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Macroscopic quantum computation using Bose-Einstein condensates
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We analyze quantum computation using quantum information stored on two component Bose-Einstein
condensates (BECs). We construct a general framework for quantum algorithms to be executed using the
collective states of the BECs. The use of BECs allows for an increase of energy scales via bosonic enhancement,
resulting in two-qubit gate operations that can be performed at a time reduced by a factor of N , where N is the
number of bosons in the BEC. We illustrate the scheme by an application to Grover’s algorithm, and discuss
possible experimental implementations and decoherence effects.
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In a recent set of experiments, two-component Bose-
Einstein condensates (BECs) were realized on atom chips
realizing full coherent control on the Bloch sphere and spin
squeezing [1–3]. Currently, the primary application for such
two-component BECs is thought to be for quantum metrology
[4] and chip-based clocks. In this Rapid Communication we
discuss their application toward quantum computation. Al-
though BECs have been considered for quantum computation
in the past [5], the results have shown to have been generally
unfavorable for these purposes due to enhanced decoherence
effects due to the large number of bosons N in the BEC. In
this work we consider a different encoding of the quantum
information, which to a large extent mitigates this problem.
We develop the framework for quantum computation using
this encoding, illustrated with several quantum algorithms,
and discuss decoherence effects.

Consider a BEC consisting of bosons with two independent
degrees of freedom, such as two hyperfine levels in an atomic
BEC or spin polarization states of exciton polaritons [4,6].
Denote the bosonic annihilation operators of the two states as a

and b, obeying commutation relations [a,a†] = [b,b†] = 1 [7].
We encode a standard qubit state α|0〉 + β|1〉 in the BEC using
a class of states

|α,β〉〉 ≡ 1√
N !

(αa† + βb†)N |0〉, (1)

where α and β are arbitrary complex numbers satisfying |α|2 +
|β|2 = 1 (double angle brackets are used to denote the class of
states as defined above). For simplicity let us first consider the
boson number N = a†a + b†b to be a conserved number. The
quantum information of the standard qubit state is therefore
encoded by N bosonic particles with a collective Hilbert space
dimension of N + 1.

The state (1) can be visualized by a vector on the
Bloch sphere with an angular representation α = cos(θ/2),
β = sin(θ/2)eiφ . Points on the Bloch sphere form a set of
pseudo-orthogonal states for large N . The overlap between
two states can be calculated to be

〈〈α′,β ′|α,β〉〉 = e−i(φ−φ′)N/2
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For example, for φ = φ′ the overlap simplifies to

〈〈α′,β ′|α,β〉〉 = cosN
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)
≈ exp
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−N (θ − θ ′)2

8

)
.

Thus beyond angle differences of the order of θ − θ ′ ∼ 1/
√

N ,
the overlap is exponentially suppressed.

The state |α,β〉〉 can be manipulated using Schwinger
boson (Stokes operators) operators Sx = a†b + b†a, Sy =
−ia†b + ib†a, Sz = a†a − b†b, which satisfy the usual spin
commutation relations [Si,Sj ] = 2iεijkS

k , where εijk is the
Levi-Civita antisymmetric tensor. In the spin language, (1)
forms a spin-N/2 representation of the SU(2) group (we
omit the factor of 2 in our spin definition for convenience).
Single-qubit rotations can be performed in a completely
analogous fashion to regular qubits. For example, rotations
around the z axis of the Bloch sphere can be performed by an
evolution

e−i�Szt |α,β〉〉 = 1√
N !

N∑
k=0

(
N

k

)
(αa†e−i�t )k(βb†ei�t )N−k|0〉

= |αe−i�t ,βei�t 〉〉. (2)

Similar rotations may be performed around any axis by an
application of

H1 = h̄�n · S = h̄�(nxS
x + nyS

y + nzS
z), (3)

where n = (nx,ny,nz) is a unit vector. Expectation values of
the spin are identical to that of a single spin (up to a factor of
N ), taking values

〈Sx〉 = N (α∗β + αβ∗),

〈Sy〉 = N (−iα∗β + iαβ∗), (4)

〈Sz〉 = N (|α|2 − |β|2).

Due to the above analogous properties of BEC qubits in
relation to standard qubits, a two-component BEC in the class
of states (1) hereafter will be called a “BEC qubit,” or simply
“qubit” for short.

Two-qubit gates can be formed by any product
of the Schwinger boson operators of the form H =∑

i,j=x,y,z h̄�ijS
i
1S

j

2 , where �ij are real symmetric param-
eters. The combination of single-qubit gates and H2 may
be combined to form an arbitrary Hamiltonian involving

040306-11050-2947/2012/85(4)/040306(4) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.040306


RAPID COMMUNICATIONS

TIM BYRNES, KAI WEN, AND YOSHIHISA YAMAMOTO PHYSICAL REVIEW A 85, 040306(R) (2012)

z

y

x

zS N=
2zS N= −

zS N= −qubit 1
qubit 2

Ωt =
4N

π
for

FIG. 1. (Color online) A schematic representation of the entan-
gled state (7).

spin operators according to universality arguments [8]. By
successive commutations an arbitrary product of spin Hamil-
tonians H ∝ ∏M

n=1(Sj
n )m(n) may be produced, where M is the

total number of qubits, j = x,y,z, and m(n) = 0,1. Although
in general higher-order operators may be constructed [e.g.,
m(n) � 2], our aim here is to perform the analogous operations
to a standard qubit system using the BEC qubits. Since for
Pauli operators (σ j )2 = 1, such higher-order operators are
unnecessary for our purposes.

A key difference between Pauli operators and the
Schwinger boson operators are that σ j ∼ O(1), whereas Sj ∼
O(N ). This makes the two-qubit interaction H2 ∼ O(N2). The
consequence of the boosted energy scale of the interaction can
be observed by examining explicitly the state evolution of two
qubits. For simplicity, let us consider henceforth consider the
interaction Hamiltonian

H2 = h̄�Sz
1S

z
2. (5)

This may be done without any loss of generality since an
arbitrary two-qubit interaction can be converted to (5) by
universality arguments. As a simple illustration, let us perform
the analog of the maximally entangling operation

e−iσ z
1 σ z

2
π
4 (|↑〉 + |↓〉)(|↑〉 + |↓〉) = | + y〉|↑〉 + | − y〉|↓〉,

(6)

where |± y〉 = e∓i π
4 |↑〉 + e±i π

4 |↓〉. Starting from two unen-
tangled qubits, we apply H2 to obtain

e−i�Sz
1S

z
2 t
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2
,

1√
2

〉〉∣∣∣∣ 1√
2
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1√
2

〉〉

= 1√
2N
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k2

√(
N

k2

)∣∣∣∣ei(N−2k2)�t

√
2

,
e−i(N−2k2)�t

√
2

〉〉
|k2〉, (7)

where we have introduced normalized eigenstates of the Sz

operator |k〉 ≡ (a†)k (b†)N−k√
k!(N−k)!

|0〉. For gate times equal to �t =
π/4N we obtain the analogous state to (6). For example, the
maximum z eigenstates |k2 = 0,N〉 on qubit 2 are entangled
with the states |± y〉〉 ≡ |e±iπ/4√

2
, e∓iπ/4√

2
〉〉, which is the analog of

a Bell state for the bosonic qubits. A visualization of the state
(7) is shown in Fig. 1. For each z eigenstate on qubit 2, there
is a state |ei(N−2k2)π/4N√

2
, e−i(N−2k2)π/4N√

2
〉〉 on qubit 1 represented on the

Bloch sphere entangled with it. The type of entangled state is
a continuous version of the original qubit state (6), and has
similarities to continuous variable formulations of quantum

computing [9], although the class of states that are used here
are quite different.

We note here that the analog of the controlled-NOT (CNOT)
gate can be produced by further evolving (7) with the Hamil-
tonian H ′

2 = h̄�(NSz
1 − NSz

2 + N2) for a time �t = π/4N .
For example, for initial states where qubit 1 (2) is in an x (z)
eigenstate, we obtain

UCNOT

∣∣∣∣ 1√
2
, ± 1√

2

〉〉
|0,1〉〉 =

∣∣∣∣ 1√
2
, ± 1√

2

〉〉
|0,1〉〉,

(8)

UCNOT

∣∣∣∣ 1√
2
, ± 1√

2

〉〉
|1,0〉〉 =

∣∣∣∣ 1√
2
, ∓ 1√

2

〉〉
|1,0〉〉,

which is exactly the same result as for standard qubits,
where UCNOT = e−i(H2+H ′

2)π/4N�. However, due to the property
of BEC qubits that | 1√

2
, 1√

2
〉〉 �= [|1,0〉〉 + |0,1〉〉]/√2, we

cannot simply superpose (8) to obtain the intermediate cases.
Nevertheless, the evolved states have similar properties to the
standard qubit case. For example,

UCNOT

∣∣∣∣ 1√
2
,

1√
2

〉〉∣∣∣∣ 1√
2
,

1√
2

〉〉

= 1√
2N

∑
k2

√(
N

k2

)∣∣∣∣e−iπk2/N

√
2

,
1√
2

〉〉
|k2〉. (9)

The correspondence to a CNOT operation may be seen by
looking at the extremal states |k2 = 0,N〉 states on qubit 2.
These states are entangled with the states |± 1√

2
, 1√

2
〉〉 on

qubit 1 which is the same result as for a standard qubit CNOT

operation with the target qubit in the x basis for qubit 1. As was
the case for Fig. 1, there is a quasicontinuum of intermediate
states between these extremal states. For BEC qubits it is the
collective set of all the intermediate states that constitutes the
entanglement between the two qubits.

The effect of the boosted energy scale of (5) is that a gate
time of �t = π/4N was required to produce this entangled
state, in comparison to the standard qubit case of �t = π/4.
The origin of the reduced gate time is due to the bosonic
enhancement of the interaction Hamiltonian, originating from
the boosted energy scale via bosonic enhancement of many
particles occupying the same quantum state in the BEC. This
allows for the possibility of fast two-qubit gates using such
BEC qubits.

Given a qubit algorithm intended for standard two-level
qubits, how does this translate in the bosonic system? For
many applications, the procedure amounts to the following:
(i) finding the sequence of Hamiltonians required for the
algorithm, (ii) making the replacement σ

j
n → NS

j
n , σ i

nσ
j
m →

Si
nS

j
m, and (iii) evolving the same sequence of Hamiltonians

for a reduced time t → t/N . This approach is reasonable from
the point of view that we are performing the same algorithm
except that a higher representation of SU(2) is being used. Let
us illustrate this procedure by an implementation of Grover’s
algorithm on BEC qubits.

We use the continuous time formulation of the Grover
search algorithm (see Sec. 6.2 of Ref. [10]). For the stan-
dard qubit case (N = 1), a Hamiltonian HG = |X〉〈X| +
|ANS〉〈ANS| is applied to an initial state |X〉. Here, |X〉 is the
σx

n = 1 eigenstate of all the qubits and |ANS〉 is the solution
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state. Under this Hamiltonian evolution, the system executes
Rabi oscillations between |X〉 and |ANS〉 with a period of
t = π

√
2M , where M is the number of qubits. The bosonic

version of the Hamiltonian can be constructed by mapping
the projection operators according to |j 〉〈j | = (1 + σ

j
n )/2 →

(1 + S
j
n/N )/2, where j = x,z, giving HG = N2 ∏M

n=1
1
2 [1 +

Sx
n

N
] + N2 ∏M

n=1
1
2 [1 + Sz

n

N
]. Here we assumed that the solution

state is {σ z
n = 1} with no loss of generality. The bosonic

qubits are prepared in the state |X〉 = ∏M
n=1 | 1√

2
, 1√

2
〉〉n and

evolved in time by applying H . The system then executes
Rabi oscillations between the initial state |X〉 and the solution
state |ANS〉.

The time required for reaching the solution state can be
estimated from the period of the Rabi oscillations. For a system
undergoing Rabi oscillations of a form 〈Sz〉/N = sin2 ωt ,

the frequency can be estimated by ω =
√

d2〈Sz(t=0)〉
dt2 /2N .

Evaluating the second derivative in the Heisenberg pic-

ture gives d2〈Sz
n/N〉

dt2 = −〈[HG,[HG,Sz
n/N ]]〉 = 2N2/2M , cor-

responding to a evolution time of t ∼
√

2M/N . This has the
same square root scaling with the number of sites, but with
a further speedup of N , resulting from the fast gates made
possible by the use of bosonic qubits. A numerical calculation
for a simple three site case is shown in Fig. 2(b), which clearly
shows a factor of N improvement in speed of the Grover
algorithm. Even for small N ∼ 8 the results converge quickly,
giving almost indistinguishable results to the mean-field curve
for the first Rabi oscillation.

The framework for quantum computation using BECs may
be applied in principle to a variety of different systems,
such as atomic or exciton-polariton BECs. For concreteness,
we give the example of a specific configuration of using
BECs on atom chips, following the experimental configuration
given in Refs. [1–3]. Single-qubit rotations, initialization, and
readout may be performed according to existing methods using
microwave pulses as discussed in Refs. [1–3]. In these works,
the |F = 1,mF = −1〉 and |F = 2,mF = 1〉 hyperfine levels
of the 5S1/2 ground state of 87Rb are used as the qubit states.
In terms of Fig. 3, we make the association for the operator
a† (b†) as creating an atom in the state |F = 1,mF = −1〉
(|F = 2,mF = 1〉). Since the BEC contains a large number of
atoms, there can be more than one atom present in a particular
level, as illustrated in Fig. 3. Level c in Fig. 3 corresponds to a
suitable higher-energy level satisfying optical selection rules
determined by the polarization of the laser fields. Taking the
a ↔ c transitions to be σ+ circularly polarized light, we make
the association that the c† operator creates an atom in the state
|F ′ = 2,m′

F = 0〉 of the 5P3/2 state. The b ↔ c transitions
are then required to be σ− polarized light, which connect
|F ′ = 2,m′

F = 0〉 ↔ |F = 2,mF = 1〉.
Two-qubit gates may be implemented by using a quantum

bus [11], which is implemented by connecting two BEC qubits
via optical cavity quantum electrodynamics (QED), as shown
in Fig. 3. Recent experimental advances have allowed for the
possibility of incorporating cavity QED with atom chips [12].
For future implementations that may use microwave cavity
QED [13], the same scheme can be used except with level
c being the state |F = 2,mF = 0〉. We closely follow the
methods in Ref. [14] and generalize to the bosonic case. The
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FIG. 2. (Color online) (a) Schematic energy-level structure of the
Grover Hamiltonian. Rabi oscillations take place between the initial
x eigenstate |X〉 and the solution state |ANS〉. (b) Rabi oscillations
executed by the Grover Hamiltonian for M = 3 for various boson
numbers as shown. The dotted line shows the mean-field result
corresponding to the N → ∞ limit, calculated by evolving the
Heisenberg equations of motion for products of spin operators up
to linear in Si

n. The dashed lines show the Grover evolution including
decoherence of the form given by (12) with �z = 0.2. The solid lines
show results with �z = 0.

cavity QED Hamiltonian for the bosonic case is

Hbus = h̄ω0

2

∑
n=1,2

Fz
n + h̄ωp†p + G

∑
n=1,2

[F−
n p† + F+

n p],

where Fz = c†c − b†b, F+ = c†b, ω0 is the transition fre-
quency, and p is the photon annihilation operator. Assuming
a large detuning � = h̄ω0 − h̄ω � G, we may adiabatically
eliminate the photons from the bus and we obtain an effective
Hamiltonian Hbus ≈ G2

�
(F+

1 + F+
2 )(F−

1 + F−
2 ) + H.c. Now

consider a further detuned single-qubit transition according
to Hac = g

∑
n=1,2[c†nan + H.c.]. After adiabatic elimination

of level c, we obtain

H eff
bus ≈ h̄�eff

2 (S+
1 + S+

2 )(S−
1 + S−

2 ) + H.c., (10)

where h̄�eff
2 = G2g2

�3 . Although this interaction involves
undesired single-qubit interaction terms S+S− + S−S+ =
−(Sz)2/2 + const, these may be eliminated and converted
to the form (5) by combining with single-qubit gates using
universality arguments [8].

Finally, we consider decoherence effects due to the use
of BEC qubits. Let us first consider the general effects of
dephasing and particle loss which are most likely common to
any experimental implementation. Consider the simplest case

a b11

c1

quantum bus

qubit 1 qubit 2

g gG1 G2

a b22

c2

FIG. 3. (Color online) Two bosonic qubits mediated by a quantum
bus. The quantum bus couples transitions between levels b and c with
energy G. Individual pulses coupling levels a and c with energy g

create an adiabatic passage between levels a and b.
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when a quantum state is stored in the system of qubits and no
gates are applied, i.e., when the BEC qubits are used to simply
store a state. The main channels of decoherence in this case
are dephasing and particle loss. Considering dephasing first,
we model this via the master equation

dρ

dt
= −�z

2

M∑
n=1

[(
Sz

n

)2
ρ − 2Sz

nρSz
n + ρ(Sz

n)2
]
, (11)

where �z is the dephasing rate. For a standard qubit register,
the information in a general quantum state can be recon-
structed by 4M − 1 expectation values of (I1,S

x
1 ,S

y

1 ,Sz
1) ⊗

(I2,S
x
2 ,S

y

2 ,Sz
2) · · · ⊗ (IM,Sx

M,S
y

M,Sz
M ) [15]. For the bosonic

system, there are in general higher-order correlations involving
powers of operators beyond order one, but these are unneces-
sary for our purposes, as previously discussed. Examining the
dephasing of the general correlation 〈∏n S

j (n)
n 〉 where j (n) =

I,x,y,z, we obtain the evolution equation d〈∏n S
j (n)
n 〉/dt =

−2�zKz〈
∏

n S
j (n)
n 〉, which can be solved to give〈∏

n

Sj (n)
n

〉
∝ exp[−2�zKzt]. (12)

Here Kz is the number of noncommuting S
j (n)
n operators with

Sz
n [i.e., j (n) = x,y], which is independent of N and is at

most equal to M . The crucial aspect to note here is that the
above equation does not have any N dependence. In fact,
the equation is identical to that for the standard qubit case
(N = 1). Physically this difference is due to the statistical
independence of the dephasing processes among the bosons.
Similar arguments can be made for particle loss, where we
find the same N -independent exponential decay as (12). The
general result of (12) shows that decoherence is not enhanced
by the use of BEC qubits when they are used to store a

quantum state. For an implementation using atom chip BECs,
the dephasing time h/�z has been estimated to be on the order
of seconds [3], a comparable time with other systems proposed
for quantum computation [16].

In Fig. 2(b) we show results for evolution of the Grover
Hamiltonian including decoherence. We see that the fidelity
improves with increasing N , which is a result of the faster
evolution times due to bosonic enhancement, while the
decoherence rate remains the same, as suggested by (12). All
results therefore approach the mean-field curve in the limit
N → ∞. Number fluctuations can also degrade the fidelity
of the algorithm, although only linearly with the amount of
fluctuations, and therefore should be tolerable for reasonable
experimental parameters [17].

We have found that two-component BECs can form viable
qubits that may be used for quantum computing. Unlike
previous proposals [5] where two quantum states of the
BEC are used to encode the quantum information, here
we use the collective states (1) of the (N + 1)-dimensional
Hilbert space. The theory discussed here is similar to a
continuous variables [9] formulation of qubit computing
applied to BEC qubits, although the specific details of the
encoding are rather different. Our scheme differs from standard
continuous variables approaches [18] in that no spin squeezing
is necessary to encode quantum information on the qubits. One
aspect which we have not discussed is the bosonic mapping
procedure for applications that use nonunitary operations such
as measurements as part of the algorithm, such as quantum
teleportation. We leave such topics as future work.
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