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Series expansions for an exact two-electron wave function in terms of Lowdin’s renormalized
natural orbitals
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In recent developments on the pair density needed to treat the non-Hartree-Fock-like part of interparticle
repulsion, the natural orbitals and sign-correct expansion coefficients play a central role. Since, in principle, an
infinite number of natural orbitals must be included, the convergence of expectation values due to finite-term
approximations is an important issue. Here we discuss quantitatively this convergence problem based on an exactly
solvable two-electron model atom, where the Schrodinger wave function for the ground state is expressible in
terms of Lowdin’s natural orbitals and sign-correct expansion coefficients. Using properly renormalized truncated
series expansions for such an exact decomposition, the corresponding expectation values of the Schrodinger
Hamiltonian are calculated analytically. A rapid and uniform convergence is found in these expectation values at

given values of the coupling in the interparticle repulsion.
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Introduction. The solution of the quantum mechanical
many-electron problem is one of the central problems in
physics. Besides the density-based mapping [1] to a self-
consistent one-particle problem, the scheme based on the
first-order density matrix to construct a total energy functional
is a challenging alternative [2,3], since in this scheme one
employs an exact expression for the many-body kinetic energy.
However, the non-Hartree-Fock-like part of the interparticle
repulsion is an unknown functional.

Thus, there is a considerable interest in expressing [4—0]
the correlated pair density directly in terms of natural orbitals
and their occupation numbers [7]. In principle, an infinite
number of natural orbitals must be included, and this results in
the important practical question of convergence. Furthermore,
even for a two-electron system, where we have a summation
over excited closed-shell configurations to expand the exact
wave function, one has [6] the crucial phase or sign dilemma.
Exactly solvable models should, therefore, provide useful
insight into these problems inherent in direct modeling of the
pair density.

Results and discussion. The present convergence study is
based on Moshinsky’s [8] two-electron model Hamiltonian
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in one space dimension [9-11]. The coupling, A € [0,0.5],
measures the strength of a repulsive interparticle interaction.
Attraction would correspond to A < 0. We start, using Hartree
atomic units (e> =% = m = 1), with the exact ground-state
wave function
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where Q| = (wy +w_)/2 and 2, = (w1 — w_), with w; =

wo and w_ = wo/1 — 2A.
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In the course of discussing geometric measures of the
interparticle interaction based on the above model, we derived
[11] the following sign-correct spectral (s) decomposition:

Yexx) = Y (=1 (P gu(x) $u(x).  (3)

n=0

In this equation the coupling-dependent P, numbers [the
eigenvalues of the exact one-particle density matrix, derived
from the exact e (x;,x2)] and the ¢,(x) functions (the
eigenfunctions of the same matrix) are given [9,11,12] by the
following expressions:
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Here, witha @ = /o ;o_ = wyo(1 — 2A)"/* shorthand, H,(x)
are Hermite polynomials for which H,(—x) = (—1)" H,(x).
The polynomials form a complete orthonormal set, and
we have a perfect [13,14] overlap between Y (x1,x2) and
¥y(x1,x2) for repulsive interaction. For an attractive coupling,
where A < 0, the (—1)" weighting factor is not needed in the
above infinite sum to get a unit overlap. This difference is
codified [11] in the important sign behavior of €2,(A) in the
exact Yex(x1,x2) under a sign change of A.

The exact ground-state energy of Wex(x1,x;) with the
Schrodinger Hamiltonian of Eq. (1) consists of expecta-

tion values of kinetic (first term: K¢), confining poten-
tial (second term), and interaction potential (last term)
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energies:
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The sum of the potential energies is equal to the kinetic energy
in harmony, for harmonic forces in the present case, with the
virial theorem. In our two-particle model system an instability
occurs atthe A — 0.5 critical limit. For A > 0.5 the repulsion
between the particles is so strong that they cannot both remain
in the external potential well [2].

The application of the spectral form in Eq. (3) results [12]
in the exact expectation values for the above energy terms.
Now, we truncate (tr) the series expansion as

1 N
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where Sy = (3., P,)"/* in order to have a unit normal-
ization. Notice at this point that for two-electron systems
the natural orbital expansion has [7] an additional extremum
property. Even a truncated but properly renormalized, i.e.,
optimized, finite-term expansion has maximum overlap [7,11]
with the exact solution of the Schrodinger Hamiltonian. We use
in our convergence study below the transparent representation
given by Eq. (5).

In practice, we apply from now on a rewritten Schrodinger
Hamiltonian
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where Q(A) = wp+/1 — A, as in the Hartree-Fock approxi-
mation [8], which results in a product state for the interacting
two-electron wave function. The important nonseparable part
of the original Hamiltonian is transparent. It is, for the
present model, out of the Hartree-Fock framework and thus
represents Wigner’s correlation at the most fundamental,
i.e., Hamiltonian, level. Of course, all energy terms (kinetic
and potential) contain correlation contributions [cf., Eq. (4)].
Below we apply rules of quantum mechanics for a harmonic
oscillator and the expression for the sum (sy) of a finite
geometric (¢ < 1) series,

N
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With the first and second terms of the rewritten Schrodinger
Hamiltonian in Eq. (6), we only have to perform the following
type of simple summation,

N+1
— 4

I—g¢g

N

) (n T %) P,

n=0

to arrive at the average values of the kinetic K™ and
confining C™ energies. By using Srednicki’s convenient
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variable £ = (1 — A)/(1 4+ A), and thus P,(§) = (1 — £)&", we
obtain

K™ = —&[1 + 2F(N,&)], (7)
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To these expressions the useful [see, at Eq. (11)] abbrevia-
tion F(N,£) is given by
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and to get the above compact forms we used the fact
that Z,I,\;o P,=(1—¢g"Y +1). This latter sum is, in fact, the
square of the overlap integral performed with the exact
Vex and a truncated ¥ wave functions. Notice, further-
more, that the (—1)" weighting factor is not important
in the calculation of these expectation values of energies,
since (—1)** = 1.

In the calculation of the remaining term, i.e., of the
expectation value of the nonseparable term in Eq. (6) with
a truncated ¥, we apply the selection rule for tran-
sitions between oscillator states. In such a manner, and
for the repulsive (R) interparticle interaction, one has to
perform the summation (N > 1 below) in the following
expression:
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which contains, in the big brackets, the square of the matrix
element for an allowed transition between oscillator states.
After substitutions, we arrive at
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in terms of £(A) and the coupling constant A. By performing
the summation, we get
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which is the last term of the total energy, [K® + C™ 4 R,
in our consideration. We stress at this point that for N = 0 the
approximate total energy is the sum of K™ and C™ only,
since the last term of Eq. (6) does not give a contribution when
N = 0in Eq. (5).

Now we illustrate the N dependence of convergence at
the A = 0.499 value for the inter-particle coupling. To this
illustration we use curves for a better visualization, although
the calculations were performed, of course, at integer values
(N=123,...) of N. The KW/K., [C™ + RW]/K,
and the [K®™ 4+ C® 4+ R®™]/(2K ™) dimensionless ratios are
exhibited on Fig. 1. The third ratio (solid curve) shows
how the virial theorem is satisfied under truncation in the

_ §N+2
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FIG. 1. Different dimensionless ratios, defined by K®/K
(dotted curve), [C™ 4+ R™]/K (dashed curve), and [K™® 4+ C™ +
R™]/(2K™) (solid curve), as a function of N at A = 0.499. The
curve representation is used only for visualization. The data are at
integer N values.

spectral representation. It is clear from Fig. 1 that the
approximate total potential energy (dashed curve) deviates
more strongly from the exact limit form (obtained at N — 00)
than the approximate kinetic energy (dotted curve). It is this
remarkable difference which signals that it is probably very
problematic to describe all, i.e., kinetic and potential, of
the correlation effect via, for instance, a functional of the
density.

For smaller and smaller A values the convergence in N
is faster and faster. However, very close to the instability
limit, i.e., for A — 0.5, one can get negative values in
small-N expansions. In order to show this we use the
notation A = (1 —2A) <« 1 and expand the above energy
terms at N = 1 for simplicity. Under these prefixed condi-
tions we get the following: (K™ /wg) ~ A4, (CW /awy) ~
1/2AY%), and (RYW/wy) ~ —+/3/2/(2AY*). In deriving
these, we used the fact that F(N = 1,§ — 1) >~ (1/2). Thus,
the source of the mentioned negativity resides, in this
highly limiting case, in the interplay between C™ and
R(tr)_

We finish our convergence study on energies by a brief
discussion of entanglement entropies. The truncated one-
particle density matrix, which is based on the above spec-
tral representation given by Eq. (5), takes the following
form:

N
y P12, N) =Y Pou(x1) ux2), (12)

n=0

to which the abbreviation is defined by P, = P, /(1 — &N+,
Of course, Try™ = 1. Taking an operator power of this
density matrix, one can describe Rényi’s [15,16] entropies
as

S, =

1 N
I [;mw} :

where p >0 with p # 1. At the particularly interest-
ing limit, i.e., at p — oo, we get the so-called min-
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entropy for Moshinsky’s interacting two-electron model

atom,
1 — N+1
SOO = 111 — s )
1-£

in terms of £(A). Thus, at N > 1 we have Soo(A — 0) =
(A/4)%, which shows a similar scaling (~ A?) as Wigner’s
correlation energy Eco(A) = [(wo/2)v/1 — A — Ex(A)] for
small coupling, i.e., when the non-Hartree-Fock-like term in
Eq. (6) is small.

Another useful measure of electron-electron interaction is
the so-called degree of correlation (K) defined by the following
expression:

K= i(Pn)z.
n=0

This has been used earlier [17,18] as a global measure
of two-electron correlation. In our case K = (1/A) = (1 +
V1 =2A)/2(1 —2A)"4, in terms of the coupling A. For
small A, i.e., when K is still close (from above) to unity,
a renormalized truncated expansion will give (with P, and
n < N, in the above definition) a very reasonable value for
this measure.

Of course, different entropies are not expectation values of
operators in the Hilbert space. But their approach, at fixed A
and p values, to their limiting values as a function of N can
give useful complementary information on entanglement. For
instance, the above S.,(N) also signals, very transparently, a
monotonous convergence. Finally, due to the proper renormal-
ization, we get at N = 0 a zero value for the entropy as in any
single-shell representation which would correspond only to an
effective one-electron external field.

Summary. There is a considerable interest in expanding
the pair density directly in terms of natural orbitals and
their occupation numbers in order to calculate the expecta-
tion value of the non-Hartree-Fock-like part of interparticle
repulsion. However, both the phase dilemma in expansion
and the convergence in energy are inherent problems in
direct attempts to model this pair density in density-matrix
functional theory. In this study we have investigated the
convergence problem in the ground-state energy by using
properly renormalized finite-term expansions for an exact
sign-correct spectral decomposition of the wave function
of an exactly solvable two-electron model atom. Based on
such expansions, closed analytic expressions are derived for
the different constituents of the total energy. The sign of
the repulsive energy term R reflects the importance of a
sign-correct spectral decomposition. The numerical results
illustrate the capability of Lowdin’s optimized natural orbitals
involved in our truncated expansion. The convergence is rapid
and uniform.
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