η)

}
,

G = F (1/2 − iη, iη, 1, z), G ′ = ∂G
∂z

.

Here z is defined in Eq. (17).

IV. CALCULATION OF THE PHOTOPRODUCTION CROSS SECTION

Using the matrix element obtained it is easy to write the cross section with all polarizations taken into account. For the cross
section summed over the polarization of the electron and positron, it is necessary to calculate

∑
λ1,2

∣∣Mλ1λ2

∣∣2 = 2[|a0 + a1|2 + |b0 + b1|2] = 2[|a0|2 + |b0|2 + 2 Re(a0a
∗
1 + b0 · b∗

1)], (22)

where we neglect the terms |a1|2 and |b1|2. It follows from Eq. (13) that

Re(a0a
∗
1 + b0 · b∗

1) = 0

for any photon polarization. Thus, the terms with a1 and b1 do not contribute to the next-to-leading correction to the cross section
summed over the electron and positron polarizations. For simplicity, we restrict ourselves to the case of unpolarized photon.
From Eqs. (13), (22), (18), and (21), we have

dσ = αm4 dεp dδp dδq

2π4ω3

[(
ε2
p + ε2

q

)|g(−)|2 + ω2|g|2], (23)
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where we used the relation g(+) = (εp − εq)g(−)/ω [see Eqs. (18) and (21)]. We write dσ = dσs + dσa , where the leading term
is

dσs = 2αm2|�(1 − iη)|4 dεp dδp dδq

π2ω3Q4

{[
(1 − u)

(
ε2
p + ε2

q

) + 2εpεq(ξp − ξq)2
]
η2F2

+ [
u
(
ε2
p + ε2

q

) + 2εpεq(1 − ξp − ξq)2
]
(1 − u)2F ′2}. (24)

Here u and F are defined in Eq. (18). The leading term is symmetric with respect to replacement p ↔ q. The correction dσa

has the form

dσa = −αm2η2|�(1 − iη)|2 dεp dδp dδq

2π3/2ω3Q3
Im

{ ∫ ∞

0

dλ√
λ

(
1 + ξpλ

1 + ξqλ

)iη
√

ξp�(1 − iη)�(1/2 + iη)

εq

√
1 + ξpλ

M + ( p ↔ q , η → −η)

}
,

M = [(ξp − ξq) iηF + (1 − ξp − ξq) (1 − u)F ′]
[
4εpεq(ξpf1 + ξqf2 + f3) + (

ε2
p + ε2

q

)
(f1 + f2 + 2f3)

]
(25)

+ (
ε2
p + ε2

q

)
(1 − u)[(f1 − f2)iηF − u(f1 + f2)F ′],

f1 = (1/2 − iη)G − (1 − z)G ′

1 + ξpλ
, f2 = iηG − (1 − z)G ′

1 + ξqλ
, f3 = (1 − z)G ′

1 + λ
.

Here z and G are defined in Eq. (17). As it should be, the correction dσa is invariant under the replacement p ↔ q , η → −η.
Since i enters this expression only in the combination iη, it is evident that the correction dσa is antisymmetric with respect to
replacement η → −η, as well as with respect to replacement p ↔ q.

V. SPECIAL CASES

If η 
 1, the leading term dσs has the form

dσs = 2αm2η2 dεp dδp dδq

π2ω3Q4

[
Q2

m2
ξpξq

(
ε2
p + ε2

q

) + 2εpεq(ξp − ξq)2

]
. (26)

The correction Eq. (25) at η 
 1 reads

dσa = − αm2η3dεp dδp dδq

2πω3Q3

{
(ξp − ξq)

[
4(εpξp + εqξq) + ω

(
ε2
p + ε2

q

)
εpεq

]
+ (εp − εq)

(
ε2
p + ε2

q

)
εpεq

Q2

m2
ξpξq

}
. (27)

In the limit δp � 1 and δq � 1 this formula reduces to

dσa = − αη3
(
ε2
p + ε2

q

)
dεp dδp dδq

2πεpεqδ2
pδ2

qω
3Q3

[
m2

(
δ2
q − δ2

p

)
ω + (εp − εq)Q2

] = − αη3
(
ε2
p + ε2

q

)
dεp dδp dδq

πδ2
pδ2

qω
3Q3

(θq − θp) · Q. (28)

The correction dσa at η 
 1, δp � 1, and δq � 1 was also investigated in Ref. [19] in scalar electrodynamics. Our result (28),
obtained for fermions, differs from the result of Ref. [19] for scalar particles by the factor (ε2

p + ε2
q)/(εpεq). This factor is equal

to 2 for |εp − εq | 
 ω in accordance with the statement of Ref. [19].

From the experimental point of view, it may be interesting
to consider the case δp � δq � 1 or δq � δp � 1 at η � 1.
Then the leading symmetric term is

dσs = 2αη2ξpξq

(
ε2
p + ε2

q

)
dεp dδp dδq

π2ω3Q2
, (29)

where Q ≈ m|δp + δq |, ξp ≈ 1/δ2
p, and ξq ≈ 1/δ2

q . This term
is proportional to η2 for any η. The leading antisymmetric term
is

dσa = −αm2η2(εpξp − εqξq) (ε2
p + ε2

q) dεp dδp dδq

πεpεqω3Q3
Re g(η),

g(η) = η
�(1 − iη)�(1/2 + iη)

�(1 + iη)�(1/2 − iη)
. (30)

It is also important to consider the asymptotics of the charge
asymmetry in the region |δp + δq | 
 |δp − δq |. In this case,
the arguments u and z of the hypergeometric functions F and
G, as well as the factor [(1 + ξpλ)/(1 + ξqλ)]iη, in Eq. (25)
can be replaced by unity. As a result, we find that dσs ∝ η2

and dσa ∝ η3 for any η, and one can use Eqs. (26) and (27)
for this region.

Integration of Eq. (24) over δp gives, for dσs [17],

dσs = 4αη2ξ 2
p dδp dεp

πm2ω3

{(
ε2
p + ε2

q

)
(L + 3/2)

+ εpεq[1 + 4ξp(1 − ξp)L ]
}
, (31)

L = ln

(
2εpεq

mω

)
− 2 − Re[ψ(1 + iη) + C],
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FIG. 2. The dependence of dσa

dεp dδp
in units α

mω2 on δp for a
few values of x = εp/ω: x = 0.25 (solid curves), x = 0.5 (dashed
curves), and x = 0.75 (dotted curves); η = 0.54 (tungsten).

where C = 0.577 . . . is the Euler constant. The integration
over δp gives the well-known result [8]

dσs = 4αη2

m2ω3

(
ε2
p + ε2

q + 2

3
εpεq

) (
L + 3

2

)
dεp. (32)

We have performed numerical integration of Eq. (25) over δq .
Figure 2 shows the result of this integration, dσa

dεp dδp
in units

α
mω2 as a function of δp for a few values of x = εp/ω.

The cross section dσa integrated over both δp and δq was
obtained in our previous paper [10] and has the form

dσa = −π3αη2(εp − εq)(2ω2 − 3εpεq) dεp

4mω3εpεq

Re g(η). (33)

The result of numerical integration of Eq. (25) over δp and δq

is in agreement with the above result.

VI. COMPTON-TYPE CONTRIBUTION

In this section we estimate the contribution of the Compton-
type amplitude to the photoproduction cross section. Since this
amplitude is small in comparison with the leading amplitude
found above, it is necessary to take into account only the
interference between the Compton-type amplitude and the
leading amplitude. The leading amplitude is enhanced at small
angles θp and θq of the final particles. Therefore, it is sufficient
to calculate the Compton-type amplitude also at θp, θq 
 1.
For real initial and final photons with ω 
 mA (mA is the
nuclear mass), the nuclear Compton scattering amplitude,
corresponding to the left-hand diagram in Fig. 3, in the forward
direction reads

MC = T (ω) e1 · e∗
2, (34)

FIG. 3. Real Compton scattering diagram (left) and Compton-
type diagram for pair production by a photon in a strong Coulomb field
(right). Thick lines correspond to the positive- and negative-energy
solutions of the Dirac equation in the Coulomb field. Double line
denotes nucleus.

where T (ω) is the function measured for many nuclei (see
Ref. [20]), and e1 and e2 are the photon polarization vectors of
the initial and final photons, respectively. The function T (ω)
satisfies the relations

T (0) = −Z2e2

mA

, Im T (ω) = ω

4π
σγN (ω),

Re [T (ω) − T (0)] = ω2

2π2
P
∫ ∞

0

σγN (ω)

ω′2 − ω2
dω′, (35)

where σγN (ω) is the nuclear photoabsorption cross section and
P denotes the integration in the principal value sense. Below
the pion photoproduction threshold, the cross section σγN (ω)
is conventionally written as a superposition of Lorentzian lines

σγN (ω) =
∑

n

σn

(ω�n)2(
E2

n − ω2
)2 + (ω�n)2

, (36)

where the parameters σn, En, and �n are extracted from the
experiment. The corresponding function T (ω) has the form

T (ω) = −Z2e2

mA

+ ω2

4π

∑
n

σn�n

E2
n − ω2 − iω�n

. (37)

Below the pion threshold, but above the resonance region (ω �
En), the function T (ω) has the form

T (∞) = −Z2e2

mA

− 1

4π

∑
n

σn�n. (38)

The last term in this asymptotics is equal to (1 + κ)NZe2/mA,
where κ is the so-called enhancement factor (see Ref. [20]),
and N is the number of neutrons, and we obtain

T (∞) = −Ze2

mp

(
1 + N

A
κ

)
, (39)

where mp is the proton mass, and A = Z + N . For heavy
nuclei κ ∼ 0.3–0.4 [21], so that

T (∞)/T (0) ∼ 3.

Using the function T (ω), we write the additional contribu-
tion to the photoproduction amplitude, corresponding to the
right-hand diagram in Fig. 3, as follows:

M̃λ1λ2 = −T (ω)
∫

dκ

(2π )3

4π

ω2 − κ2 + i 0

(
e − (κ · e)

ω2
κ

)

·
∫

d r ū
(out)
λ1 p (r) γ v

(in)
λ2q(r) exp (iκ · r). (40)

We assume that θp 
 1 and θq 
 1. Taking the integral over
κ we obtain

M̃λ1λ2 = T (ω)
∫

d r
r

ū
(out)
λ1 p (r) [e − (n · e)n]

· γ v
(in)
λ2q(r) exp (iωr), (41)

where n = r/r . The main contribution to the integral over r
is given by the region p · r ∼ pr ∼ ω2/m2 and q · r ∼ qr ∼
ω2/m2. In this case

FA(r, p, η) = F̃B(r, p, η) = exp(−i p · r)

2(pr + p · r)iη
,

FB(r, p, η) = exp(−i p · r)

2(pr + p · r)iη+1
. (42)
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Using these asymptotics and taking the integral over r we
arrive at the Compton-type correction to the photoproduction
amplitude,

M̃λ1λ2 = φ+
λ1

(ã + σ · b̃)χλ2 ,

ã = iÑ [ν × e] · ϑ , b̃ = Ñ
(εp − εq)

ω
(e · ϑ) ν,

(43)

Ñ = 2π T (ω)

mω

(
εq

εp

)iη 1

1 + ϑ2
,

ϑ = εpεq

mω
(θp − θq) = εqδp − εpδq

ω
.

The corresponding correction to the cross section has the
form

dσ̃ = 4αm4 dεp dδp dδq

(2π )4ω
Re(a0ã

∗ + b0 · b̃
∗
)

= 8αm4
(
ε2
p + ε2

q

)
dεp dδp dδq

(2π )4ω3
Re[(g(−)

0 · ϑ)Ñ∗]. (44)

This correction contains both symmetric and antisymmetric
parts with respect to replacement η → −η. The symmetric
part is proportional to Im T (ω) and the antisymmetric part is

proportional to Re T (ω):

dσ̃a = 2αm2|�(1 − iη)|2(ε2
p + ε2

q

)
dεp dδp dδq

π2ω4(1 + ϑ2)Q2
Re T (ω)

× (ϑ · [cos μ (ξpδp + ξqδq) ηF
+ sin μ (ξpδp − ξqδq) (1 − u)F ′]), (45)

μ = η ln

(
ξq

ξp

)
.

VII. DISCUSSION

In quantum electrodynamics, an electron differs from a
positron only by its charge. Therefore, the cross section of
e+e− pair photoproduction satisfies the relation

dσ ( p, q, η) = dσ (q, p,−η).

We define the charge asymmetry A as

A = dσ ( p, q, η) − dσ ( p, q,−η)

dσ ( p, q, η) + dσ ( p, q,−η)

= dσ ( p, q, η) − dσ (q, p, η)

dσ ( p, q, η) + dσ (q, p, η)
. (46)
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FIG. 4. The dependence of A on δp in units m/ω for a few values of δq , ϕ, and x = εp/ω: x = 0.25 (solid curves), x = 0.5 (dashed curves),
and x = 0.75 (dotted curves), η = 0.54 (tungsten).
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FIG. 5. The dependence of A on η = Zα in units m/ω for δp = 2, δq = 4, and a few values of x and ϕ. The solid curve represents the
exact-in-η result, and the dashed curve is obtained in the leading-in-η approximation (linear in η).

Let us first neglect dσ̃a and calculate R as a ratio of dσa

in Eq. (25) and dσs in Eq. (24). Outside the very narrow
region Q⊥ � |Q‖| = |ν · Q| ∼ m2/ω, we can replace Q2 →
Q2

⊥ = m2(δp + δq)2. Then, at fixed δp, δq , and x = εp/ω, the
asymmetry A scales as m/ω, as can be seen from Eqs. (25)
and (24). Figure 4 shows the dependence of A on δp in units
m/ω for tungsten (η = 0.54) for a few values of δq and ϕ,
where ϕ is the angle between vectors δp and δq . It is seen that
the charge asymmetry may be rather large (A ∼ 20–30% for
ω/m = 50). The asymmetry is large when δp and/or δq are
much larger than unity. Note that this statement is also valid
in the region |δp + δq | 
 |δp − δq | (but δp � 1 and δq � 1).

For ϕ = π , one can see a jump in A at δp = δq where
| Q⊥| = 0. At this point A changes its sign. The origin of
the jump is the following. As it was shown in Sec. V, at
Q⊥/m 
 |δp − δq | one can use Eqs. (26) and (27) for any η;
see discussion following Eq. (30). In this region, for Q⊥ �
m2/ω, we have dσs ∝ 1/Q2 and dσa ∝ 1/Q2 so that dσa/dσs

is finite. However, for ϕ = 0 the ratio dσa/dσs has opposite
sign for δp > δq and δp < δq . Therefore, the dependence A on
δp at ϕ = π looks like a jump though it is a rapidly varying
continuous function in the very narrow region Q⊥ ∼ m2/ω,
which is not considered in this paper.

Note that screening should be taken into account only in
the very narrow region | Q⊥| � r−1

scr ∼ mαZ1/3 
 m, where

rscr is the atomic screening radius. Outside of this region, at
(δp + δq)|ϕ − π | � αZ1/3 or |δp − δq | � αZ1/3, screening is
unimportant.

It is interesting to understand the importance of high-
order-in-η terms in the charge asymmetry. Figure 5 shows the
dependence of A on η = Zα in units m/ω for δp = 2, δq = 4,
and a few values of x = εp/ω and ϕ. The dashed curve in this
figure is obtained in the leading-in-η approximation (linear

0 1 2 3 4 5

0.00

0.05

0.10

δp

A
1

FIG. 6. The dependence of A1 on δp for x = 0.25 (solid curves),
x = 0.5 (dashed curves), and x = 0.75 (dotted curves); η = 0.54
(tungsten), ω/m = 50.
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FIG. 7. Contribution Ã as a function of δp for ω/m = 200, Z = 1
(proton), x = εp/ω = 0.6, δq = 30, ϕ = 0.

in η). It is seen that η dependence is very strong even for
intermediate values of η. Let us also introduce the charge
asymmetry A1 for the cross section integrated over the angles
of one of the particles,

A1 = dσ ( p, η) − dσ ( p,−η)

dσ ( p, η) + dσ ( p,−η)
. (47)

We calculate the nominator in A1 integrating dσa in Eq. (25)
over δq and the denominator using Eq. (31). Figure 6 shows the
dependence of A1 on δp for η = 0.54 (tungsten), ω/m = 50,
and a few values of x. Note that A1, in contrast to A, does
not scale as m/ω due to logarithmic dependence of dσs( p,η)
on ω; see Eq. (31). It is seen that A1 is noticeable though it is
smaller than A. The charge asymmetry corresponding to the
cross section integrated over the angles of both particles (over
δp and δq) is very small (see Ref. [10]).

Let us discuss now the contribution Ã to the charge
asymmetry,

Ã = dσ̃a( p, q, η)

dσs( p, q, η)
, (48)

where dσ̃a( p, q, η) is given by Eq. (45) and dσs( p, q, η) is
given by Eq. (24).

In the region δp ∼ δq ∼ 1, we have dσ̃a/dσa ∼ m/(ηmp)
and dσa/dσs ∼ ηm/ω. In this region, dσ̃a may be comparable
with dσa only for light nuclei (η 
 1), where the asymmetry
is very small.

In the region δp ∼ 1, δq � 1, we have dσ̃a/dσa ∼
m/(ηmp) and dσa/dσs ∼ ηθq . Again, dσ̃a may be comparable
with dσa only for light nuclei where the asymmetry is very
small.

The only region where dσ̃a � dσa and Ã is not too small
is η 
 1, δp � 1, δq � 1, but ϑ = εpεq

mω
|θp − θq | ∼ 1. In this

region the ratio dσ̃a/dσa is

dσ̃a

dσa

= − 2
(
1 + N

A
κ

)
ε2
pε2

qθ
3
p

π (1 + ϑ2) η ωm2mp

, (49)

and may be larger than unity. Here we took into account that
θp ≈ θq � m/ω but |θp − θq | ∼ m/ω. For the contribution Ã
to the charge asymmetry we have

Ã = dσ̃a

dσs

= −
(
1 + N

A
κ

)
εpεqθ

2
p (θp · ϑ)

(1 + ϑ2)mmp

, (50)

where ϑ = (θp − θq)εpεq/(mω), so that Ã may reach about
10% at large transverse momenta compared to the electron
mass (see Fig. 7). In this figure, Ã = 0 in the point cor-
responding to the condition ϑ = 0, which is equivalent to
δp = δqx/(1 − x).

VIII. CONCLUSION

We have derived exactly in the parameter η = Zα the
charge asymmetry A, Eq. (46), in the process of e+e−
photoproduction in a Coulomb field at photon energy ω � m,
εp � m, and εq � m. This asymmetry is related to the first
quasiclassical correction to the differential cross section of
the process, Eq. (25). When p⊥ and/or q⊥ are much larger
than the electron mass m, the charge asymmetry can be as
large as tens percent. The charge asymmetry A1, Eq. (47),
in the cross section integrated over the transverse momenta
of one of the particles is several times smaller than the
asymmetry A in the cross-section differential with respect
to the transverse momenta of both particles. We have also
estimated the contribution Ã, Eqs. (45) and (48), to the
charge asymmetry of the Compton-type diagram. For η ∼ 1,
this contribution is negligible. The only region where Ã can
be important is η 
 1 (light nucleus); θp ≈ θq � m/ω but
|θp − θq | ∼ m/ω. Though we have performed our calculation
for the pure Coulomb field, our results are also applicable
for photoproduction in the electric field of atoms except the
very narrow region Q � r−1

scr ∼ mαZ1/3 
 m. Note that the
effect of the finite nuclear size, coming from the difference
between the electric field inside the nucleus and the Coulomb
field, is not important for the process under consideration
because the characteristic distances for our process are of the
order of the Compton wavelength, which is much larger than
the nuclear radius for all Z. Our results clearly demonstrate
that experimental observation of the charge asymmetry in
the process of e+e− photoproduction in a Coulomb field is
a realistic task.
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