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Weak-interaction contributions to hyperfine splitting and Lamb shift in light muonic atoms
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Weak-interaction contributions to hyperfine splitting and Lamb shift in light electronic and muonic atoms
are calculated. We notice that correction to hyperfine splitting turns into zero for deuterium. Weak correction
to the Lamb shift in hydrogen is additionally suppressed in comparison with other cases by a small factor
(1 − 4 sin2 θW ).
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I. INTRODUCTION

Unexpected results of the Lamb shift measurement in
muonic hydrogen at Paul Scherrer Institute (PSI) [1] gave rise
to the proton radius puzzle. It consists of the five σ discrepancy
in the value of the proton radius extracted from the muonic
hydrogen experiment [1] on the one hand and the values
extracted from the electronic hydrogen (see review in the
Committee on Data for Science and Technology (CODATA)
compilation [2]) and electron-proton scattering [3] on the
other hand. A burst of theoretical activity followed the PSI
experiment. Old results on the Lamb shift in muonic hydrogen
were recalculated and confirmed (see, e.g., Ref. [4] and refer-
ences therein), proton structure and polarizability corrections
were critically reevaluated and improved (see Refs. [5,6] and
references therein), and possible new physics explanations
were explored (see Refs. [7,8] and references therein). Despite
all these efforts no resolution of the proton radius puzzle was
found. It seems now that the solution of this problem will
require a lot of additional experimental and theoretical work,
in particular, precise measurements of different transition
frequencies in muonic hydrogen and other light muonic atoms.
An experimental program on the measurement of transition
frequencies in light muonic atoms is now in progress by
the CREMA Collaboration at PSI. First experimental data
on hyperfine splitting (HFS) in muonic hydrogen is coming
soon, and the results for muonic deuterium and helium ion
are to follow [9]. In anticipation of these experimental data
we calculate below weak-interaction contributions to HFS and
Lamb shift in light muonic atoms, generalizing old results for
muonic hydrogen [10] (see also Ref. [11]).

An effective low-energy field-theoretic weak-interaction
Hamiltonian due to neutral currents for the fundamental
fermions has the form (see, e.g., Ref. [12])

HZ = 4GF√
2

∫
d3x

(∑
i

ψ̄iγ
μ(T̃3 − sin2 θWQ)ψi

)2

, (1)

where θW is the Weinberg angle, Q is the charge operator in
terms of the proton charge, T̃3 = T3(1 − γ 5)/2, T3 is the weak
isospin, and summation goes over all species of fermions.
Each current in this local four-fermion Hamiltonian contains
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a vector and an axial part. For nucleons, axial parts are
renormalized by strong interactions and should be multiplied
by gA = 1.27 (see, e.g., Ref. [12]). Specializing for the case of
lepton-nucleon interaction the Hamiltonian in Eq. (1) reduces
to [an extra factor of 2 arises because all fields enter each factor
in Eq. (1)]

HZ = GF

2
√

2

∫
d3x[ψ̄lγ

μγ 5ψl − ψ̄lγ
μ(1 − 4 sin2 θW )ψl]

× [gAψ̄nγμγ 5ψn − ψ̄nγμψn − gAψ̄pγμγ 5ψp

+ ψ̄pγμ(1 − 4 sin2 θW )ψp], (2)

where ψl is the lepton (electron or muon) field, and ψp

and ψn are the proton and neutron fields, respectively.
This Hamiltonian generates all weak-interaction contributions
considered below.

II. WEAK-INTERACTION CONTRIBUTIONS TO
HYPERFINE SPLITTING

The leading weak-interaction contribution to HFS arises
from interaction of axial currents in Eq. (2). In the leading
nonrelativistic approximation only spatial components of axial
neutral currents give nonzero contributions [10], and the
Hamiltonian simplifies to

HZ → gAGF

2
√

2

∫
d3x(ψ̄lγ

μγ 5ψl)(ψ̄nγμγ 5ψn − ψ̄pγμγ 5ψp)

→ −gAGF

2
√

2

∫
d3x(ψ̄lγ

iγ 5ψl)(ψ̄nγ
iγ 5ψn − ψ̄pγ iγ 5ψp).

(3)

For a nucleus with Z protons and A-Z neutrons this field-
theoretic Hamiltonian in the nonrelativistic limit reduces to
the quantum mechanical Hamiltonian

HZ = gAGF

2
√

2
σ l ·

(∑
p

σ p −
∑

n

σ n

)
δ(3)(r). (4)

Matrix elements of this operator give the leading weak-
interaction contributions to HFS that is nonzero only in S

states. The only remaining task is to calculate the expectation
value of the scalar product taking into account the nuclear
wave function. We consider below in parallel light electronic
and muonic atoms and ions, but numerical results are provided
only for muonic systems.
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A. Hydrogen

In the case of muonic (electronic) hydrogen there is only one
term in the nuclear factor in Eq. (4), and we immediately obtain
the leading weak-interaction contribution to HFS splitting in
the nS state [10] in the form

�EZ(nS) = gAGF

2
√

2
|ψn(0)|3(σ e · σ p)

∣∣F=1
F=0, (5)

where ψn(0) =
√

(Zαmr )3/(πn3) is the Coulomb-
Schrödinger wave function at the origin (Z = 1 for
hydrogen), mr = mlmp/(ml + mp) is the reduced mass,
J = σ l/2 is the lepton spin operator, I = σ p/2 is the proton
(nucleus) spin operator, and F = I + J is the total angular
momentum. Obviously, (σ e · σ p)|F=1

F=0 = 4 and

�EZ(nS) = 2gAGF√
2

(Zαmr )3

πn3
. (6)

Numerically for n = 2 in muonic hydrogen the weak contri-
bution is

�EZ(2S) = 2.8 × 10−4 meV, (7)

which is at least an order of magnitude smaller than the
uncertainty in HFS due to proton structure contributions [13].

To elucidate the magnitude of the weak-interaction contri-
bution let us compare it with the dominant Fermi contribution
to HFS in muonic hydrogen (see, e.g., [14,15]),

EF = 4

3
gp

α(Zα)3m3
r

mlmp

≈ 182.44 meV, (8)

where gp ≈ 5.58 . . . [2] is the proton g factor in nuclear
magnetons.

For excited states the dominant contribution to HFS scales
as 1/n3 and for the state with an arbitrary principal quantum
number n the ratio of the weak and the dominant contributions
to HFS in muonic hydrogen is

n3�EZ(nS)

EF

= 3

2
√

2π

gAGF mμmp

gpα
≈ 1.2 . . . × 10−5. (9)

B. Deuterium

Deuteron is a spin-1 loosely bound system of two non-
relativistic nucleons that are predominantly described by
the S-state wave function. Respective spin wave function
is symmetric and the matrix element of the spin-symmetric
deuteron nuclear factor of the effective Hamiltonian in Eq. (4)
in this approximation is equal to zero:

〈σ p − σ n〉 = 0. (10)

This conclusion remains valid even after account of the
admixture of the D wave in the deuteron wave function, since
the D-wave spin function is also symmetric with respect to spin
variables (see, e.g., Ref. [16]). Hence, the weak-interaction
contribution to HFS in electronic and muonic deuterium in the
leading nonrelativistic approximation is zero.

C. Tritium

Triton is a spin- 1
2 (I = 1/2) system of one proton and two

neutrons (Z = 1, A = 3). The third component of isospin for

the triton is minus one half (T3 = 1/2 − 1/2 − 1/2 = −1/2).
It is predominantly described by a product of the S-wave
coordinate wave function and a completely antisymmetric
spin-isospin wave function. Obviously, in this approximation
〈σ p − σ n1 − σ n2〉 = 2I . A more accurate analysis taking into
account the other components of the triton wave function
produces [17]

〈σ p − σ n1 − σ n2〉 = 2I
(
1 − 4

3PS ′ − 2
3PD

) = 2cI, (11)

where c ≈ 0.92.
Further calculations go exactly like in the hydrogen case

above and we obtain

�EZ(nS) = 2cgAGF√
2

(Zαmr )3

πn3
. (12)

Numerically for n = 2 in muonic tritium the weak contribution
is

�EZ(n = 2) = 3.1 × 10−4 meV. (13)

Like in the hydrogen case we compare the weak contribu-
tion with the dominant Fermi energy in muonic tritium:

EF = 4

3
gt

α(Zα)3m3
r

mlmp

= 239.919 . . . meV, (14)

where gt = 5.957 924 896(76) [2] is the triton g factor in
nuclear magnetons.

For excited states the dominant contribution to HFS scales
as 1/n3, and for the state with an arbitrary principal quantum
number n the ratio of the weak and the dominant contributions
to HFS in muonic tritium is

n3�EZ(nS)

EF

= 3

2
√

2π

cgAGF mμmp

gtα
≈ 1.0 . . . × 10−5. (15)

D. Helium ion

Helion is a spin- 1
2 (I = 1/2) system of two protons and a

neutron (Z = 2, A = 3). The third component of isospin for
the helion is one half (T3 = 1/2 + 1/2 − 1/2 = 1/2). Like
the triton the helion is predominantly described by a product
of the S-wave coordinate wave function and a completely
antisymmetric spin-isospin wave function. Obviously, in this
approximation 〈σ p1 + σ p2 − σ n〉 = −2I . A more accurate
analysis taking into account the other components of the helion
wave function produces [17]

〈σ p1 − σ p2 − σ n〉 = −2I
(
1 − 4

3PS ′ − 2
3PD

) = −2cI . (16)

Further calculations go exactly like in the hydrogen and
tritium cases above and we obtain

�EZ(nS) = −2cgAGF√
2

(Zαmr )3

πn3
. (17)

Numerically for n = 2 in muonic helium the weak contribution
is

�EZ(n = 2) = −2.5 . . . × 10−3 meV. (18)

034503-2



BRIEF REPORTS PHYSICAL REVIEW A 85, 034503 (2012)

Like in the hydrogen and tritium cases we compare the
weak contribution with the dominant Fermi energy in muonic
helium:

EF = 4

3
gh

α(Zα)3m3
r

mμmp

= −1370.8 . . . meV, (19)

where gh = −4.255 250 613 [2] is the helion g factor in
nuclear magnetons.

For excited states the dominant contribution to HFS as 1/n3,
and for the state with an arbitrary principal quantum number
n the ratio of the weak and the dominant contributions to HFS
in muonic helium is

n3�EZ

EF

= − 3

2
√

2π

cgAGF mμmp

ghZα
≈ 1.5 . . . × 10−5. (20)

E. Helium ions e4He+ and μ4He+

The spin of the α particle is zero and there is no hyperfine
structure in e4He+ and μ4He+ helium ions and no weak-
interaction contribution to hyperfine structure.

III. LEADING WEAK-INTERACTION CONTRIBUTION TO
LAMB SHIFT

The leading weak-interaction contribution to the Lamb shift
arises from interaction of vector currents in Eq. (2). In the lead-
ing nonrelativistic approximation only time components give
nonzero contributions [10], and the interaction Hamiltonian
simplifies to

HZ → GF

2
√

2

∫
d3x[ψ̄lγ

μ(1 − 4 sin2 θW )ψl]

× [ψ̄nγμψn − ψ̄pγμ(1 − 4 sin2 θW )ψp]

→ GF

2
√

2

∫
d3x[ψ̄lγ

0(1 − 4 sin2 θW )ψl]

× [ψ̄nγ0ψn − ψ̄pγ0(1 − 4 sin2 θW )ψp]. (21)

For a nucleus with Z protons and A-Z neutrons this field-
theoretic Hamiltonian in the nonrelativistic limit reduces to
the quantum mechanical Hamiltonian

HZ = GF

2
√

2
(1 − 4 sin2 θW )[A− Z − Z(1 − 4 sin2 θW )]δ(3)(r).

(22)

The matrix element of this operator gives the leading weak-
interaction contributions to the Lamb shift that is nonzero only
in S states. We obtain an explicit expression for the leading
weak correction in all light atoms in the form

�EZ(nS) = GF

2
√

2
(1 − 4 sin2 θW )[(A−Z) − Z(1 − 4 sin2 θW )]

× (mrZα)3

πn3
. (23)

For A = Z = 1 this result was obtained in Ref. [10]. It is
interesting to notice that in muonic hydrogen due to A =
Z = 1 the weak contribution to the Lamb shift is additionally
suppressed by a small factor, 1 − 4 sin2 θW ≈ 0.08. This
suppression disappears for all other light muonic systems.

Let us compare the weak contribution to the Lamb shift
with the dominant contribution. The principal contribution to
the Lamb shift in light muonic atoms is generated by the
diagram with the electron vacuum polarization insertion in the
Coulomb photon and was calculated a long time ago [18] (see
also reviews in Refs. [14,15,19]):

�Enl = −8α(Zα)2mr

3πn3
Q

(1)
nl (β), (24)

where

Q
(1)
nl (β) ≡

∫ ∞

0
ρdρ

∫ ∞

1
dζf 2

nl

(ρ

n

)
e−2ρζβ

×
(

1 + 1

2ζ 2

) √
ζ 2 − 1

ζ 2
, (25)

fnl

(ρ

n

)
≡

√
(n − l − 1)!

n[(n + l)!]3

(
2ρ

n

)l

e− ρ

n L2l+1
n−l−1

(
2ρ

n

)
, (26)

L2l+1
n−l−1(x) is the associated Laguerre polynomial [20] and β =

me/(mrZα).
For the experimentally relevant interval 2P − 2S we obtain

�E(2P − 2S) = �E21 − �E20

= α(Zα)2mr

3π

[
Q

(1)
20 (β) − Q

(1)
21 (β)

]
(27)

and

�EZ(L,2S)

�E(2P − 2S)

= 3GF m2
rZ(1 − 4 sin2 θW )[(A − Z) − Z(1 − 4 sin2 θW )]

16
√

2
[
Q

(1)
20 (β) − Q

(1)
21 (β)

] .

(28)

This expression demonstrates once again that due to the
condition A = Z = 1 the weak interaction contribution to
the Lamb shift is additionally suppressed by an extra factor,
1 − 4 sin2 θW ≈ 0.08, in comparison with the weak-interaction
contribution in other light muonic systems. For muonic
hydrogen, β ≈ 0.7, Q

(1)
20 (β) = 0.056, Q

(1)
21 (β) = 0.0037, and

we obtain

�EZ(L,n = 2)

�E(2P − 2S)
≈ −1.7 × 10−9. (29)

We see that the weak correction to the Lamb shift in muonic
hydrogen is orders of magnitude smaller than the relative error
of the Lamb shift measurement [1]. It is also much smaller
than the uncertainties of the proton structure corrections [5].

IV. CONCLUSIONS

We calculated the leading weak contributions to HFS and
Lamb shift in light muonic atoms and ions. The leading
correction to HFS in deuterium is zero because the deuteron
weak-interaction Hamiltonian is antisymmetric with respect to
nucleon spin variables while the deuteron spin wave function
is symmetric. Corrections to Lamb shift in hydrogen are
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additionally suppressed by the small factor (1 − 4 sin2 θW ).
This happens because all other nuclei contain neutrons that
weakly interact with leptons without this suppression factor.
In all cases weak corrections are much smaller than current
experimental and theoretical errors.
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