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Revisiting the displacement operator for quantum systems with position-dependent mass
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Recently Costa Filho et al. [Phys. Rev. A 84, 050102(R) (2011)] have introduced a position-dependent
infinitesimal translation operator which corresponds to a position-dependent linear momentum and consequently
to a quantum particle with position-dependent effective mass. Although there is no doubt about the novelty of
the idea and the formalism, we believe that some aspects of the quantum mechanics in their original work could
be enhanced. Here in this Brief Report first we address those points and then an alternative is introduced. Finally
we apply the formalism for a quantum particle under a null potential confined in a square well, and the results
are compared with those in the paper mentioned above.
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Particles with position-dependent mass in nonrelativistic
quantum theory have attracted attention for the last few
decades due to their application in nuclei, impurities in
crystals, 3He clusters, metal clusters, quantum liquids, semi-
conductor heterostructures, and so on [1]. Recently, using the
generalized von Roos Hamiltonian together with the point
canonical transformation, many attempts have been made
to find exact solutions for quantum systems with position-
dependent mass [2]. More recently, R. N. Costa Filho et al. [3]
approached the problem in a different way. They introduced
an infinitesimal translation operator in which a well-localized
state around x can be transformed to another well-localized
state around x + (1 + γ x) dx i.e.,

Tγ (dx)|x〉 = |x + dx(1 + γ x)〉, (1)

with all the other physical properties unchanged. Here, Tγ (dx)
is the displacement operator, γ is a real constant with
dimension (length)−1, and dx is the infinitesimal change in the
x coordinate. However, one should note that, from Ref. [3],
since

Tγ (dx ′)Tγ (dx ′′) = Tγ (dx ′ + dx ′′ + γ dx ′dx ′′) (2)

and

expq(a) expq(b) = expq[a + b + (1 − q)ab] (3)

in which expq (a) is the q-exponential function, by rewriting
γ = γ̃ (1 − q) where γ̃ has units of γ with value 1 and the
Tsallis entropic index q is a real parameter, Tγ

(
dx ′) can

be considered as the infinitesimal generator of the group
represented by the q-exponential function.

Using the standard form of the translation operator,

Tγ (dx) = I − ip̂γ dx

h̄
, (4)

it has been found in Ref. [3] that

p̂γ = −ih̄(1 + γ x)
d

dx
, (5)

in which p̂γ is the generalized generator of the translation
or the generalized linear momentum. It is easy to see that
p̂γ is not Hermitian, i.e., p̂†

γ �= p̂γ , which implies that
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Tγ (dx) is not unitary, Tγ (dx)† Tγ (dx) �= I . Compared to the
other conditions that Tγ (dx) may or may not fulfill, being
unitary looks to be more reasonable. This is because the
normalizability of the state ket remains invariant under the
translation. By following the detailed calculation of Ref. [3],
at first sight, it seems that we should sacrifice this condition
for the new form of Tγ (dx), but by a simple manipulation this
condition should not be forfeited. To see how, here we give an
alternative form for p̂γ which is Hermitian. Let us look at the
details of finding the form of p̂γ . From (2) one writes

(
I − ip̂γ δx

h̄

)
|α〉

= Tγ (dx)|α〉 =
∫

dxTγ (δx)|x〉〈x|α〉

=
∫

dx|x + δx(1 + γ x)〉〈x|α〉

=
∫

dx|x〉〈x − δx(1 + γ x)|α〉

=
∫

dx|x〉
(

〈x|α〉 − δx(1 + γ x)
d〈x|α〉

dx

)

�
∫

dx|x〉
(

〈x|α〉 − δx(1 + γ x)
d〈x|α〉

dx

)
|α〉

+Cδx

∫
dx|x〉〈x|α〉

=
∫

dx|x〉
(

1 + Cδx − δx(1 + γ x)
d

dx

)
〈x|α〉, (6)

in which C is a constant to be identified later. Here we should
comment that the added term C 〈x|α〉 δx in the limit δx → 0
vanishes because ψα (x) = 〈x|α〉 is the wave function, which
by definition is finite and square integrable. In other words,
this term is negligible in comparison with the term 〈x|α〉, so
that (1 + Cδx) 〈x|α〉 � 〈x|α〉.

Going back to Eq. (6), one finds a modified form of the
generalized linear momentum operator as follows:

p̂γ = −ih̄

(
(1 + γ x)

d

dx
+ C

)
. (7)
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FIG. 1. Relative energy spectrum of a particle in an infinite square
well and with effective mass (18) versus γ̃ = γL for the three first
states. In this figure E0 is the ground-state energy of the particle in
the limit γ → 0, i.e., E0 = π 2h̄2/2mL2. The effect of γ is to increase
(γ > 0) or decrease (γ < 0) the energy level.

To identify C we impose the Hermiticity condition for p̂γ ,
which yields

C = γ

2
, (8)

and therefore

p̂γ = −ih̄

(
(1 + γ x)

d

dx
+ γ

2

)
. (9)

It is reasonable that C vanishes when γ → 0 because it
guarantees that limγ→0 p̂γ = −ih̄ d

dx
, which is expected.

A unitary translation operator Tγ (dx) directly results from
having p̂γ Hermitian. To draw an analogy between our

formalism and Ref. [3], we rewrite

p̂γ = −ih̄Dγ , (10)

where

Dγ = (1 + γ x)
d

dx
+ γ

2
(11)

is the modified derivative in this space. Following the standard
quantum formalism for a particle with constant mass m under
a real potential V (x), one finds the Schrödinger equation

Ĥψα(x,t) = ih̄
∂ψα(x,t)

∂t
, (12)

in which the Hamiltonian Ĥ reads

Ĥ = p̂2
γ

2m
+ V (x). (13)

We note here that unlike the case in Ref. [3] this Hamiltonian
is Hermitian. For a particle of energy E and a null potential,
the time-independent Schrödinger equation is given by

− h̄2

2m
D2

γ φ(x) = Eφ(x), (14)

which after some manipulation reads

u2φ′′ (u) + auφ′ (u) + bφ (u) = 0. (15)

Here u = 1 + γ x, a = 3,

b = 2m

h̄2γ 2
Ẽ = k2

γ 2
, (16)

and

Ẽ = E + h̄2γ 2

8m
. (17)

FIG. 2. (Color online) The probability density of a two-dimensional infinite square well for (a) n1 = 1,n2 = 1, (b) n1 = 1,n2 = 2,
(c) n1 = 2,n2 = 2, and (d) n1 = 3,n2 = 3. Unlike the figure reported in [3], here the particle stays closer to the origin. In this figure the
left side and the right side are the top and the side views, respectively, and the wave functions are normalized.
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As in [3], (15) is equivalent to a particle with position-
dependent mass with effective-mass function

me = m

(1 + γ x)2
. (18)

A general solution to (15) is given by

φ(u) = 1

u
exp

⎛
⎝±i

√
k2

γ 2
− 1 ln u

⎞
⎠ (19)

in which to have a square-integrable function we set k2

γ 2 − 1 >

0, or equivalently

E >
3h̄2γ 2

8m
. (20)

If we consider the particle inside an infinite well between x = 0
and x = L, the proper boundary conditions [i.e., φ (x = 0) =
0 = φ (x = L)] would lead to the following wave function:

φn(x) =
{

An

(1+γ x) sin
(

nπ
ln(1+γL) ln(1 + γ x)

)
, 0 < x < L,

0 elsewhere,
(21)

where

|An|2 = 2

L
+ 2γ + (1 + γL)

2n2π2L
ln2(1 + γL), (22)

k2
n = γ 2

(
1 + n2π2

ln2(1 + γL)

)
, (23)

and finally the energy spectrum reads

En = n2π2h̄2γ 2

2m ln2(1 + γL)
+ 3h̄2γ 2

8m
. (24)

One can easily show that in the limit γ → 0 the above
results will reproduce the usual infinite potential well for a
particle with constant mass m. Here we would like to compare
the effect of this configuration with those in Ref. [3]. As is
clear, the form of the energy spectrum shows that the energy
here is shifted up by the term 3h̄2γ 2

8m
(see Fig. 1 for instance).

Figure 2 displays the density function |ψ |2 = |φ|2 of the two-
dimensional infinite well for different values of the quantum
numbers.

FIG. 3. 〈x〉 /L versus γ̃ = γL of a one-dimensional particle in
an infinite square well for n = 1, 2, 3, and 20. Although there are
slight changes between the different cases, the general behaviors are
almost the same, which is in contrast with the results of [3].

Following [3], we find the expectation value of the position
of the particle in a one-dimensional infinite well, which is
given by

〈x〉 =
∫ L

0
x|φn(x)|2dx = (1 + γL) ln(1 + γL)

Lγ 2

×
(

1 + ln2(1 + γL)

4π2n2

)
− 1

γ
. (25)

This implies that limγ→0 〈x〉 = L
2 . Figure 3 displays 〈x〉 /L

versus γ̃ = γL for different values of n. In contrast to [3], it is
clear from Fig. 3 that n plays no significant role in the general
behavior of the diagram. Also, after some manipulation one
can show that the average of the modified momentum is zero,
i.e.,

〈
p̂γ

〉 = 0, as was expected.
In conclusion, we add that our aim in this Brief Report is

not to criticize the formalism given by the authors of Ref. [3]
but instead to try to provide a different perspective on their new
idea. Along this line we have shown how we could introduce a
linear momentum operator which is Hermitian and at the same
time matches with their formalism.

As a final point we note that, although the form of the
Schrödinger equation found in Ref. [3] did not correspond with
the generalized form of the kinetic energy operator proposed
by von Roos [4], the counterpart equation (12) in this Brief
Report is well consistent with the von Roos kinetic energy
operator with the ordering parameters α = γ = −1

4 and β =
−1
2 [5].
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