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Two-center convergent-close-coupling calculations for positron-sodium collisions
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Positron scattering from sodium atoms has been studied theoretically with the use of the two-center convergent-
close-coupling method. The target has been treated in the framework of a one-active-electron approach. The
positronium formation channels are taken into account explicitly utilizing Laguerre-based states. Our calculations
are overall in good agreement with the previous theoretical results, and so the discrepancy with experiment at
low energies remains unresolved.
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I. INTRODUCTION

Interactions of positrons with matter have been the subject
of considerable interest starting with the discovery of positrons
in 1933 [1]. Many applications utilizing these esoteric particles
have been developed since then. Today positrons are used
routinely for structural and elemental analysis of surfaces,
films, and solids [2]. Positron emission tomography (PET)
revolutionized many fields of medical diagnosis. Metallurgi-
cal, food, and chemical industries benefit from the use of the
positron emission particle tracking technique (PEPT) [3].

A deep understanding of the underlying positron-atom
interactions is a prerequisite for further development of
the high-tech positron-based applications. The theoretical
approach that we use in this paper for numerical solution of
the positron–sodium-atom scattering problem originates from
the close-coupling method of Massey and Mohr [4]. Studying
electron-atom collisions, they suggested expanding the system
wave function over the eigenstates of the unperturbed target
Hamiltonian, and they derived the set of close-coupling
equations in the momentum space to get the expansion weight
functions. This approach culminated in the development of
the convergent-close-coupling (CCC) method for electron
scattering from quasi-one-electron and two-electron targets
[5]. The CCC method additionally incorporates the target
continuum systematically utilizing the complete Laguerre
basis, and it has been shown to yield accurate excitation and
ionization differential cross sections [6–8].

The one-center expansion method of Massey and Mohr [4]
can also be applied for analysis of the positron-atom scattering
problem [9]. However, it yields cross sections for direct
transitions only. The rearrangement transition cross sections
cannot be calculated within this approach. To overcome this
limitation, a two-center expansion with both atomic and
positronium (Ps) states taken into account explicitly can be
used [10].

The first calculations utilizing the two-center approach were
conducted with just a few target and Ps states [11–14]. Though
some unusual pseudoresonances were identified, generally
good agreement of the calculated Ps formation cross sections
with available experimental data was found. Subsequently,
more complex studies supported the results of the earlier two-
center works with one notable exception. The first calculations
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for positron scattering from sodium atoms predicted that the Ps
formation cross section decreased gradually with the impact
energy for the region above 0.1 eV [15,16]. These predictions
were later confirmed experimentally [17,18]. However, the
calculations with larger numbers of basis states, presumably
more accurate, showed that the cross section increased with
energy in the range from 0.1 to 1 eV [19–21]. This discrepancy
has not been resolved.

In this paper, we study positron scattering from sodium
atoms with the use of the two-center CCC method. Together
with the target and Ps bound states, our approach allows
systematic accounting of the target and Ps continuum states
in the wave-function expansion. The CCC method is suffi-
ciently flexible to let us use any arrangement of the basis
sets. This flexibility ensures obtaining convergent parameter-
independent results, though inclusion of both the atomic and
Ps centers makes our calculations computationally expensive.

II. THEORY

Consider a positron scattering from a sodium atom being
initially in the ground state. Our interest is in collision
processes involving primarily just the valence electron where
core electron excitation may be neglected. So, we describe
the target as an inert Hartree-Fock core together with a single
valence electron (frozen-core approximation) [22]. Thus, our
system consists of the impinging positron, the ion core Na+,
and the valence electron. The wave function � of this system
is sought as an expansion,

� =
Nα∑
α

Fα(ρα)ψNα

α (rα) +
Nβ∑
β

Fβ(ρβ)ψ
Nβ

β (rβ), (1)

where ψNα
α and ψ

Nβ

β are atomic and positronium pseudostates,
respectively, and Fα and Fβ are their associated weight
functions. In expansion (1) we use two different sets of Jacobi
coordinates {rα , ρα} and {rβ , ρβ}, where rα (β) corresponds
to the electron position with respect to the ion core (positron)
and ρα (β) is the positron (ion core) position with respect to
the sodium atom (electron-positron pair) center of mass. The
pseudostates, ψNα

α and ψ
Nβ

β , are generated by diagonalizing
the one-particle Hamiltonians,

Hα = − 1
2∇r + Vα(r) and Hβ = − 1

4∇r + Vβ(r). (2)
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The potentials Vα and Vβ in Eqs. (2) are, respectively, the
electron-ion core and electron-positron potentials. For Vα , we
use

Vα = Vst + Vex + Vpol, (3)

where Vst and Vex are the static and exchange terms of
the Hartree-Fock potential. The exchange part Vex of the
electron-ion core potential Vα is taken into account in the
framework of the equivalent local-exchange approximation,
which was successfully applied previously for treating the
electron–sodium-atom collision by Bartschat and Bray [23].
Finally, the positron-ion potential Ve was taken to be

Ve(r) = −Vst(r) + Vpol(r). (4)

Each complete set of generated pseudostates contains both
negative-energy and positive-energy states. The lower ones
correspond to the bound states. The higher ones provide
a discrete representation of the continuum. The number of
negative-energy states depends on the basis size Nl and the
exponential fall-off parameter λl specific for every given
orbital momentum number l. These parameters were chosen
so that the pseudoenergies of the low-energy states repro-
duced the corresponding experimental energies with accuracy
comparable to that of the self-consistent-field Hartree-Fock
calculations.

Momentum-space coupled-channel equations for transition
matrix elements are [24]

Tγ ′,γ (qγ ′ ,qγ ) = Vγ ′,γ (qγ ′ ,qγ ) +
Nα+Nβ∑

γ ′′

∫
dqγ ′′

(2π )3

× Vγ ′,γ (q ′
γ ,qγ ′′ )Tγ ′,γ (qγ ′′ ,qγ )[

E + i0 − εγ ′′ − q2
γ ′′

/
(2Mγ ′′)

] , (5)

where qγ is the momentum of the free particle γ relative to the
center of mass (c.m.) of the bound pair in channel γ (γ = α

or β), Mγ is the reduced mass of these two fragments, εγ is
the energy of the bound pair, and E is the total energy.

Calculation of the effective potential Vγ ′,γ is done as
described in Refs. [24] and [22]. To obtain Tγ ′,γ (qγ ′ ,qγ ),
we first perform partial-wave expansion of Eqs. (5) in the
total orbital angular momentum J . Finally, the derived set
is converted into equations for the K matrix and solved
numerically with the use of real arithmetic [24].

III. RESULTS

Calculation of transition matrix elements Tγ ′,γ (qγ ′ ,qγ ) was
done for a limited number of partial waves J . We found that
the first ten partial waves were enough to get reliable results for
the Ps formation cross sections at all energies. Direct scattering
channels required at least ten partial waves more at the higher
energies.

With our CCC approach, we are able to use any number
of pseudostates from both centers. We conducted calculations
with different numbers of states using both one-center and
two-center expansions to check convergence with increasing
bases sizes. In what follows, we present our most accurate one-
and two-center calculations.
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FIG. 1. (Color online) The cross section of a sodium atom ionized
by positron impact calculated with the use of two CCC models
described in the text. Shown with the thick solid line is the sum
of the Ps formation cross section σpos.form. and the breakup cross
section σbreakup. The position of the ionization threshold is labeled
with INa.

The one-center set arrangement, which we will label
CCC(217,0), has 217 sodium pseudostates and no Ps states.
The atomic states were obtained by diagonalizing Hα with
the use of the Laguerre basis of the size Nmax = 25 − l for
each orbital quantum number l from 0 to lmax = 10, with the
fall-off parameter λ = 1. The two-center set, CCC(116,14),
had 116 sodium pseudostates (Nmax = 20 − l, lmax = 6, and
λ = 2) and 14 negative-energy Ps n � 5 eigenstates with
l � 3. Calculations with larger numbers of Ps states yielded
results quite similar to CCC(116,14), but due to greater
ill-conditioning of the underlying numerical system they were
less stable.

Figure 1 shows the cross section σion for the sodium atom to
lose its electron occupying the 3s state due to positron impact.
Within the one-center approach, this quantity can be estimated
as

σion =
∑

n:εNa
n >0

σ (one center)
n , (6)

where σ (one center)
n is the cross section for electron excitation of

the nth pseudostate of a sodium atom. Summation in Eq. (6) is
carried out over all positive-energy sodium states. We compare
this quantity with the Ps formation cross section

σpos.form. =
∑

n:εPs
n <0

σ (two center)
n , (7)

plus the breakup cross section

σbreakup =
∑

n:εNa
n >0

σ (two center)
n +

∑
n:εPs

n >0

σ (two center)
n , (8)

where σ (two center)
n is the cross section of electron transition

to the nth state of the two-center calculation CCC(NNa,NPs).
The CCC(116,14) calculated contributions of σpos.form. and
σbreakup to the sum are shown in Fig. 1 with the filled areas,
where the Ps formation component is on top of the breakup
one.
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FIG. 2. (Color online) Total cross sections for positron-sodium
scattering. The CCC results are compared with the theoretical data by
Ryzhikh and Mitroy [19] and Campbell et al. [20]. The experimental
points are due to Kwan et al. [25] and Kauppila et al. [26].

Note that due to the absence of positive-energy Ps pseu-
dostates, there is no contribution to breakup from the second
term of (14). However, though not present, when such states
are included the results are only marginally affected. We
see that the cross sections obtained with the use of the
two different wave-function expansions are in a very good
agreement for energies above ∼10 eV. For smaller energies,
the results of the CCC(116,14) and CCC(217,0) calculations
differ significantly. This is because the one-center approach
can only be accurate above the ionization threshold. With a
much larger expansion, the single center calculation could be
made to rise even more rapidly past the ionization threshold.
However, it will always be wrong below this threshold (for
sodium). Its usefulness lies instead as a consistency check
of both calculations, which gives us great confidence in the
accuracy of the two-center calculation at all energies. Also,
one should note that electron exchange was treated exactly
in the one-center calculations. This validates the use of the
local-exchange approximation in the two-center calculations.

Figure 2 shows the total cross section calculated with the
use of both one-center and two-center expansions. Also shown
with dashed and dotted lines are calculations by Ryzhikh and
Mitroy [19] and Campbell et al. [20], respectively. As expected
from Fig. 2, we see that the CCC(217,9) and CCC(116,14)
calculations are on top of each other above ∼10 eV. Above
the ionization threshold, our calculations are a little above
the results of Campbell et al. [20] and Ryzhikh and Mitroy
[19]. The agreement between the one- and two-center CCC
calculations gives us considerable confidence in the accuracy
of the CCC results in this region. Note that the ionization
channels were not taken into account by Ryzhikh and Mitroy
[19]. Below the INa threshold, the CCC(217,0) calculation is
presented for completeness, but has little meaning as it is
not convergent, being unable to account for Ps formation.
However, CCC(116,14) agrees well with other two-center
calculations. Unfortunately, all two-center theories disagree
with the experiment.

The elastic cross section for positron-sodium scattering is
shown in Fig. 3. Our calculations are compared with each other
and the results by Ryzhikh and Mitroy [19]. We see again good
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FIG. 3. (Color online) Same as Fig. 2 but for elastic cross section.

quantitative agreement between the two-center calculations
supported by the one-center theory above ∼10 eV.

Figure 4 shows the CCC results of the positronium
formation cross section together with the experimental points
[17,18] and the data of the other theoretical works [19–21].
We see from Fig. 4 that the CCC cross sections are in overall
qualitative agreement with the results of other theories. This
agreement indicates also that the dielectric correlation due
to the electron-positron potential modification in the vicinity
of the ion core [21] has only a marginal effect on the Ps
formation. The theoretical calculations are all systematically
lower than experiment. The fact that theory predicts higher
total cross sections and yet lower Ps formation cross sections,
at energies where the elastic and Ps formation are the only
two open channels, suggests that the theoretical elastic cross
section would need to be very wrong, too. In our opinion,
the discrepancies identified here warrant new experimental
investigation.

IV. SUMMARY

The one- and two-center CCC calculations have been
conducted for positron scattering with sodium atoms on a
broad range of energies of practical interest. For energies above
10 eV we found good agreement between the data obtained
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FIG. 4. (Color online) Total positronium formation cross section
for e+-Na along with the experimental points [17,18] and theoretical
calculations [19–21].
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with the use of these two methods providing an important
consistency check. At low energies, two-center results are in
good agreement with the other theoretical works, but not with
the available experimental data. We would appreciate further
experimental and theoretical investigation to see if the present
discrepancy with experiment can be resolved.
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