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Gain without population inversion in a yoked superfluorescence scheme
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We consider a medium composed of three-level (cascade scheme) atoms prepared with coherence between the
upper and the ground states (a yoked superfluorescence system). We obtain an analytical solution for propagation
of seed pulses which are resonant with the upper and lower transitions for arbitrary level populations and pulse
shapes. We find that if the initial coherence is large enough and the intermediate level is populated the system
can have gain without population inversion. Coherence can also yield gain suppression in the inverted medium.
We obtain conditions for the gain in terms of level populations and coherence.
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I. INTRODUCTION

Superradiance (the speedup of spontaneous emission) of
atomic ensembles is a collective phenomenon which still offers
interesting directions for exploration [1]. It was first predicted
by Dicke in 1954 [2]. Later on it was observed by Feld and co-
workers in HF gas [3]; they also gave a theoretical explanation
of how an initially inverted two-level system evolves into a
superradiant state [4,5]. The influence of virtual transitions
on collective emission and nonlocal (retardation) effects are
among the intriguing subjects of current theoretical [6–10]
and experimental [11] investigation. The cooperative effects
of spontaneous emission can be used for optical quantum-state
storage, quantum cryptography [12], and quantum information
[13].

Superfluorescence is another collective process in which
the superradiant state is developed in a system of initially
uncorrelated excited atoms [14]. This process starts with
normal spontaneous emission but later develops correlations
between the atoms [15]. In the past half century, both types of
phenomena, superradiance and superfluorescence, have been
extensively studied theoretically and experimentally.

The presence of quantum coherence yields interesting
effects. In particular, it can lead to superfluorescence without
inversion [16–20]. In such systems coherence created by a
driving field on one transition influences superfluorescence on
another transition. Quantum coherence can also yield lasing
without inversion [21–23] which has been extensively studied
during the last two decades [24–27].

Yoked superfluorescence [28] is another example of the
manifestation of quantum coherence. It occurs in a three-level
cascade system initially prepared with coherence between the
upper and the ground states. Such coherence can be produced
by a laser pump pulse propagating through the medium (the
direction with the pump we call “forward” and against the
pump “backward”). The laser pulse can excite the upper
level from the ground state, e.g., by a two-photon process
which creates some initial population in the upper level. Since
the intermediate level is initially empty there is population
inversion between the upper and the intermediate levels, which
triggers superfluorescence in this transition. Both experimental
and theoretical studies show suppression of the gain in the
forward direction [29–31] at early times, when there is no
population in the intermediate level, i.e., there is population
inversion between the upper two levels but no population

inversion between the lower two. As soon as the intermediate
level becomes populated it decays into the ground state,
emitting photons mainly in the forward direction [28,32,33].

Recently, the generation of backward lasing in air has
been demonstrated in the experiment of Dogariu et al. [34].
In this experiment, the oxygen molecule O2 is dissociated
into two atoms by a strong 226 nm picosecond laser pulse
focused into a 1-mm-long segment. The pulse also excites
the oxygen atom from the ground 2p 3P state to the upper
3p 3P state by two-photon absorption, which prepares a
1-mm-long gain medium. Backward 845 nm lasing action was
observed between the upper state and the intermediate 3s 3S

state. Subsequently Traverso et al. showed in an experiment
that when a strong nanosecond (instead of picosecond) laser
pulse is used, emission becomes spiky which can be due
to effects of coherence [35]. In this experiment the pulse
duration (∼10 ns) is much longer than the characteristic
superfluorescence time scale for the upper transition (∼100 ps)
and, thus, the intermediate 3s 3S level is being populated.

Having in mind the air laser experiment, we here consider
a medium composed of three-level atoms (cascade scheme)
which is prepared with arbitrary uniform population distribu-
tion. There is also initial coherence between the upper and
the ground-state levels which is assumed to be generated by
a strong multiphoton resonant driving field propagating in
the positive (forward) z direction. Such generated coherence
contains the phase factors eikz, where k = ω/c and ω is
the transition frequency. We are interested in propagation
of weak seed pulses through the system in the forward and
backward directions. The pulses have carrier frequencies that
corresponds to the energy of the upper and lower transitions.
We treat the problem semiclassically and use the Maxwell-
Bloch equations. In the linear approximation we obtain an
exact analytical solution for the evolution of an arbitrary
initial pulse propagating through the medium. The seed pulse
(vacuum fluctuations) undergoes growth or decay depending
on the level populations and initial coherence.

We show that for an inverted medium the presence of initial
coherence can result in forward gain suppression. This result
is known in the literature [29–31]. In addition, we find that
coherence can yield gain in the forward direction even if
there is no population inversion on both transitions. We obtain
conditions for the gain in a general form in terms of level
populations and coherences.
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FIG. 1. (Color online) Cascade scheme of atomic energy levels.

II. EVOLUTION OF WEAK PULSES IN YOKED
SUPERFLUORESCENCE SCHEME

Here we consider a medium composed of three-level atoms.
Each atom is described by the cascade scheme shown in
Fig. 1. The system is uniformly excited by a pump pulse
multiphoton resonant with the a ↔ c forbidden transition
propagating along the z axis (forward direction). This process
generates coherence ρac between the upper and ground states;
thus, there is correlation between atoms. Population can decay
through the allowed transitions a → b and b → c. We study
how weak seed pulses �ab and �bc, having carrier frequencies
corresponding to the a ↔ b and b ↔ c transitions, propagate
through the medium. In our analytical calculations we assume
that during the seed pulse propagation the level populations
ρaa , ρbb, and ρcc, as well as the coherence ρac, remain constant.
However, the initial seed pulse shapes �ab(0,z) and �bc(0,z)
are arbitrary.

We treat the problem semiclassically in the framework of
the Maxwell-Bloch equations, assuming that the electric field
and atomic density matrix depend only on the coordinate z and
time t . The equations of motion for the atomic density matrix
read

ρ̇ab(t,z) = −�abρab(t,z) − i�ab(t,z)nab− i�∗
bc(t,z)ρac, (1)

ρ̇bc(t,z) = −�bcρbc(t,z) − i�bc(t,z)nbc+ i�∗
ab(t,z)ρac, (2)

where nab = ρaa − ρbb, nbc = ρbb − ρcc, and ρac are con-
stants, �ij = � + γij /2, � is the dephasing rate due to
collisional broadening, and γij is the spontaneous decay rate of
the corresponding transition. In a more realistic system there is
also Doppler broadening and dephasing due to the time of flight
of the atom across the active medium. However, in experiments
the atomic density is usually greater than 1014 cm−3 and, thus,
the superradiant time scale is shorter than 10 ps. Hence, the
line broadening due to superradiant emission is much larger
than the Doppler broadening (∼1010 s −1) and the dephasing
rate due to time of flight (∼108 s−1).

The propagation equations for the electric field are

∂�ab(t,z)

∂z
+ 1

c

∂�ab(t,z)

∂t
= iηabρab(t,z), (3)

∂�bc(t,z)

∂z
+ 1

c

∂�bc(t,z)

∂t
= iηbcρbc(t,z), (4)

where �ij is the Rabi frequency corresponding to the electric
field envelope, ηij = 3Nλ2

ij γij /8π is the atom-field interaction
constant, N is the atomic density, and λij is the transition
wavelength. Equations (1) and (2) are written for the fields
�ab and �bc propagating in the forward direction. For the
backward-propagating fields there is no ρac term in Eqs. (1)
and (2) because in this case the phases of ρab and ρbc cannot
match the phase of the coherence ρac. Indeed, for the backward
propagation, ρab and ρbc have the same phases as the backward
fields �ab and �bc, that is, ikabz and ikbcz. However, the
phase of the initial coherence ρac is produced by the forward
pump field and has the value −i(kab + kbc)z. Therefore, for
the backward direction, the last term in Eq. (1) has the
phase −i(kab + kbc)z − ikbcz, which differs from the phase
of ρab by −2i(kab + kbc)z. The phase difference leads to a
fast-oscillating term as a function of z. In the rotating-wave
approximation such terms have to be omitted. As a result, the
solution for backward propagation can be obtained from the
forward solution by taking ρac = 0.

We solve Eqs. (1)–(4) with the initial condition ρab(0,z) =
ρbc(0,z) = 0 and initial pulse shapes �ab(0,z) and �bc(0,z).
Equation (1) gives

ρab(t,z) = −inab

∫ t

0
�ab(t ′,z)e−�ab(t−t ′)dt ′

− iρac

∫ t

0
�∗

bc(t ′,z)e−�ab(t−t ′)dt ′. (5)

Then using Eq. (3) we obtain

∂�ab(t,z)

∂z
+ 1

c

∂�ab(t,z)

∂t

= ηabnab

∫ t

0
�ab(t ′,z)e−�ab(t−t ′)dt ′

+ ηabρac

∫ t

0
�∗

bc(t ′,z)e−�ab(t−t ′)dt ′. (6)

Introduction of the Laplace transform in time,

�̂(s,z) = L{�(t,z)} =
∫ ∞

0
e−st�(t,z)dt, (7)

yields

∂�̂ab(s,z)

∂z
+ s

c
�̂ab(s,z) − 1

c
�ab(0,z)

= ηabnab

�̂ab(s,z)

s + �ab

+ ηabρac

�̂∗
bc(s,z)

s + �ab

. (8)

Similarly, for �bc we obtain the equation

∂�̂∗
bc(s,z)

∂z
+ s

c
�̂∗

bc(s,z) − 1

c
�∗

bc(0,z)

= ηbcnbc

�̂∗
bc(s,z)

s + �bc

− ηbcρ
∗
ac

�̂ab(s,z)

s + �bc

. (9)

The solution of Eqs. (8) and (9) can be rewritten as

�̂ab(s,z) = 1

c

∫ z

−∞
dz′ F (z′)

λ1 − λ2
[eλ1(z−z′) − eλ2(z−z′)], (10)
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where the source function is

F (z) = ηabρac

s + �ab

�∗
bc(0,z) +

(
s

c
− ηbcnbc

s + �bc

)
�ab(0,z) + ∂�ab(0,z)

∂z
(11)

and the constants λ1,2 are

λ1,2 = 1

2

[(
− 2s

c
+ ηabnab

s + �ab

+ ηbcnbc

s + �bc

)
±

√(
ηabnab

s + �ab

− ηbcnbc

s + �bc

)2

− 4
ηabρac

s + �ab

ηbcρ∗
ac

s + �bc

]
. (12)

In the limit that the collisional dephasing � is much larger than the spontaneous decay rates γij we have �ab ≈ �bc ≈ �, and the
constants λ1,2 reduce to

λ1,2 = − s

c
− ξ1,2

s + �
, (13)

where

ξ1,2 = − 1
2 [ηabnab + ηbcnbc ± ζ ], (14)

ζ =
√

(ηabnab − ηbcnbc)2 − 4ηabηbc|ρac|2. (15)

In this limit the inverse Laplace transform of Eq. (10) yields the following final answer for pulse evolution in the forward
direction:

�ab(t,z) = �ab(0,z − ct) +
∫ z

z−ct

dz′�ab(0,z′)e−(�/c)(z′+ct−z)

{
ξ1 + ηbcnbc

ζ

√
ξ1(z − z′)/c
z′ + ct − z

J1

[
2

√
ξ1

c
(z − z′)(z′ + ct − z)

]

− ξ2 + ηbcnbc

ζ

√
ξ2(z − z′)/c
z′ + ct − z

J1

[
2

√
ξ2

c
(z − z′)(z′ + ct − z)

]}
−

∫ z

z−ct

dz′ ηabρac

ζ
�∗

bc(0,z′)e−(�/c)(z′+ct−z)

×
{√

ξ1(z − z′)/c
z′ + ct − z

J1

[
2

√
ξ1

c
(z − z′)(z′ + ct − z)

]
−

√
ξ2(z − z′)/c
z′ + ct − z

J1

[
2

√
ξ2

c
(z − z′)(z′ + ct − z)

]}
, (16)

where ξ1,2 and ζ are defined in Eqs. (14) and (15), and J1(z) is the Bessel function. Similarly, the solution for the field �bc reads

�∗
bc(t,z) = �∗

bc(0,z − ct) +
∫ z

z−ct

dz′�∗
bc(0,z′)e−(�/c)(z′+ct−z)

{
ξ1 + ηabnab

ζ

√
ξ1(z − z′)/c
z′ + ct − z

J1

[
2

√
ξ1

c
(z − z′)(z′ + ct − z)

]

− ξ2 + ηabnab

ζ

√
ξ2(z − z′)/c
z′ + ct − z

J1

[
2

√
ξ2

c
(z − z′)(z′ + ct − z)

]}
+

∫ z

z−ct

dz′ ηbcρ
∗
ac

ζ
�ab(0,z′)e−(�/c)(z′+ct−z)

×
{√

ξ1(z − z′)/c
z′ + ct − z

J1

[
2

√
ξ1

c
(z − z′)(z′ + ct − z)

]
−

√
ξ2(z − z′)/c
z′ + ct − z

J1

[
2

√
ξ2

c
(z − z′)(z′ + ct − z)

]}
. (17)

To obtain the evolution of the backward pulse we set ρac = 0 in the above equations and find

�ab(t,z) = �ab(0,z − ct) +
√

ηabnab

c

∫ z

z−ct

dz′�ab(0,z′)e−(�/c)(z′+ct−z)

√
z − z′

z′ + ct − z
I1

[
2

√
ηabnab

c

√
(z − z′)(z′ + ct − z)

]
,

(18)

�bc(t,z) = �bc(0,z − ct) +
√

ηbcnbc

c

∫ z

z−ct

dz′�bc(0,z′)e−(�/c)(z′+ct−z)

√
z − z′

z′ + ct − z
I1

[
2

√
ηbcnbc

c

√
(z − z′)(z′ + ct − z)

]
,

(19)

where I1(z) is the modified Bessel function.
Equations (16)–(19) give the exact analytical answer as to how the initial weak pulses �ab(0,z) and �bc(0,z) propagate through

the medium. As an illustration, we consider a simple example of a δ-function initial pulse �ab(0,z) = �
(0)
ab δ(z) and no initial

pulse at the b ↔ c transition �bc(0,z) = 0. Then Eqs. (16) and (17) yield for the forward direction

�ab(t,z) = �
(0)
ab δ(z − ct) + �

(0)
ab e−�(t−z/c)

{
ξ1 + ηbcnbc

ζ

√
ξ1z/c

ct − z
J1

[
2

√
ξ1

c
z(ct − z)

]

− ξ2 + ηbcnbc

ζ

√
ξ−z/c

ct − z
J1

[
2

√
ξ2

c
z(ct − z)

]}
θ (ct − z), (20)
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�∗
bc(t,z) = ηbcρ

∗
ac

ζ
�

(0)
ab e−�(t−z/c)

{√
ξ1z/c

ct − z
J1

[
2

√
ξ1

c
z(ct − z)

]
−

√
ξ2z/c

ct − z
J1

[
2

√
ξ2

c
z(ct − z)

]}
θ (ct − z). (21)

For the backward direction we obtain

�ab(t,z) = �
(0)
ab δ(z − ct) +

√
ηabnab

c
�

(0)
ab e−(�/c)(ct−z)

√
z

ct − z
I1

[
2

√
ηabnab

c

√
z(ct − z)

]
θ (ct − z), (22)

�bc(t,z) = 0. (23)

The first term in Eqs. (20) and (22) corresponds to the
initial seed pulse propagating in free space. The other terms
are coming from the interaction between the atoms and the
electric field.

III. FORWARD GAIN SUPPRESSION AND FORWARD
GAIN WITHOUT POPULATION INVERSION

We assume that the atomic sample is L = 1 cm long, so it
takes 0.033 ns for the photon to travel through the system. The
density of atoms is large enough that the coupling constants
are η = ηab = ηbc = 1000 cm−1 ns−1. We take the dephasing
rate � = 1 ns−1. The pulse evolution is mainly governed by
collective (superradiant) effects and occurs on a time scale
much faster than the dephasing time. Thus the assumption of
a constant ρac is valid.

In Fig. 2 we plot the output fields �ab(t,z) and �bc(t,z)
given by Eqs. (20)–(22) at the edge of the sample z = L as
a function of time. We assume the following population dis-
tribution: ρaa = 0.2, ρbb = 0.05, ρcc = 0.75, and coherence
ρac = √

0.15i. Both forward and backward fields at the a → b

transition are shown. Please note that in the plot we do not show
the δ-function term in Eqs. (20) and (22).

Emission in the backward direction grows exponentially
with time as expected for an inverted medium (in the present
example there is population inversion between levels a and
b). According to Eq. (22) it is asymptotic to the modified
Bessel function. However, the forward emission is affected by

Forward �ab

B ackward 2×

Forward �bc

10�5 �ab 

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

�t

10
�

6
��
��
�

FIG. 2. (Color online) Output fields at the edge of the sample as a
function of time given by Eqs. (20)–(22) with population distribution
ρaa = 0.2, ρbb = 0.05, ρcc = 0.75, and coherence ρac = √

0.15i. The
solid line shows the output forward field at the a → b transition,
the dashed line is the output backward field at the a → b transition
divided by 5 × 104, while the dash-dotted line is the forward field at
the b → c transition.

the coherence ρac. The presence of such coherence makes the
forward field oscillate and decay at long times. This behavior
indicates a forward gain suppression which was previously
reported in the literature [28,29]. The forward field on the b →
c transition shows similar features. In the present example we
do not include the backward field on the b → c transition [36].

Next we take the population distribution ρaa = 0.1, ρbb =
0.3, ρcc = 0.6, and coherence ρac = √

0.06i. Now there is
no population inversion in either transition. The output fields
�ab(t,z) and �bc(t,z) at the edge of the sample are shown in
Fig. 3. In the present example the backward field at the a → b

transition decays because there is no population inversion.
Namely, for nab < 0 Eq. (22) yields

�ab(t,z) = �
(0)
ab δ(z − ct) −

√
ηab|nab|

c
�

(0)
ab e−(�/c)(ct−z)

×
√

z

ct − z
J1

[
2

√
ηab|nab|

c

√
z(ct − z)

]
θ (ct − z),

(24)

that is, the pulse decays according to the asymptote of
the Bessel function J1. However, the coherence ρac yields
enhancement of both forward fields �ab(t,z) and �bc(t,z).
Thus, there is forward gain without population inversion in
our system.

In addition to our analytical results we solved the full
Maxwell-Bloch equations numerically including population

Forward �ab

Backward 102 �ab

Forward �bc

0.0 0.1 0.2 0.3 0.4 0.5
0

1
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3

4

5
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�t

10
�
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��
��
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FIG. 3. (Color online) Output fields at the edge of the sample as a
function of time given by Eqs. (20)–(22) with population distribution
ρaa = 0.1, ρbb = 0.3, ρcc = 0.6, and coherence ρac = √

0.06i. The
solid line shows the output forward field at the a → b transition,
the dashed line is the output backward field at the a → b transition
multiplied by 100, while the dash-dotted line is the forward field at
the b → c transition.
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Sampleab(0,z) ab(0,z)
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FIG. 4. (Color online) Gaussian-shaped initial seed pulses for the
forward and backward fields used in numerical simulations.

dynamics and pulse propagation in both forward and backward
directions. In numerical simulations, instead of δ-function
pulses, Gaussian-shaped pulses are used for the initial seed
for the forward and backward fields at the a → b transition
(see Fig. 4). The full width at half maximum of the seed pulse
is taken as �z = 0.167L. The results of simulations are shown
in Fig. 5. The numerical solution exhibits similar features to
the analytical result with the δ-function seed. When there is
population inversion between levels a and b, the numerical
simulations show forward gain suppression in the a → b

transition [see Fig. 5(a)], while with no population inversion
there is forward gain [see Fig. 5(b)].

To show that lasing would also occur starting from
atomic fluctuations, we calculated numerically the forward
and backward emission using quantum noise as a seed instead
of sending seed pulses. We found that if there is gain in the
medium then simulations with the seed pulses and noise give
very similar results. Thus, our analysis based on seed pulse
propagation adequately describes the system’s evolution.

IV. CONDITIONS FOR GAIN IN
THE FORWARD DIRECTION

The analytical results we obtained allow us to find the
conditions for positive gain in the forward direction. If we
disregard the dephasing �, the gain is positive if ζ in Eq. (15)

is imaginary, which yields the condition

4ηabηbc|ρac|2 > (ηabnab − ηbcnbc)2. (25)

The gain is also positive if ξ1 or ξ2 has a negative real part, that
is,

ηabnab + ηbcnbc +
√

(ηabnab − ηbcnbc)2 − 4ηabηbc|ρac|2 > 0.

(26)

If ηab = ηbc then conditions (25) and (26) reduce to

2|ρac| > |nab − nbc| = |1 − 3ρbb|, (27)

ρaa − ρcc +
√

(1 − 3ρbb)2 − 4|ρac|2 > 0. (28)

If one of the inequalities (27) and (28) is satisfied then there is
positive gain in the forward direction. If ρac = 0 then Eq. (28)
yields the requirement that ρaa > ρbb. If we increase |ρac|
then condition (28) may no longer be satisfied even if there
is population inversion between levels a and b. This yields
forward gain suppression due to coherence. However, if |ρac|
is large enough and level b is populated (ρbb 
= 0) then one can
fulfill inequality (27) even if there is no population inversion on
the a → b and b → c transitions. In this range of parameters
the system has forward gain without inversion. Please note that
the requirement ρbb 
= 0 is crucial and, thus, to observe such
a regime one should wait until level b becomes populated.

The physics behind our results can be understood by noting
an analogy between Eqs. (1)–(4) and the equations of motion
of coupled damped harmonic oscillators. Let us consider the
spatially uniform case, assuming that the medium, as well as
the pulses, is infinitely long. Then, introducing the notation
�ab = x and �bc = y, we can write Eqs. (1)–(4) as

ẍ + �abẋ − cηabnabx − cηabρacy = 0, (29)

ÿ + �bcẏ − cηbcnbcy + cηbcρacx = 0. (30)

These equations show that the coherence ρac provides coupling
between the two oscillators. The equilibrium point x = y = 0
is unstable (positive gain) if the oscillator matrix(

cηabnab cηabρac

−cηbcρac cηbcnbc

)
(31)

FIG. 5. (Color online) Output fields at the edge of the sample as a function of time obtained by numerical solution of the Maxwell-Bloch
equations with Gaussian seed pulses and initial conditions ρaa = 0.2, ρbb = 0.05, ρcc = 0.75, ρac = √

0.15i (a) and ρaa = 0.1, ρbb = 0.3,
ρcc = 0.6, ρac = √

0.06i (b).
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has eigenvalues which are complex or have positive real part.
Taking into account that the matrix eigenvalues are

λ1,2 = c

2
(ηabnab + ηbcnbc

±
√

(ηabnab − ηbcnbc)2 − 4ηabηbc|ρac|2), (32)

we obtain conditions for the gain which coincide with Eqs. (25)
and (26). So the physics behind forward gain without inversion
and forward gain suppression with inversion is the same as the
physics of stability of coupled harmonic oscillators.

V. CONCLUSION

In this paper, we consider pulse propagation through a
medium composed of three-level (cascade scheme) atoms
with initial coherence between the upper and ground states.
We obtain analytical solutions for the pulse evolution for
arbitrary initial populations and pulse shapes. Emission in
the forward direction is similar to yoked superfluorescence,
that is, there is simultaneous emission on the upper and lower
transitions. We find that initial coherence can result in gain
in the forward direction without inversion if the intermediate
level is populated. On the other hand, coherence can suppress
forward gain even in an inverted medium.

In the air laser experiment [35] it is likely that the system
experiences both regimes. In this experiment, the pump pulse
first partially excites the upper level a, which produces
population inversion between the upper two levels. This yields

backward lasing at early times, which transfers population
from the upper level to the middle level b. During this
process, the forward gain is suppressed. After some time, the
upper-state population is depleted. This promotes the system
into a state with ρaa < ρbb < ρcc, while the long pump pulse
continues to generate coherence ρac. For these conditions,
forward gain can be achieved as we show here. These processes
are repeated as long as the pump field is on.

Our work combines lasing and superradiance. In the case
of a laser (with or without inversion) a weak seed pulse grows
exponentially in the linear regime. In the case of superradiance
in an extended medium the emitted pulse decays, undergoing
oscillations with the collective frequency. The present problem
combines these two effects, which yields the possibility of
exponential growth and oscillations of the pulse at the same
time.
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