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Keldysh theory of tunnel ionization of an atom in a few-cycle laser pulse field
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We propose a simple modification of the Keldysh theory of ionization of an atom in a few-cycle laser pulse
field. The results obtained agree well with the ab initio simulations carried out by Rohringer and Santra [Phys.
Rev. A 79, 053402 (2009)] for the Ne atom and the Ne+ ion, both in the ground state and in the excited state.
This is a confirmation of the model of the inelastic tunnel effect that is one of the major many-body effects in
tunnel ionization theory.
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Various physical phenomena arising in an ultrashort laser
pulse field are under active study lately [1–3]. In Refs. [4–8]
the multichannel coherence of ground and excited states of
an ion in the ionization of an atom by a short light pulse
was investigated. In these references the probability of atom
ionization in the short electromagnetic pulse field was obtained
by the numerical solution of the time-dependent Schrödinger
equation. Multichannel coherence in molecules is investigated
in Refs. [9,10].

For a description of atom ionization in a strong light field,
the duration of which significantly exceeds the optical cycle,
there exists the Keldysh theory [11]. In the tunneling limit this
theory is often referred to as the Ammosov-Delone-Krainov
(ADK) theory [12], which has been verified experimentally
many times. The numerical verification of the Keldysh theory
has also been carried out many times (see, e.g., Refs. [13,14]).
However in Ref. [4] the case of ionization is considered when
the ion can be created in two states, the ground and the excited
states. Therefore, the numerical results presented in Ref. [4]
allow one to generalize the Keldysh theory to the case of
ultrashort light pulses and also to verify the inelastic tunnel
effect theory developed in Refs. [15–20] which quantitatively
explains a substantial number of experimental data [21–23]. It
should be noted that the influence of excited states on tunnel
ionization of molecules has also been investigated both for
simple molecules, e.g., D2 [24], and for complex molecules,
such as C60 [25].

The rate of electron tunneling emission from a potential
with the Coulomb asymptotic form in a dc electric field F is
given by the Smirnov-Chibisov formula [26],
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Here, a is the Bohr radius, me is the electron mass, l and m are
the orbital and magnetic quantum numbers of the tunneling
electron, respectively, and Z is the residual ion charge. The
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effective principal quantum number ν is connected with the
ionization potential Ei by the relation

Ei = Z2

2ν2

e2

a
,

where e is the elementary charge. The dimensionless constant
Cνl is determined by the asymptotic behavior of the valence
electron wave function in the absence of an external field,

�(r) ≈ Cνl q
3/2(qr)ν−1e−qrYlm(r/r),

where q = Z/(aν). The parameter Fa = e/(a2ν3) can be
regarded as the electric field strength at a distance from the
nucleus equal to the Bohr radius.

In an ac field, the tunnel ionization mode occurs, if the
Keldysh parameter γ is small,

γ 2 = 2meEiω
2/(eF̃ )2 < 1.

Here ω is the laser radiation frequency, and F̃ is the electric
field strength amplitude,

F (t) = F̃ sin ωt. (2)

The replacement of F by F (t) in Eq. (1) and averaging
over an optical cycle T = 2π/ω [27,28] result in the ADK
formulas, giving the tunnel effect rate. The replacement F →
F (t) assumes that the laser radiation is linearly polarized and
the laser optical cycle T is much longer than the typical atomic
time Ta so that the adiabatic approximation can be used.

Evidently, under the same adiabatic limit

T � Ta, (3)

but without averaging over the optical cycle, we can obtain the
tunnel effect rate in a few-cycle laser pulse field,
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(4)

In Eq. (4) and hereafter the tilde above the field F is omitted
for the sake of convenience of comparison of the obtained
formulas with those usually used in the literature. Thus, F

in Eq. (4) and hereafter means the laser-wave electric field
amplitude. Ionization of an atom by an ultrashort laser pulse
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was also investigated in Ref. [29] by the imaginary-time
method.

Expression (4) must be multiplied by the squared overlap
integral of the wave functions of the atomic core in the initial
and finite states if the ionized atom is not alkali-metal-like (one
electron in addition to filled shells). Let us consider an atom
of a rare gas, the outer shell of which has the configuration p6.
A single-charged ion of the atom has the configuration p5 and
can be found in states with the total angular momentum either
J = 3

2 (the ground term) or J = 1
2 (the excited term). Let M

be the projection of the atomic-core total angular momentum
onto the laser-wave electric field direction. Then the overlap
integral is expressed by the Clebsch-Gordan coefficient (see
the details in [16]),

QJMm = C 00
1 −m 1mC 00

1/2 M+m 1/2 −(M+m)C
JM
1 −m 1/2 M+m, (5)

where m is the projection of the orbital momentum of the
tunneling electron onto the same direction.

In addition to the reconfiguration of the spin-angular
functions, the overlap integral can be affected by a change
of the core-electron radial functions because these functions
in a neutral atom and in an ion, generally speaking, are
different. Neglect of this difference is known as the frozen-core
approximation. Taking this difference into account means a
transition to the concept of Dyson orbitals. Numerical analysis
in the Hartree-Fock approximation shows, however, that the
Dyson orbitals change the result by no more than by 3%. It
should be noted that the Dyson orbitals are very significant for
tunnel ionization of molecules [30].

As has been said already, the ion with p5 configuration can
be found in the ground state 2P3/2 as well as in the excited state
2P1/2, with the value of the fine splitting �3/2,1/2. Within the
framework of the Carlson-Zon model of the inelastic tunnel
effect [15,31], in the ground and excited states, respectively,
in Eq. (4) we must set

νg = e[2aEi]
−1/2, νex = e[2a(Ei + �3/2,1/2)]−1/2. (6)

In particular, for the neutral neon atom, Ei = 21.565 eV,
�3/2,1/2 = 0.0968 eV, and Cν1 = 1.30 [32].

As the tunnel effect rate (4) depends on time, the population
of ionic states Pj is given by the formula
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Here, the indices j and j ′ enumerate the Ne+ ion states corre-
sponding to all possible values of J and M for the p5 configura-
tion: j,j ′ = (J = 3

2 ; M = ± 1
2 , ± 3

2 ),(J = 1
2 ; M = ± 1

2 ). The
functions Wj (F,t) differ from (4) in that they are multiplied
by the squared overlap integral (5). The effective principal
quantum number of the tunneling electron ν is given by
Eqs. (6), which depend on the core angular momentum J . The
semiclassical formula (7) is the solution to the appropriate
kinetic equations. This expression takes into account the
decrease of the population of the neutral Ne atom population
in time.

FIG. 1. (Color online) Population of the Ne+ ion doublet terms
depending on time. The solid lines correspond to the result of the
present work; the dashed lines to the numerical simulation [4].
The dotted line shows the electric field intensity in a pulse with a
rectangular envelope. See the radiation parameters in the text.

The results of calculations by formulas (4) and (7) are
presented in Fig. 1 for a Ne atom and a four-cycle pulse with
a rectangular envelope. The laser wavelength is 800 nm, the
optical cycle is 2.67 fs, and the radiation intensity is 2.1 ×
1015 W/cm2. For a pulse of such a shape the lower integration
limit in Eq. (7) can be equal to zero. In Fig. 1, the results from
Ref. [4] are given for comparison. As in Ref. [4], the results
of our calculations of ion state populations are normalized in
such a way that the population of the neutral Ne at t = 0 is
equal to 1. As the neutral Ne atom is ionized completely by
a laser pulse with the given laser parameters, the sum of the
populations of the ground and excited Ne+ states at t → +∞
is equal to 1. Evidently, our calculations agree well with the
results obtained in Ref. [4]. The difference between formula
(4) and the general Keldysh theory formulas becomes apparent
in the vicinities of the field nodes, where the field is small
and electron tunneling does not occur. Therefore, populations
essentially do not depend on time in the vicinities of the
field nodes. The small population probability for ionic states
with J = 3/2,M = ±3/2 is explained by the fact that for
the occurrence of such a core angular momentum projection
it is necessary that the orbital momentum projection of the
tunneling electron m = ±1. But as is apparent from Eqs. (1)
and (4), the corresponding tunneling rates are suppressed
compared to those with m = 0.

Similar calculations of the Xe+ ion level population
probabilities agree less well with the numerical simulations,
which were also presented in [4]. This may be caused by the
greater polarizability of the Xe neutral atom, exceeding the Ne
polarizability by ten times (27.08a3 and 2.68a3, respectively
[32]). Therefore, the Xe electron wave functions are perturbed
significantly, which must be shown in the tunnel effect rate.
The perturbation of the bound atomic state wave functions due
to the external field is not taken into account by the Keldysh
theory. At present, an analytical perturbation theory of bound
states in a few-cycle laser pulse field is lacking. Note that for
formation of multiply charged ions as studied in Refs. [15–20]
the perturbation of bound electron states by the field is small,
as the polarizability decreases greatly with increase in the ion
charge.
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In conclusion, a simple modification of the Keldysh theory
permits part of the results obtained in Ref. [4] to be reproduced
by numerical simulation. In turn, these results confirm the
theory of the inelastic tunnel effect developed in Refs. [15–20].
Although the kinetic equations are inherently semiclassical,

they represent well the results of a consistent quantum
description of the ionization process [4].
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