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Physical properties of the ground and excited states of a k-local Hamiltonian are largely determined by the
k-particle reduced density matrices (k-RDMs), or simply the k-matrix for fermionic systems—they are at least
enough for the calculation of the ground-state and excited-state energies. Moreover, for a nondegenerate ground
state of a k-local Hamiltonian, even the state itself is completely determined by its k-RDMs, and therefore
contains no genuine >k-particle correlations, as they can be inferred from k-particle correlation functions. It is
natural to ask whether a similar result holds for nondegenerate excited states. In fact, for fermionic systems, it
has been conjectured that any nondegenerate excited state of a 2-local Hamiltonian is simultaneously a unique
ground state of another 2-local Hamiltonian, hence is uniquely determined by its 2-matrix. And a weaker version
of this conjecture states that any nondegenerate excited state of a 2-local Hamiltonian is uniquely determined
by its 2-matrix among all the pure n-particle states. We construct explicit counterexamples to show that both
conjectures are false. We further show that any nondegenerate excited state of a k-local Hamiltonian is a unique
ground state of another 2k-local Hamiltonian, hence is uniquely determined by its 2k-RDMs (or 2k-matrix).
These results set up a solid framework for the study of excited-state properties of many-body systems.
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In many-body quantum systems, correlations in quantum
states, both ground states and excited states, play an important
role for many interesting physics phenomena, ranging from
high-temperature superconductivity, fractional quantum Hall
effect to various kinds of quantum phase transitions. Tradition-
ally, correlation is characterized by correlation functions of
local physical observables. To better understand the structure
of many-body correlations, however, we need a method
to separate out the contribution of the amount that comes
from essentially fewer-body correlations. Irreducible k-party
correlation [1,2], a concept originating from information the-
oretical ideas, provides such a method to quantify many-body
correlations. In particular, an n-particle pure state |ψ〉 contains
no irreducible >k-party correlation if it is uniquely determined
by its k-particle reduced density matrices (k-RDMs), meaning
that there does not exist any other n-particle state, pure or
mixed, which has the same k-RDMs as those of |ψ〉.

This definition of irreducible multiparty correlation relates
the study of many-body correlation itself, the reduced densi-
tymatrix approach for many-body systems (cf. Ref. [3]), and
the ground-state properties of a local Hamiltonian as we will
elaborate in the following paragraph. The main contribution of
this Rapid Communication is to show the dramatic difference
between many-body corrections of excited states and those of
ground states, and to establish a framework for the study of
excited-state properties based on the reduced density matrix
approach.

The Hamiltonian H of a real n-particle system usually
involves terms of at most k-body interactions, where k is a
small number [4]. This kind of Hamiltonian is called k-local
and for most physical systems k = 2. If |ψ0〉 is a ground
state of H , then the ground-state energy E0 = 〈ψ0|H |ψ0〉 is
determined only by the k-RDMs of |ψ0〉. This observation

implies that, when |ψ0〉 is nondegenerate, the state must be
uniquely determined by its k-RDMs, because if there exists
any other n-particle state, pure or mixed, which has the same
k-RDMs as those of |ψ0〉, then there must be another pure state
which has the same energy as |ψ0〉, making the ground space
degenerate. This kind of “unique determination” legitimates,
in a very strong sense, the reduced density matrix approach
for many-body systems.

Similar observation applies to fermionic systems, namely,
the unique ground state of a k-local fermionic Hamiltonian is
uniquely determined by its k-matrix. Indeed, related studies
for fermionic systems in quantum chemistry date back to
the early 1960s [3,5], where the properties of both ground
states and excited states of 2-local fermionic Hamiltonians
were studied. For excited states, it is conjectured that any
nondegenerate excited state of a 2-local fermionic Hamiltonian
is simultaneously a unique ground state of another 2-local
fermionic Hamiltonian, and hence is uniquely determined by
its 2-matrix [5]. A weaker version of this conjecture states
that any nondegenerate excited state of a 2-local fermionic
Hamiltonian is uniquely determined by its 2-matrix among all
the pure n-particle fermionic states [6].

If these conjectures were true, then understanding the
excited-state properties of a system of N fermions could be
restricted in studying the set of all the 2-matrices, whose
characterization is called the N -representability problem in
quantum chemistry [3]. The N -representability problem has
been studied extensively in the past several decades and
significant progress in studying practical chemical systems
has been made [3,5,6], though this problem is shown to be
difficult in the most general settings [7]. Meanwhile, it is also
natural to ask whether similar conjectures may hold for excited
states of k-local spin Hamiltonians, as excited states are also
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important for characterizing interesting physics phenomena,
especially in nonzero temperature situations. Sometimes even
zero-temperature physics cannot be characterized by ground
states only, for instance, in certain kinds of quantum phase
transitions [8].

Here we construct explicit counterexamples to show that
both conjectures for fermionic systems are false. In the
more general settings of n-particle systems, not necessarily
fermionic, we further show that any nondegenerate excited
state of a k-local Hamiltonian is a unique ground state
of another 2k-local Hamiltonian, and hence is uniquely
determined by its 2k-RDMs. For fermionic systems with
2-local Hamiltonians, our results imply that the understanding
of some properties of excited states will need the information
of their 4-matrices, and that 4-matrices are also enough for
all purposes. In addition, we also apply our techniques to the
study of correlations in n-qubit symmetric Dicke states [9]
and show that they are uniquely determined by their 2-RDMs.
We believe that our result sets a good starting point for
studying excited-state properties of many-body systems based
on the reduced density matrix approach, and will lead to
fruitful results in related areas, including quantum information
science, quantum chemistry, and many-body physics.

From spin systems to fermion systems. To relate the
fermionic problem to known results in quantum information
theory, we need a map from a qubit system to a fermionic
system. We now show how to map an n-qubit system to a
fermionic system, with N = n fermions and M = 2N modes.
This map has been already discussed in Refs. [7,10], so we
briefly review the construction here. The idea is to represent
each qubit s as a single fermion that can be in two different
modes ai,bi , so each n-qubit basis state corresponds to the
following N -fermion state:

|z1, . . . ,zn〉 �→ (a†
1)1−z1 (b†1)z1 · · · (a†

n)1−zn (b†n)zn |�〉,
where zi = 0,1 and |�〉 is the vacuum state. Also, all the
relevant single-qubit Pauli operators can be mapped via

Xi �→ a
†
i bi + b

†
i ai, Yi �→ i(b†i ai − a

†
i bi), Zi �→ 1 − 2b

†
i bi .

In addition, one needs to add the following projectors as extra
terms in the fermionic Hamiltonian:

Pi = (2a
†
i ai − 1)(2b

†
i bi − 1).

As all the Pi’s are biquadratic and commute with all the single-
qubit Pauli operators, the complete Hamiltonian will be block
diagonal. By making the weights of these projectors large
enough, we can always guarantee that the ground state of the
full Hamiltonian will have exactly one fermion per site.

Therefore, to disprove both conjectures for fermionic
systems, one only needs to find counterexamples in n-qubit
systems. In other words, we will need to find an n-qubit pure
state |ψ〉 which is a nondegenerate eigenstate of some 2-local
Hamiltonian, but there exists another pure state |ψ〉′ which
has the same 2-RDMs as those of |ψ〉. Therefore, |ψ〉 cannot
be a unique ground state of any 2-local Hamiltonian. Then by
applying the spin-to-fermion map discussed above, one can
result in a counterexample for the fermionic case.

Simple counterexamples from three-qubit states. To con-
struct explicit counterexamples, we start from the simplest

case of n = 3. First of all, we need a state |ψ〉 which is
not uniquely determined by its 2-RDMs and then further
show that |ψ〉 is a nondegenerate eigenstate of some 2-local
Hamiltonian H = ∑

i Hi , where each Hi acts nontrivially on
at most two qubits. It is well known that almost all three-qubit
states are uniquely determined by their 2-RDMs except those
locally equivalent to the GHZ-type states α|000〉 + β|111〉,
for α,β �= 0 [1,11]. Up to local unitary operations, one only
needs to consider the case where α,β are real. Apparently,
the pure state α|000〉 + βeiθ |111〉 has the same 2-RDMs as
those of α|000〉 + β|111〉, so α|000〉 + β|111〉 is not uniquely
determined by its 2-RDMs, even among pure states.

To show that α|000〉 + β|111〉 can be a nondegenerate
eigenstate of some 2-local Hamiltonian, we construct the
2-local Hamiltonian explicitly. We start from a simple case
of the GHZ state where α = β = 1/

√
2, |ψ〉GHZ = (|000〉 +

|111〉)/√2. The GHZ state is the eigenstate of the commuting
Pauli operators Z1Z2,Z2Z3,X1X2X3 with eigenvalue 1, where
Xi,Yi,Zi stands for the Pauli X,Y,Z operators acting on the ith
qubit. In the language of stabilizers [12], |ψ〉GHZ is stabilized
by the group generated by Z1Z2,Z2Z3,X1X2X3.

For the Hamiltonian H0 = −Z1Z2 − Z2Z3, |ψ〉GHZ is an
eigenstate but degenerate with any state in the space spanned
by |000〉, |111〉. In order to remove the twofold degeneracy
and to make |ψ〉GHZ a nondegenerate eigenstate, we note that
X1X2X3|ψ〉GHZ = |ψ〉GHZ. Therefore, |ψ〉GHZ is an eigenstate
of H1 = X1X2 − X3 with eigenvalue 0, which is not the case
for any other state in the space spanned by |000〉, |111〉. Finally,
one concludes that |ψ〉GHZ is a nondegenerate eigenstate of the
2-local Hamiltonian H = −Z1Z2 − Z2Z3 + c(X1X2 − X3),
for a properly chosen c (for instance, one can choose c = −1,
then |ψ〉GHZ is the nondegenerate first excited state of H , with
energy −2.)

For the state α|000〉 + β|111〉, similar ideas apply. Denote
a 2 × 2 diagonal matrix with diagonal elements a11,a22 by
diag(a11,a22), then we have

diag

(
β

α
,
α

β

)
1

X1X2X3(α|000〉 + β|111〉)=α|000〉 + β|111〉,

where the operator diag( β

α
, α
β

)i acts on the ith qubit. Therefore,
α|000〉 + β|111〉 is a nondegenerate eigenstate of the 2-local
Hamiltonian

H = aZ1Z2 + bZ2Z3 + c

[
diag

(
β

α
,
α

β

)
1

X1X2 − X3

]
,

for some properly chosen a,b,c.
These three-qubit examples can thus be mapped to

fermionic counterexamples of three fermions with six modes,
thus disproving the conjecture discussed in Ref. [5] and its
weaker version in Ref. [6].

More counterexamples. One may think that the existence
of the counterexamples from three-qubit states is due to
the fact that almost all (except the GHZ-type) three-qubit
states are uniquely determined by their 2-RDMs, and hope
that these conjectures could actually hold for most of the
other cases. Here we show that the above discussion of the
counterexamples from three-qubit states provides a systematic
way to find a large class of counterexamples.
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The idea of constructing the counterexamples from three-
qubit states is the following: start from a 2-local Hamiltonian
H0 whose ground space is degenerate (for simplicity, we
assume it is twofold degenerate). Choose a basis |C0〉 and |C1〉
for the ground space of H0 such that (1) |C0〉 and |C1〉 have
the same 2-RDMs; (2) there exists a weight 3 or 4 operator
M such that M|C0〉 = |C0〉 but M|C1〉 �= |C1〉. Then one can
“decompose” the operator M into a 2-local one, H1, such that
|C0〉 is an eigenvector with eigenvalue zero (for instance, if
M = X1X2Z3Z4, one can chose H1 = X1X2 − Z3Z4), then
the Hamiltonian H = H0 + cH1 will have |C0〉 as a nonde-
generate eigenstate for a properly chosen c. Thus |C0〉 gives a
counterexample after applying the spin-to-fermion map.

In general, for a given H0 one cannot guarantee the
existence of such |C0〉, |C1〉, and M . However, in certain
cases of quantum error-correcting codes [12], they are easy to
find. Consider a quantum error-correcting code of dimension
>1 which is a ground state of a 2-local Hamiltonian, with
distance 3 or 4. Then any state in the code space has the
same 2-RDMs [10,13], so one can easily find |C0〉 and |C1〉
which are orthogonal. If the code is a stabilizer or stabilizer
subsystem code, then the logical operator M which satisfies
M|C0〉 = |C0〉 and M|C1〉 = −|C1〉 will be a Pauli operator of
weight 3 (if the code distance is 3) or 4 (if the code distance
is 4).

One simple example is the Bacon-Shor code on a 3 × 3
(or 4 × 4) square lattice [14]. We discuss the 3 × 3 case for
simplicity. The system consists of n = 9 qubits arranged on a
3 × 3 square lattice, and the Hamiltonian is given by

H0 = −Jx

∑
j,k

Xj,kXj+1,k − Jz

∑
k,j

Zj,kZj,k+1,

whose ground space is twofold degenerate, constituting a
quantum error-correcting code of distance 3, where Jx,Jz > 0,
and the subscripts j,k refer to the qubit of the j th row and
kth column and the addition is modulo 3. An orthonormal
basis of the code space can be chosen as |C0〉 and |C1〉 such
that the logical Z operator Z̄, satisfying Z̄|C0〉 = |C0〉 and
Z̄|C1〉 = −|C1〉, is given by Z̄ = Z1,1Z2,1Z3,1 [14]. Therefore,
|C0〉 is a nondegenerate eigenstate of the 2-local Hamiltonian

H = H0 + c (Z1,1Z2,1 − Z3,1)

for a properly chosen c.
Correlations in excited states. We would like to consider

this problem in more general settings of n-particle states which
are not necessarily fermionic, or do not have any kind of
symmetry. Our method directly generalizes to the case of
k > 2, showing that a nondegenerate eigenstate of a k-local
Hamiltonian may not be uniquely determined by its k-RDMs,
even among pure states. A simple example could be the
n-particle GHZ state

|ψ (n)〉GHZ = 1√
2

(|0〉⊗n + |1〉⊗n).

For simplicity we take n even (the odd cases can be dealt
with similarly). Note the GHZ state is not uniquely determined
by its (n − 1)-RDMs, as the state 1√

2
(|0〉⊗n + eiθ |1〉⊗n) has the

same (n − 1)-RDMs.
Using similar ideas as in the three-qubit case, we know

that |ψ (n)〉GHZ is a nondegenerate ground state of the n
2 -local

Hamiltonian

H = −Z1Z2 − Z2Z3 − · · · − Zn−1Zn

+ c (X1X2 · · · Xn/2 − Xn/2+1Xn/2+2 · · · Xn),

for a properly chosen c. Using the idea based on quantum
error-correcting codes, one can also find other states which
are nondegenerate eigenstates of a k-local Hamiltonian but are
not uniquely determined by their k-RDMs, even among pure
states.

Given that a unique ground state of a k-local Hamiltonian
is uniquely determined by its k-RDMs, these examples show
that correlations in excited states of local Hamiltonians could
be dramatically different from correlations in the ground
states. Then an interesting question arises: How “dramatic”
could this correlation be for nondegenerate eigenstates of
local Hamiltonians? More concretely, can a nondegenerate
eigenstate of a k-local Hamiltonian have nonzero irreducible
r-party correlations for any r � n? This question becomes
more intriguing when k is a constant independent of n. That
is, can a nondegenerate eigenstate of a local Hamiltonian have
nonlocal irreducible correlations?

We show, however, this is not the case—a nondegenerate
eigenstate of a k-local Hamiltonian is uniquely determined by
its 2k-RDMs and, therefore, cannot have >2k-party irreducible
correlation. To see this, let us consider a nondegenerate eigen-
state |ψ〉 of a k-local Hamiltonian H with H |ψ〉 = h|ψ〉, and
without loss of generality, assume h = 0. Then, H 2|ψ〉 = 0,
and |ψ〉 becomes the ground state of H 2. Because H is k-local,
H 2 is at most 2k-local, and |ψ〉 is then uniquely determined
by its 2k-RDMs. This result shows that although correlations
in nondegenerate excited states of a local Hamiltonian are
different from those in ground states, they are still “local”
irreducible correlations.

We mention that the 2k bound is tight, as there exists a
nondegenerate excited state of a k-local Hamiltonian that is
not uniquely determined by its (2k−1)-RDMs. One simple
example is the GHZ state of 2k qubits, which is a nondegener-
ate excited state of a k-local Hamiltonian, but is not uniquely
determined by its (2k−1)-RDMs.

It is also easy to see that the discussion here about nonde-
generate eigenstates can be directly extended to the degenerate
case. That is, if V is an eigenspace of a k-local Hamiltonian,
then V is a ground space of a 2k-local Hamiltonian.

Applications. In a very general setting, we have investigated
the correlations in excited states of local Hamiltonians. It turns
out that our techniques can also help to understand correlations
in certain quantum states in a relatively simple way. Let us now
look at the correlations in n-qubit symmetric Dicke states.

The n-qubit symmetric Dicke state |Wn(i)〉 (i = 0,1, . . . ,n)
is the equal weight superposition of weight-i bit strings [9]. For
instance, |Wn(0)〉 = |00 · · · 0〉, and |Wn(1)〉 = (|10 · · · 0〉 +
|01 · · · 0〉 + · · · + |00 · · · 1〉)/√n is the n-qubit W state.

As |Wn(0)〉 and |Wn(n)〉 are product states, they are uniquely
determined by their 1-RDMs. We know that |Wn(1)〉 is
uniquely determined by its 2-RDMs [15], and the case for
|Wn(i)〉 (i = 2,3, . . . ,n − 2) remains open. Here we show that
|Wn(i)〉 is uniquely determined by its 2-RDMs for any i. Note,
however, that nonsymmetric Dicke states, which are nonequal
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weight superposition of weight-i bit strings, are in general not
uniquely determined by their 2-RDMs [15].

To begin, we define a collective operator Sz = ∑n
i=j Zj , the

Z component of the total angular momentum of the system.
Obviously for a given i, |Wn(i)〉 is an eigenstate of Sz, which
is in general degenerate. For a properly chosen constant ci ,
|Wn(i)〉 could be an eigenvalue zero eigenstate of H0 = Sz +
ci1.

We now employ the squaring technique. For a given i,
|Wn(i)〉 is then the ground state of the 2-local Hamiltonian H 2

0 .
The ground space is in general degenerate, however, |Wn(i)〉
is the only state in the ground space which is invariant under
the permutation of any two qubits. To split the degeneracy and
to make |Wn(i)〉 the unique ground state, note the two-qubit
SWAP operator SWAPjk|x〉j |y〉k = |y〉j |x〉k has eigenvalues 1
and −1. For any j �= k, SWAPjk|Wn(i)〉 = |Wn(i)〉. Therefore,
|Wn(i)〉 is the unique ground state of the 2-local Hamiltonian

H = H 2
0 − c

∑
j<k

SWAPjk

for small enough c > 0, hence |Wn(i)〉 is uniquely determined
by its 2-RDMs.

Conclusion. We have discussed the correlations in excited
states of local Hamiltonians. Explicit examples are constructed
to show that, a nondegenerate excited state of a k-local
Hamiltonian may not be uniquely determined by its k-RDMs,
even among pure states. By applying a spin-to-fermion map,
these examples disprove a conjecture in quantum chemistry,
as well as a weaker version, regarding nondegenerate excited
states of 2-local Hamiltonians in fermionic systems. Therefore,

to understand the properties of the excited states of a 2-local
fermionic system, the information in 2-matrices may not be
enough and one has to resort to 4-matrices in some cases.

We further showed that any nondegenerate excited state
of a k-local Hamiltonian is a unique ground state of another
2k-local Hamiltonian, and hence is uniquely determined by
its 2k-RDMs. Moreover, this 2k bound is indeed optimal.
For a constant k, this result indicates that a nondegenerate
excited state cannot have “nonlocal” irreducible correlations. It
is worth noting that the squaring construction does not preserve
the geometrically local structure that the original Hamiltonian
may have. It is not clear to us whether there exists a general
construction that preserves geometrically local structure, and
we leave it to future research.

Our techniques also helped us to understand correlations
in certain quantum states in a relatively simple way. As an
example, we have shown that all the n-qubit symmetric Dicke
states are uniquely determined by their 2-RDMs.

In conclusion, our work corrects some misconceptions
about the excited states of k-local Hamiltonians and provides
the basis for further investigation of excited-state properties of
many-body quantum systems. We hope that our investigations
will help to build new connections between quantum informa-
tion science, quantum chemistry, and many-body physics.
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