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Highly polarized Fermi gases across a narrow Feshbach resonance
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We address the phase of a highly polarized Fermi gases across a narrow Feshbach resonance starting from
the problem of a single down-spin fermion immersed in a Fermi sea of up spins. Both polaron and pairing
states are considered using the variational wave function approach, and we find that the polaron-to-pairing
transition will take place on the BCS side of the resonance, strongly in contrast to a wide resonance where
the transition is located at the BEC side. For the pairing phase, we find the critical strength of the repulsive
interaction between pairs above which the mixture of pairs and fermions will not phase separate. Therefore,
nearby a narrow resonance, it is quite likely that magnetism can coexist with s-wave BCS superfluidity at large
Zeeman fields, which is a remarkable property absent in conventional BCS superconductors (or fermion-pair
superfluids).
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Whether an s-wave superconductor (or fermion-pair super-
fluid) can coexist with magnetism is a long-standing issue in
condensed matter physics. Back in the 1960s, Chandrasekhar
and Clogston independently considered the response of a BCS
superconductor to spin polarization due to a Zeeman field
[1,2]. They found that an s-wave superconductor will remain
unpolarized until a critical Zeeman energy hc ∼ �/

√
2, where

� is the pairing gap, at which point the system undergoes a
sharp phase transition to a partially polarized normal state.
This critical field is now known as the Chandrasekhar-Clogston
(CC) limit of the superconductor. In this scenario, supercon-
ductivity cannot coexist with magnetism. Later on, several
proposals were made for magnetized s-wave superconduct-
ing states; the most famous being the Fulde-Ferrell-Larkin-
Ovchinnikov state [3] and the Sarma State [4]. However, so
far none of them have been firmly observed in an s-wave BCS
superconductor.

In the last few years, this problem has been revisited
by a series of experiments on two-component Fermi gases
with population imbalance [5–9]. Experiments have reached
a consensus that, in the resonance regime and on the BCS
side, there is a CC limit where a direct transition from
a fully paired fermion superfluid to a partially polarized
normal state has been observed, and no evidence of a
magnetized superfluid has been found [5,8–10]. However, all
these studies were done across a wide resonance. Recently,
several experimental groups have begun to study narrow
Feshbach resonances, such as 6Li at 543.25 G [11] or 6Li-40K
mixtures at 154.719 G [12], where the effect of a finite
resonance width needs to be taken into account. In this Rapid
Communication we find that the resonance width indeed has
dramatic effects on the physics of highly polarized Fermi
gases.

In contrast to a wide resonance, to characterize a Fermi gas
nearby a narrow resonance one not only needs kFa

0
s , where

a0
s is the zero-energy scattering length between fermions,

but one also needs to consider the dimensionless parameter
h̄2kF/(2mWabg), where m is the mass of the atom, W is the
width of a resonance, and abg is the background scattering
length. If h̄2kF/(2mWabg) � 1 the resonance is considered

to be a narrow one. Another dimensionless quantity is kFabb

where abb is the scattering length between closed channel
molecules. In this work we focus on the highly polarized limit
and show that all three of these parameters play an important
role in determining the nature of many-body phases. This work
contains two parts:

First, we consider a single down spin immersed in a Fermi
sea of up spins. Two different types of states are compared,
which are the polaronic state and the pairing state. For the
polaronic state, the single down spin is dressed by particle-hole
pairs of up spins, and becomes a fermionic quasiparticle [13].
If this state has lower energy, the system will be a normal state
of polaron Fermi liquid at sufficiently high polarization. For
the pairing state, one of the up spins will form a bound state
with the single down spin. If this state has lower energy, each
down spin will form a pair, and the system will be a mixture of
condensed pairs and majority fermions. For a wide resonance,
a polaron-to-pairing transition takes place on the BEC side of
the resonance [14–16]. Here we show that, as the width of
resonance gets narrower, the transition point will be shifted
toward the BCS side. We find how the critical value of (kFa

0
s )c

changes with the quantity h̄2kF/(2mWabg).
Second, when the pairing state has lower energy, the

mixture of pairs and fermions may phase separate due to the
repulsion between pairs and fermions. A sufficiently strong
repulsion between pairs is crucial to stabilize a uniform
mixture. For a given h̄2kF/(2mWabg), we find the critical
repulsion (kFabb)c as a function of kFa

0
s .

Hence, we conclude that when 1/(kFa
0
s ) > 1/(kFa

0
s )c and

kFabb > (kFabb)c, it is energetically favorable for minority
fermions to form pairs, and a condensate of fermion pairs
can uniformly mix with majority fermions; that is, magnetism
can coexist with fermion-pair superfluids in highly polarized
Fermi gases. The fact that this can happen on the BCS side and
resonance regime represents a significant distinction between
narrow and wide resonances. As far as the response to spin
polarization is concerned, at resonance, or even on the BCS
side, this system behaves similar as on the BEC side of a
wide resonance. This picture is also consistent with a recent
high-temperature study of narrow resonances [17].
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Model. We use the following two-channel model Ĥ =
Ĥ0 + V̂c + V̂bg + V̂bb to describe a narrow resonance:

Ĥ0 =
∑

k

(
εb

k + ν0
)
b
†
kbk +

∑
k

(
εu

ku
†
kuk + εd

kd
†
kdk

)
, (1)

V̂c = g0

∑
kq

�k(b†qdq−kuk + u
†
kd

†
q−kbq), (2)

V̂bg = U0

∑
kk′q

�k�k′u
†
kd

†
q−kdq−k′uk′ , (3)

V̂bb = 1
2Ubb

∑
kk′q

b
†
kb

†
q−kbq−k′bk′ , (4)

where u† and d† are creation operators for majority up spin and
minority down spin, respectively, b† is the creation operator for
bosonic closed channel molecules, εb

k = h̄2k2/[2(mu + md)],
and ε

u/d
k = h̄2k2/(2mu/d). γ = md/mu is the mass ratio. V̂c and

V̂bg represent the interchannel coupling and the background
scattering, respectively. �k = �(� − |k|) and � is the mo-
mentum cutoff. In the Hamiltonian, the molecule detuning ν0,
the interchannel coupling g0, and the background interaction
parameter U0 are bare quantities with � dependence, which
need to be renormalized as follows [18,19]: ν0(�) = νr −
[1 − Z(�)]g2

r /Ur, g0(�) = Z(�)gr, and U0(�) = Z(�)Ur,
where Z(�) = (1 − Urmr�/π2)−1, 1/mr = 1/mu + 1/md,
and Ur = 2πabg/mr. The renormalized quantities Ur, gr, and
νr are related to as as

2πas(E)

mr
=

[(
U0 + g2

0

E − ν0

)−1

+ mr�

π2

]−1

= Ur + g2
r

E−νr
,

and the zero-energy scattering length a0
s is given by a0

s =
mr(Ur − g2

r /νr)/(2π ). Denoting νr = �μ(B − B0), where B0

is the location of the resonance and �μ is the difference
of magnetic moment between two channels, and introduc-
ing W = g2

r /Ur, we have a0
s = abg{1 − W/[�μ(B − B0)]},

and as(E) = abg{1 + W/[E − �μ(B − B0)]}, where Wabg is
always positive. For Ubb, since we only consider it to the
mean-field order, we will take it as Ubb = 4πh̄2abb/(mu + md).
Our following results will be presented in terms of physical
parameters (W , B0, kFa

0
s , kFabg, and kFabb).

Polaronic state. We first adopt the following variational
wave function which includes one-particle-hole contribution:

|ψp〉 =
[
φ0d

†
0 +

∑
kq

′φkqu
†
kd

†
q−kuq +

∑
q

′ηqb
†
quq

]
|FS〉. (5)

Here and below, all the summations with the prime (′) of k and
q are restricted to |k| > kF and |q| < kF, respectively. After
energy minimization we obtain a self-consistent equation for
polaron energy:

E =
∑

q

′�2
(
q,E + εu

q

)
, (6)

where �2(q,E + εu
q) coincides with a two-particle vertex with

total momentum q and total energy E + εu
q within the ladder

approximation. This is because the variational wave function
|ψp〉 describes the processes whereby an up spin (taken out
from an occupied state q) and the single down spin undergo
repeated scattering, as well as coherent conversion between
open and closed channels. This physical process is precisely
what is captured by the ladder approximation.
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FIG. 1. (Color online) Polaron energy as a function of
h̄2kF/(2muWabg). (a) γ = 1 and different interaction parame-
ters: 1/(kFa

0
s ) = 0 (dashed line) and 1/(kFa

0
s ) = −2 (solid line).

(b) 1/(kFa
0
s ) = 0 with different mass ratios: γ = 6/40 (solid line),

γ = 40/6 (dashed line), and γ = ∞ (dash-dotted line). All curves
result from the one-particle-hole approximation, while solid black
dots show results including two-particle-hole pair contributions. kFabg

is chosen as −0.1. We also set h̄ = 1 in all figures to simplify the
presentation.

The explicit form of �2(q,E + εu
q) is given as

�2(q,E + εu
q)=

[
mr

2πas
(
E + εu

q − εb
q

) + I
(
q,E + εu

q

)]−1

, (7)

where I (q,E + εu
q) = ∑′

k 1/[εu
k + εd

q−k−(E + εu
q)] − ∑

k 1/

(εu
k + εd

−k). The difference between Eq. (7) and the previous
results for a wide resonance [13,14] is that a constant as is
replaced by an energy-dependent one as(E + εu

q − εb
q), where

E + εu
q − εb

q represents the energy of the relative motion for
two atoms undergoing repeated scatterings.

The polaron energy as a function of h̄2kF/(2muWabg) is
plotted in Fig. 1 from solving the self-consistency equation
(6). As one can see, when the dimensionless parameter
h̄2kF/(2muWabg) increases from zero, (i) for γ = 1, and
nearby resonance 1/(kFa

0
s ) ≈ 0, the polaron energy E will

increase, while at the BCS side 1/(kFa
0
s ) � 0, E will decrease;

and (ii) at resonance, if γ is greater than a critical value, E

will also decrease. We have also checked the energy conver-
gence by considering two-particle-hole contributions [20,21].
The numeric solutions with two-particle-hole contributions
are shown as dots in Fig. 1. For γ = 1, one can see that the
corrections from two-particle-hole pairs are always negligibly
small, and it becomes even smaller as |W | decreases. While
for γ → ∞, the deviation is a little larger [dashed line and the
dots in Fig. 1(b)], as already noted for a wide resonance in [20],
but it is still within only a few percent. This result justifies the
validity of the expansion in terms of the number of particle-
hole pairs in computing energy for a narrow resonance.

Pairing state. For the pairing state, we use the variational
wave function first introduced in Ref. [14]:

|ψm〉 =
[
η0b

†
0 +

∑
k

′Aku
†
kd

†
−k +

∑
kq

′φkqb
†
q−ku

†
kuq

+
∑
k′kq

′
kk′qu
†
k′d

†
q−k−k′u

†
kuq

]
|FS′〉, (8)
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FIG. 2. (Color online) Pairing-state energy as a function of
h̄2kF/(2muWabg). (a) Mass ratio γ = 1 and different interaction
parameters: 1/(kFa

0
s ) = 0 (dashed line), 1/(kFa

0
s ) = −1 (solid line),

and 1/(kFa
0
s ) = 1 (dash-dotted line). (b) 1/(kFa

0
s ) = 0 but different

mass ratios: γ = 6/40 (solid line), γ = 40/6 (dashed line), and γ =
∞ (dash-dotted line). All the curves are computed from bare pairs,
while the dots, crosses, and triangles are results with one-particle-hole
contributions. Inset of (a) shows the atom-dimer scattering length aab

(in units of
√

muEb/h̄ with Eb being the two-body binding energy)
as a function of νr/W . kFabg is chosen as −0.1.

where |FS′〉 refers to the Fermi sea with one spin-↑ particle
removed from the Fermi surface of |FS〉 in the polaron state (5).
If we only consider bare pair wave functions without including
particle-hole contributions, the pairing-state energy is given
by �−1

2 (0,E + εF ) = 0, as shown in the lines of Fig. 2. The
interaction between pair and majority up spins can be described
by including particle-hole pairs. Up to one particle-hole pair,
by minimizing energy, we obtain a closed integral equation
[21], and the numeric solution of these equations is also
shown in Fig. 2. We find that, as kF/(2muWabg) increases,
the pairing-state energy decreases at the BCS side and in the
resonance regime, despite different mass ratios; whereas it
increases on the BEC side. Another important feature one can
find from Fig. 2 is that, in the limit W → 0, the pairing-state
energy always saturates to −εF . This can be understood as
follows: when one down spin is added into the system, an
up spin is taken out from the Fermi sea (subtract energy εF )
to form a pair with the down spin, whose energy approaches
νr in the limit W → 0. Thus the pairing-state energy should
approach −εF + νr [22]. Moreover, at any fixed a0

s the ratio
W/νr is fixed, thus νr → 0 and therefore the pairing-state
energy always approaches −εF as W → 0. This also indicates
that the interaction between a pair and the residual majority
atoms vanishes in the limit W → 0. We have performed a
three-body calculation and find the atom-dimer scattering
length aab from the asymptotic behavior of the three-body
wave function [21,23], as shown in the inset of Fig. 2(a),
which indeed shows aab → 0 as W → 0.

Polaron-pairing transition. The transition from polaronic
state to pairing state can now be determined by comparing
their energies. In Figs. 3(a) and 3(b) we consider two concrete
samples studied in current experiments: 6Li at 543.25 G and
an 6Li-40K mixture at 154.719 G, and the parameters are
typical values taken from experimental papers [11,12,24]. We
found that, in both cases, the polaron-to-pairing transition is
located on the BCS side of the resonance, which is away
from resonance with �μ(B − B0) on the order of εF . At the
transition points, 1/(kFa

0
s ) = −4.35 for 6Li and 1/(kFa

0
s ) =

−0.55 for the 6Li-40K mixture, where the systems are very
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FIG. 3. (Color online) Comparison of polaron energy (solid line)
and pairing-state energy (dashed line) as a function of zero-energy
scattering length for 6Li-40K mixture (a) and 6Li (b). For (a), we
take kFabg = 0.022 and W = 54.91εF [24], and for (b) we take
kFabg = 0.016 and W = 12.2εF [11]. In (a), 40K is taken as minority
component. Panels (c) and (d) show the critical value of the transition
1/(kFa

0
s )c as a function of h̄2kF/(2muWabg). For (c), γ = 1 but with

different kFabg: kFabg = −0.1 (solid line) and kFabg = 0.1 (dashed
line). For (d), kFabg = 0.01 but with different γ : γ = 6/40 (solid
line), γ = 1 (dash-dotted line), and γ = 40/6 (dashed line). Inset of
(c) shows the critical value of the transition in term of νc

r (in unit of
εF ) as a function of h̄2kF/(2muWabg).

BCS like. This transition has also been observed in a recent
experiment on 6Li-40K mixtures and the transition is indeed
observed on the BCS side [24].

In Fig. 3(c) and 3(d), we plot the critical value
1/(kFa

0
s ) for the polaron-to-pairing transition as a function of

kF/(2muWabg). One finds that, when h̄2kF/(2muWabg) � 1,
the transition will be shifted to the BCS side. This condition is
equivalent to |W |/εF � 1/|kFabg|. Since usually kFabg � 1,
it means that the resonance width does not need to be very
narrow. One also notes that the transition point is not sensitive
to the value of kFabg itself [Fig. 3(c)] but is sensitive to the
mass ratio [Fig. 3(d)]. The inset of Fig. (3(c)) shows that, in
the limit W → 0, the critical point will approach νc

r → εF ,
which means that the pairing state will be favored once the
energy of closed channel molecule is below the Fermi energy.

Stability of mixture. The discussion above concludes that,
for a sufficiently narrow resonance, the highly polarized Fermi
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FIG. 4. (Color online) Critical value required for kFabb to prevent
phase separation as a function of 1/(kFa

0
s ) for 6Li-40K mixture (a) and

6Li (b).
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gases contain a mixture of majority fermions and bosonic pairs.
The next question is whether they will uniformly mix or phase
separate. To answer this question, we note that, for a very low
density of down spins and a sufficiently narrow resonance, we
can expand the equation of state in terms of the density of
bosonic pairs nb up to the second order [25]:

E = EF + μ0
bnb + 1

2gn2
b, (9)

where EF is the energy density of spin-↑ Fermi sea, and
μ0

b = E + εF where E is the pairing-state energy computed
above. The repulsion g = [4πh̄2/(mu + md)]abb + gind con-
tains the contribution from the bare interaction between closed
channel molecules and the induced interaction gind from
the interchannel coupling, which is calculated within Born
approximation [21]. From Eq. (9) we obtain

μb = ∂E
∂nb

= μ0
b + gnb, (10)

μ↑ = ∂E
∂n↑

= εF + ∂μ0
b

∂n↑
nb + O

(
n2

b

)
, (11)

The stability condition against phase separation is given by
∂μ↑
∂n↑

∂μb

∂nb
− ∂μ↑

∂nb

∂μb

∂n↑
> 0 [26], from which we can determine the

critical value for abb. The results are plotted in Fig. 4(a) for
the 6Li-40K mixture and in Fig. 4(b) for 6Li in the regime
where the pairing state is favorable. We can see that it requires
kFabb > 0.81 for 6Li-40K mixture, and kFabb > 0.017 for 6Li
at resonance. Very likely, this condition can be satisfied in 6Li
but not in the 6Li-40K mixture.

Note added. Recently, we became aware of the experimental
work from Innsbruck group in which the polaron properties
and the polaron-to-pairing transition has been observed [24].
We also became aware of two other related theoretical works
[27,28].
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