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Electrostatic model of coherent decay in a small spherical sample of two-level atoms
of radially varying density
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We show that the decay rate and the frequency shift of the radiation modes from a small sphere of two-level
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I. INTRODUCTION

We have recently presented [1] a study of coherent radiative
emission from a small cloud (radius � resonant wavelength) of
identical two-level atoms, with spherical symmetry but strong
radial variation of density. The purpose of this was to explore
the relevance, to a small sample, of the Dicke picture [2] of
coherent decay. In this picture, the atoms, if prepared in a
completely symmetric state (analogous to a set of classical
dipoles oscillating synchronously at the resonance frequency),
will remain synchronous as the decay progresses, and the
excitation will die out exponentially and uniformly throughout
the sample.

The analysis of Ref. [2], however, is based only on the
radiative reaction of the dipoles to each other’s field, and
ignores the frequency shifts [3] caused by the same field. These
shifts are much larger, at short distance, than the cooperative
decay rate, and in general should vary strongly within a small
sample; therefore [4,5], the dipoles should dephase long before
a significant fraction of the energy has been radiated.

An exception to the last statement is a spheroidal sample of
uniform density. Here a well-known theorem of electrostatics
tells us that a uniform polarization produces a uniform internal
field, so that the Dicke picture is maintained in the small-
sample limit [6]; see also Sec. II of Ref. [7] and Sec. VIII of
Ref. [8].

The purpose of Ref. [1] was to show by explicit calculation
that this exception no longer holds in a sphere with strongly
varying atomic density. We studied two configurations: “shell-
plus-hollow” consisting of a spherical shell of arbitrary thick-
ness and uniform density surrounding a spherical hollow with
no matter, and “shell-plus-core” in which there is an additional
spherical core, of the same density as the shell, centered within
the hollow. For each configuration, we set up the Maxwell and
linearized Bloch equations governing time evolution in the
regime of weak excitation (nearly all atoms in the ground
state). For a sphere of arbitrary radius, these equations admit
an eigenmode analysis in which the eigenfunctions involve
spherical Bessel and Neuman functions. We confined ourselves
to modes of angular index 1 (dipole symmetry) since we
are interested in an initial state of uniform polarization. We
studied the eigenmodes numerically for a certain small radius
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(k0R = 0.05, where 2π/k0 is the resonant wave number and
R is the outermost radius) and found that the decomposition of
the initial state is dominated by those modes of long (�2π/k0)
wavelength, of which there are only two for the shell-plus-
hollow and three for the shell-plus-core configuration.

The real and imaginary parts of the eigenvalues gave the
radiation rates and frequency shifts of the respective modes.
These quantities, as well as the relative contribution of each
mode to the initial state, were calculated for a variety of
assignments of the internal radii.

Although the methods of Ref. [1] are in principle applicable
to any value of k0 R, the numerical algorithms used become
unreliable when k0R is extremely small. Therefore, we carried
out the calculations at k0R = 0.05. We also obtained the
analytical limiting results as k0R → 0 for the decay rate
and frequency shift of the modes for the shell-plus-hollow
configuration by performing a double series expansion of a
characteristic fourth-order determinant (see the Appendix of
Ref. [1]), which is a physically opaque procedure at best. In
the present paper, we develop a different method by which the
exact limit of all quantities of interest at k0R → 0 is obtained
analytically and transparently. Essentially, the idea is to put
k0R → 0 in Maxwell’s equation from the start, so that one has
merely an electrostatic problem. The resulting equations have
no transcendental functions and can be solved by hand.

The Lienard-Wiechert potential for a small separation
distance between two dipoles can be approximated by the
expression

W (�) = �pi ◦ �pj − 3 �pi ◦ �̂ �pj ◦ �̂
�3

− k2
0( �pi ◦ �pj + �pi ◦ �̂ �pj ◦ �̂)

2 � − 2

3
i k3

0 �pi ◦ �pj .

(1.1)

Our strategy will be, first, to replace (1.1) by its leading term.
This causes each eigenmode to be described as an electrostatic
boundary value problem with a dielectric constant related to
the temporal eigenvalue. The problem turns out to be insoluble
except for a small number of values of the dielectric constant.
These determine the eigenmodes of the important modes.
Since the electrostatic interaction is real, the dielectric constant
in each mode is real, and hence the eigenvalues are purely
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imaginary. Thus this treatment yields frequency shifts but no
decay rates.

The leading-order decay rate comes from the (imaginary)
third term of Eq. (1.1) and is therefore O((k0R)3) smaller than
the frequency shifts, which, in turn, are of the order of the
Lorentz shift ωL. Thus, in the limit k0R → 0, the system does
not decay in the time scale of 1/ωL. Of interest, however, is
the decay rate on the Dicke time scale 1/[ωL(k0R)3]. This is
found exactly by including the term in − 2

3 ik3
0 to the leading

order.
The way to do this is to find the expectation value of this

term (viewed as an operator on the polarization distribution) in
the “state” (to borrow quantum mechanical language) defined
by the eigenmode already determined by electrostatics. The
perturbation of the eigenmode by the second and third terms
of Eq. (1.1) is of the order of (k0R)2 and can be neglected since
it would affect the decay rate only to the order higher than
ωL(k0R)3. The ratio of the decay rate to ωL (k0R)3 is a finite
quantity in the limit (k0R)3 → 0, and is found exactly by the
method described here. Its analytic expression for both modes
of the shell-plus-hollow configuration agrees exactly with that
found in the Appendix of Ref. [1]. (An analogous calculation
for the shell-plus-core configuration was not attempted in
Ref. [1].)

Having found the eigenfunctions (field and polarization
density) for each mode and the frequency shift and decay
rate for each, we combine them to form the initial state
(uniform polarization in the occupied volume) and follow its
time development on both the Lorentz scale 1/ωL, where ωL

is the Lorentz shift, and the Dicke scale 1/[ωL(k0R)3]. On
the Dicke scale, we obtain formulas for the overall emission
rate and for P − P +, which is the probability of excitation
orthogonal to the initial state, as functions of time. These both
turn out substantially different from the Dicke predictions.
We also study the polarization density distribution in each
eigenmode and make physical observations not brought out
in [1].

In Sec. II, we give the fundamental equations as in [1],
but modified for the limit k0R → 0. In Sec. III, we consider
the shell-plus-hollow configuration. We set up the linear
equation governing the change of the polarization, and find
that its eigenmodes are given, to the leading order in k0R,
by solving an electrostatic problem with no source but an
artificially chosen dielectric constant that satisfies a quadratic
equation whose roots determine the frequency eigenvalues
of two modes. Each mode is characterized by a nonuniform
polarization. The initial state of the uniform polarization is
resolved into the two modes, which dephase and rephase
periodically in a time on the Lorentz scale. We then compute
the expectation value of the imaginary part of Eq. (1.1) in each
mode, and find analytical formulas for the overall emission
rate, as well as the probability of excitation orthogonal to the
symmetric state, as a function of time on the Dicke scale.

In Sec. IV, we let the center of the sphere belong to the
occupied portion so that the atoms belong to an inner core
and an outer shell, with a gap in between. (This problem, in
which the initial excitation is the same for all atoms, must not
be confused with that of Sec. VII in Ref. [7], in which the
atomic density is uniform but the initial excitation is not.) The
modes are now three in number. One mode is quasiuniform,

with the polarization constant throughout the shell but weaker
than in the core; its frequency is the same as that of the uniform
sphere. The other two modes resemble those found in Sec. II.
The eigenvalues and eigenfunctions are all given analytically,
and the frequency shifts and decay rates are studied as for the
first configuration.

In Sec. V, we summarize our results. Next, in the first
two Appendices, we derive some features of the shell-plus-
core configuration that were stated without proof in the text.
Appendix C investigates a third configuration, in which the
core and shell have different densities but there is no gap.

II. FUNDAMENTAL EQUATIONS

As in Ref. [1], we start with the Maxwell and linearized
Bloch equations describing coherent decay from weak ex-
citation. In an eigenmode where the electric field �E(�r,t)
and polarization �P(�r,t) vary temporally as exp(−iωt), with
ω = ω0 − ωL − iλ, and λ being a complex quantity pertaining
to the mode, we obtained (Eqs. (2.4) and (2.5) in Ref. [1])

�P(�r) = −n℘2

h̄λ
�E(�r) (occupied region), (2.1)

and

�E(�r) + 4

3
π �P(�r) = −

∫
d3�r ′ exp(ik0�)

×
{(

1

�3
− i

k0

�2

)
[�P(�r ′) − 3�̂�̂ ◦ �P(�r ′)]

− k2
0

� [�P(�r ′) − �̂�̂ ◦ �P(�r ′)]
}
. (2.2)

(We write �� = ��̂ = �r − �r ′ and suppress the argument t . ℘ is
the electric dipole matrix element and n is the atomic number
density throughout the occupied region.)

Here we shall replace the integrand in Eq. (2.2) by its
leading (electrostatic) term, corresponding to the first term
in Eq. (1.1):

�E(�r) + 4

3
π �P(�r) = −

∫
d3�r ′ exp(ik0�)

×
{

1

�3
[�P(�r ′) − 3�̂�̂ ◦ �P(�r ′)]

}
. (2.3)

As in Ref. [1], the integral around the singularity is to be
taken spherically, yielding the Clausius-Mossotti “local-field
correction” exactly equal to the term 4

3π �P(�r) on the left. Thus,
(2.3) reduces as in electrostatics to the pair of equations

�E = −�∇V (2.4)

and

�∇ ◦ (�E + 4π �P) = 0. (2.5)

At the same time, Eq. (2.1) can be written as �P = χs
�E,

where s labels the mode and

χs = (1/iλs)(n℘2/h̄), (2.6)

and (2.5) becomes

�∇ ◦ (ε �E) = 0, (2.7)
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where (for mode s) ε takes the values

εs = 1 + 4πχs (2.8)

in the occupied region, and 1 in the unoccupied region.

III. SHELL-PLUS-HOLLOW CONFIGURATION

In our geometry, Eqs. (2.4) and (2.7) lead to solutions of
the form

V = A2R
3 cos(θ )/r2, r > R, (3.1)

V = B1r cos(θ ) + B2R
3 cos(θ )/r2, βR < r � R, (3.2)

V = C1r cos(θ ), r � βR. (3.3)

Since V and ε∂V/∂r must be continuous at the boundaries,
we have

A2 = B1 + B2, (3.4a)

−2 A2 = εs (B1 − 2 B2), (3.4b)

C1 = B1 + B2/β
3, (3.5a)

C1 = εs (B1 − 2 B2/β
3), (3.5b)

and hence

(εs + 2) B1 = 2 (εs − 1) B2, (3.6)

(εs − 1) B1 = (2 εs + 1) B2/β
3. (3.7)

From this we find the equation determining εs :

(εs + 2) (2 εs + 1) = 2 (εs − 1)2β3, (3.8)

and since (2.6) can be written

εs = 1 + (C/iλs), (3.9)

where C = 4πn℘2

h̄
= 3ωL, we have the eigenvalue equation

[3 + (C/iλs)][3 + 2 (C/iλs)] = 2 β3(C/iλs), or, if we put
λs = iCμs, then

(3μs − 1)(3μs − 2) = 2β3, (3.10)

of which the two roots (taking ± for the values of s) are

μ± = 1
2 ± 1

6

√
1 + 8β3. (3.11)

As β → 0, the roots approach 2/3 and 1/3; as β → 1,
they approach 1 and 0. The sum of the two roots is always
1. (If the Lorentz shift is included, then the total shift for
each mode, with overall sign convention as in Ref. [9], is
−[Im(λ) − ωL] = −C (μ − 1

3 ).)
The distribution of polarization in each of the two modes

depends on the ratio B1/B2; B1 is the coefficient of uniform
polarization within the occupied region, and B2 is the
coefficient of a distribution resembling a point dipole field.
Using either (3.6) or (3.7), and εs = 1 − (1/μs) from Eq. (3.9),
we find using (3.10) that

B±
1 /B±

2 = (1 ∓
√

1 + 8β3)/2β3. (3.12)

[The superscript ± refers to the choice of mode s, as in
Eq. (3.11).]

As β → 0, the lower solution of Eq. (3.10) (ε− →
−2,μ− → 1

3 ) becomes dominated by B1. When β = 0, this
solution becomes the configuration of uniform polarization
discussed in Sec. II of Ref. [7]. The upper solution (ε+ →

− 1
2 ,μ+ → 2

3 ) yields B1/B2 → −2; in this solution, the point
dipole configuration dominates near the inner surface of the
shell, and when β = 0, the solution no longer exists because
of the singularity at the origin.

Until now, the normalization in each mode has been
arbitrary. We now wish to fix this normalization so as to
reproduce, for given β, the condition of uniform polarization
density assumed at initial time t = 0. Let us write the actual
polarization in the occupied region at t = 0 as

�P(�r,0) = �P+(�r,0) + �P−(�r,0) = −χ+ �∇V+(�r) − χ− �∇V−(�r),

(3.13)

where V± are the two solutions of Eqs. (2.4) and (2.7)
corresponding to the two modes, each normalized in a way
to be determined. Then we have, in the occupied region,

�P(�r,t = 0) = −�∇
[

(χ+B+
1 + χ−B−

1 ) r cos θ

+ (χ+B+
2 + χ−B−

2 )
cos θ

r2

]
. (3.14)

However, we want �P(�r,0) to be equal to P0êz =
P0 �∇(r cos(θ )) for some P0 independent of �r . This requires

χ+B+
1 + χ−B−

1 = −P0, (3.15)

χ+B+
2 + χ−B−

2 = 0. (3.16)

From Eq. (3.16), we have

χ+B+
2

χ−B−
2

= −1, (3.17)

and hence from Eq. (3.12),

χ+B+
1

χ−B−
1

= − (1 −
√

1 + 8 β3)

(1 +
√

1 + 8 β3)
. (3.18)

Therefore, from Eq. (3.15),

χ±B±
1 = −1

2
P0

(
1 ∓ 1√

1 + 8 β3

)
, (3.19)

and applying (3.12) again,

χ±B±
2 = ±P0

β3√
1 + 8β3

. (3.20)

Note the distinction between
√

1 + 8β3 and 1/
√

1 + 8β3.
We can now study the time evolution of the polarization

distribution. Let us put

�P(r,t) = �∇ [F1(t) r cos(θ ) + F2(t) R3 cos(θ )/r2]

= F1(t) êz + F2(t) (R/r)3[−2 cos(θ ) êr − sin(θ ) êθ ].

(3.21)

Then,

F1(t) = −χ+B+
1 exp(−λ+t) − χ−B−

1 exp(−λ−t), (3.22)

F2(t) = −χ+B+
2 exp(−λ+t) + χ−B−

2 exp(−λ−t), (3.23)

where the factors χB are given by Eq. (3.19) and (3.20). [We
continue to omit the Lorentz shift which, as previously pointed
out, would supply an overall factor exp(iωLt) = exp(iCt/3).]
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So far we have considered λs to be completely imaginary on the
basis of Eqs. (2.2) and (2.3), but we shall presently introduce
the idea that λs has a small real part proportional to k3

0, which
we have so far taken to be zero.

Of particular interest to us is the quantityP − P +, where
P denotes the fraction of energy remaining in the atoms (not
radiated), and P + is the fractional probability that the atoms
are excited and phased to radiate forward as at time t = 0 (i.e.,
proportional to the squared magnitude of the forward emission
amplitude). In our continuum notation, we have

P (t) =
∫

d3�r| �P (�r,t)|2∫
d3�r| �P (�r,0)|2 = |F1(t)|2 + (2/β3)|F2(t)|2

P 2
0

, (3.24)

P +(t) =
∣∣∣∣
∫

d3�r �P (�r,t) ◦ êz∫
d3�r �P (�r,0) ◦ êz

∣∣∣∣
2

= |F1(t)|2
P 2

0

. (3.25)

Combining (3.24) and (3.25), we have

P (t) − P +(t) = (2/β3)
|F2(t)|2

P 2
0

, (3.26)

and from Eq. (3.23) with Eqs. (3.16) and (3.20), disregarding
the small real part of λ,

P (t) − P +(t) = 2 β3

1 + 8 β3
[2 − 2 cos(δ t)], (3.27)

where

δ = Im(λ+) − Im(λ−) = C(μ+ − μ−) = (C/3)
√

1 + 8 β3.

(3.28)

P − P + gives the cumulative fraction of nonradiative
transfer (NRT) [10], that is, the probability at time t that
the atoms, initially in a coherent state of single excitation
corresponding to uniform polarization, are now in a state
of single excitation orthogonal to the uniform one. From
Eq. (3.27), we see that if β = 0, then this quantity is zero
at all times, which is in agreement with the finding of Ref. [4]
for the uniformly populated sphere with no internal cavity. For
nonzero β, we see that P − P + is initially zero, but thereafter
oscillates between 0 and 8β3/(1 + 8β3).

The above description applies in a time scale of the order
of C−1 (the “fast scale”), which governs the oscillations. On
this scale, the real part of λs can be neglected. Let us now take
it into account. This quantity can be written for each s as

Re(λs) = qsλD, (3.29)

where the dimensionless coefficients qs are O(1), and

λD = Nγ1/2, (3.30)

where γ1 = 4
3 (℘2k3

0/h̄) is the decay rate of the probability of
excitation of the isolated atom, and N = (4/3) πR3(1 − β3) n

is the number of atoms. Thus,

λD = 1
2 (4/3)2πn℘2(k0R)3(1 − β3)/h̄

= (2/9)C(k0R)3(1 − β3). (3.31)

The factor (k0R)3 causes λD to vanish on the scale of C.
(Recall that C = 3ωL.)

Including the decay factors, Eq. (3.27) should be replaced
by

P (t)−P +(t) = 2β3

1 + 8β3
{exp[−2Re(λ+)t]+ exp[−2Re(λ−)t]

− 2 exp[−Re(λ+ + λ−)t] cos(δt)}. (3.32)

Let us now look at things as seen on a time scale of the
order of (λD)−1 (the “slow scale”). The exponents in Eq. (3.32)
contain terms −Re(λ±t), which are of the order O(1) on the
slow scale. Furthermore, δt is essentially infinite on the slow
scale; that is, the oscillations in Eq. (3.32) are infinitely fast
so that we see only their average. Thus, the factor cos(δt) is
replaced by zero. This means that on the slow scale, the value
of P − P + is surprisingly already nonzero (= 4β3

1+8β3 ) at what
appears to be the initial time. Putting Re(λ±) in terms of λD

by Eq. (3.29), we thus replace (3.32) by

P (t) − P +(t)

= 2 β3

1 + 8 β3
[exp(−2q+λDt) + exp(−2q−λDt)]. (3.33)

Let us now study P . When (3.24) is evaluated by means
of using (3.22), (3.23), and (3.15), (3.16), some surprising
simplifications lead to

P (t) = 1

2

[(
1 − 1√

1 + 8β3

)
exp(−2q+λDt)

+
(

1 + 1√
1 + 8β3

)
exp(−2q−λDt)

]
. (3.34)

Note that the terms involving cos(δt) have cancelled. Thus,
P does not undergo fast oscillation; the oscillations seen in
Eqs. (3.27) and (3.32) are entirely due to P +. This is physically
expected, since energy once radiated (lost to P ) cannot return
to the system.

Now we must calculate qs = Re(λs)/λD . As is well known,
the right-hand side of Eq. (2.2) is only the leading term (in
powers of k0R) of a complex expression,

exp(i k0 �)

{
[3 �P (�r ′) ◦ �̂ �̂ − �P (�r ′)]

(
1 − i k0 �

�3

)

− k2
0

� [ �P (�r ′) ◦ �̂ �̂ − �P (�r ′)]
}

, (3.35)

of which the imaginary part has the leading term (2/3) k3
0

independent of �. (This independence is the foundation for the
Dicke picture for the uniformly dense small sphere.) This small
imaginary part does not affect noticeably the eigenfunctions
of our system, but it gives rise perturbatively to the real part of
the eigenvalues. Thus,

Re(λs) =
(

n℘2

h̄

) (
2

3
k3

0

) ∫
d3�r ∫

d3�r ′ �Ps(�r) ◦ �Ps(�r ′)∫
d3�r | �Ps(�r) |2

=
(

n℘2

h̄

) (
2

3
k3

0

) ∣∣∫ d3�r �Ps(�r)
∣∣2

∫
d3�r | �Ps(�r) |2 , (3.36)

while

λD =
(

n℘2

h̄

)(
2

3
k3

0

) ∫
d3�r, (3.37)
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so that

Re(λs)

λD

=
∣∣∫ d3�r �Ps(�r)

∣∣2

∫
d3�r| �Ps(�r)|2 ∫

d3�r , (3.38)

where �Ps is the portion of Eq. (3.14) proportional to χs .
The integral of �Ps receives a contribution only from the part

of Eq. (3.14) proportional to χsB
s
1, so that

qs =
(
Bs

1

) 2

(
Bs

1

) 2 + (2/β3)
(
Bs

2

) 2 . (3.39)

Applying (3.12), we have

q± = 1 + 4β3 ∓
√

1 + 8β3

1 + 8β3 ∓
√

1 + 8β3
= 1

2

(
1 ∓ 1√

1 + 8β3

)
.

(3.40)

Finally, by comparing (3.40) to (3.34), we find curiously
that

P (t) =
∑

s

qs exp(−2 qsλDt), (3.41)

and hence that the overall radiation rate, relative to the initial
energy, is

− d

λDdt
P (t) = 2

∑
s

q2
s exp(−2 qsλDt), (3.42)

with qs given by Eq. (3.40).
A careful examination of the definitions shows that (3.41)

implies another identity,

P +(t) =
∣∣∣∣∣
∑

s

qs exp(−λst)

∣∣∣∣∣
2

, (3.43)

which can also be derived from Eq. (3.25) and the preceding
equations.

IV. SHELL-PLUS-CORE CONFIGURATION

The methods of the preceding section can readily be
generalized to a sphere with two occupied regions. We take
the density of resonant atoms as n in regions II and IV, 0 in
regions I and III, where

I (outside) : r > R, (4.1)

II (shell) : R > r > βR, (4.2)

III (gap) : βR > r > γR, (4.3)

IV (core) : γR > r > 0. (4.4)

The potential function is now given as

V = A2R
3 cos(θ )/r2, r > R, (4.5)

V = B1r cos(θ ) + B2R
3 cos(θ )/r2, R > r > βR, (4.6)

V = C1r cos(θ ) + C2R
3 cos(θ )/r2, βR > r > γ R,

(4.7)

V = D1r cos(θ ), γR > r > 0. (4.8)

The boundary conditions are

A2 = B1 + B2, (4.9a)

−2 A2 = ε (B1 − 2 B2), (4.9b)

C1 + SβC2 = B1 + SβB2, (4.10a)

C1 − 2 SβC2 = ε (B1 − 2SβB2), (4.10b)

C1 + Sγ C2 = D1, (4.11a)

C1 − 2 Sγ C2 = ε D1, (4.11b)

where Sβ = (1/β3) and Sγ = (1/γ 3).
Eliminating A2 and D1, we find

B1 = 2(ε − 1)B0, (4.12a)

B2 = (ε + 2)B0, (4.12b)

C1 = (ε + 2)Sγ C0, (4.13a)

C2 = −(ε − 1)C0, (4.13b)

where

B0{2(ε − 1) + (ε + 2) Sβ}
= C0{(ε + 2) Sγ − (ε − 1) S

β
}, (4.14)

εB0{2(ε − 1) − 2(ε + 2)Sβ}
= C0{(ε + 2)Sγ + 2(ε − 1)S

β
}. (4.15)

The secular equation for this homogeneous system is

M =
∣∣∣∣∣

2(ε − 1) + (ε + 2)Sβ (ε + 2)Sγ − (ε − 1)Sβ

ε[2(ε − 1) − 2(ε + 2)Sβ] (ε + 2)Sγ + 2(ε − 1)Sβ

∣∣∣∣∣ = 0.

(4.16)

The secular equation reduces to

M = (ε + 2)
[
2
(−S

γ
+ Sβ − S2

β

)
(ε − 1)2

+ (ε + 2)(2ε − 1)SβSγ

]
. (4.17)

The vanishing of the factor in the square bracket gives an
equation identical to Eq. (3.4) except that β3 is replaced by
β̃3:

β̃3 = Sγ − Sβ + S2
β

SβSγ

= β3 − γ 3 + γ 3

β3
(4.18)

Thus the secular equation, expressed in terms of μ, admits
one fixed root (independent of both β and γ ) and two other
roots having the same functional form as those of the single
shell configuration, but with β replaced by β̃:

μ0 = 1
3 , μ± = 1

2 ± 1
6

√
1 + 8β̃3. (4.19)

The three roots add to 4/3.
In the “fixed” solution μ0 = 1/3, ε0 = −2, we see from

Eqs. (4.12) and (4.13) that B2 = C1 = 0; therefore, the field
has point dipole behavior in the “gap,” and uniform behavior,
along with the polarization, in the “shell.” This solution may
be called quasiuniform, in that the polarization is uniform
within each occupied region. The nonuniformity consists in
the inequality of D1 to B1; putting C1 = 0 in the original
boundary conditions, we find

B1 = (γ 3/β3)D1. (4.20)
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When γ = β (no gap), this mode becomes uniform and
completely describes the initial state as in Sec. II of
Ref. [7]. When γ = 0 (no core), the fixed solution
ceases to exist because of the singularity in the origin
(C2 �= 0).

The two unfixed modes do not become singular when γ = 0
because C2/C1 vanishes by Eq. (4.13). They become the two
modes of Sec. II since then β̃3 = β3.

For general γ and β, the real part of λ can be derived from
Eq. (3.29) and (3.38). The result is like (3.39), but with shell
and core contributions weighted by volume:

qs =
[
(1 − β3)Bs

1 + γ 3Ds
1

]2

{[(
Bs

1

)2 + 2β−3
(
Bs

2

)2]
(1 − β3) + γ 3

(
Ds

1

)2}
(1 − β3 + γ 3)

(4.21)

For the fixed mode, using (4.20) and dropping B2, this becomes

q0 = [(1 − β3)γ 3 + γ 3β3]2

[(1 − β3)γ 6 + γ 3β6](1 − β3 + γ 3)
= γ 3

(γ 3 − β3γ 3 + β6)(1 − β3 + γ 3)
(4.22)

For the unfixed modes, one obtains (see Appendix A)

B±
1

D±
1

= 1

1 − Sβ

,
B±

2

B±
1

= 3μ± − 1

2
. (4.23)

On substituting (4.23) into Eq. (4.21) (Appendix B), the
expressions for the q± simplify to

q+ = 2(1 − β3)(β3 − γ 3)2

3β3(3μ+ − 1)(μ+ − μ−)(1 − β3 + γ 3)
, (4.24a)

q− = 2(1 − β3)(β3 − γ 3)2

3β3(3μ− − 1)(μ− − μ+)(1 − β3 + γ 3)
. (4.24b)

To obtain the sum of the three q’s, we use the identity

1

(3μ+ − 1)3(μ+ − μ−)
+ 1

(3μ− − 1)3(μ− − μ+)

= − 1

(3μ+ − 1)(3μ− − 1)
. (4.25)

and putting μ− = 1 − μ+, the right-hand side becomes

1

(3μ+ − 1)(3μ+ − 2)
= 1

2β̃3
= 1

2

β3

β6 − β3γ 3 + γ 3
. (4.26)

Hence,

q+ + q− = (1 − β3)(β3 − γ 3)2

(γ 3 − β3γ 3 + β6)(1 − β3 + γ 3)
. (4.27)

Combining with Eq. (4.22), we have

q0 + q+ + q− = [γ 3 + (1 − β3)(β3 − γ 3)2]

(γ 3 − β3γ 3 + β6)(1 − β3 + γ 3)
. (4.28)

A straightforward expansion shows that the numerator and
denominator are identical, hence,

∑
s qs = 1, as expected.

The previously defined expressions for P +(t) and P (t),

namely, P +(t) = |
∫

d3�r �P (�r, t)◦êz∫
d3�r �P (�r, 0)◦êz

|2 and P (t) =
∫

d3�r | �P (�r,t) |2∫
d3�r | �P (�r, 0) |2 , can

be written after some manipulation as

P +(t) =
∣∣∣∣
∑

s

qs exp(−λs t)

∣∣∣∣
2

, (4.29)

P (t) =
∑

s

qs exp[−2Re(λs)t]. (4.30)

These identities, exactly parallel to Eqs. (3.41) and (3.43),
emerge for each configuration in an apparently fortuitous way.
We have no simple way of understanding them.

V. CONCLUSION

In Figs. 1 and 2, we graph Eqs. (3.33) and (3.42) on the
Dicke time scale, for two values of β. In Fig 1, the Dicke
picture would give P − P+ = 0 for all time; in Fig 2, showing
the emission rate, it would give exponential decay, which is
shown for comparison. The departure from Dicke behavior is
marked.

It was noted after Eq. (3.36) that the two values of q add to
1; that is, Re(λ+) + Re(λ−) = λD . This sum rule must hold
for any geometry in the limit k0R → 0, because the sum∑

s Re(λs) is the trace of the operator whose expectation value
is evaluated in (3.36), and this trace can be evaluated as a sum
of diagonal elements, yielding (3.37). As shown by Eq. (4.28),
this sum rule holds also in Sec. III. In Fig. 3, we plot the
qs’s in the shell-plus-core configuration as a function of β for
γ = 0.2, and note that the mode with s = 0 is not the dominant
mode for all values of β.

We note, though, a second sum rule for Im(λ) that is not so
robust or easily stated. For the uniform sphere (one mode),
we have μ = 1/3. For the shell-plus-hollow configuration
(Sec. II, two modes), we have μ+ + μ− = 1. For the shell-
plus-core configuration (Sec. III, three modes), we have
μ+ + μ− + μ0 = 4

3 (see Fig. 4). It can be shown that this
pattern continues for any number of successive shells as long
as all occupied regions have the same density. It appears that

(a)

1 2 3 4
λDt

0.05
0.10
0.15
0.20
0.25
P t P t

(b)

1 2 3 4
λDt

0.1

0.2

0.3

0.4
P t P t

FIG. 1. The cumulative fraction P − P + of nonradiative transfer
(NRT) is plotted as a function of the slow time for the shell-plus-
hollow configuration. (a) β = 0.5; (b) β = 0.8. (This quantity is zero
in the Dicke model.)

033834-6



ELECTROSTATIC MODEL OF COHERENT DECAY IN A . . . PHYSICAL REVIEW A 85, 033834 (2012)

(a)

1 2 3 4
λDt

0.001

0.01

0.1

dP λDdt

(b)

1 2 3 4
λDt

0.001

0.01

0.1

dP λDdt

FIG. 2. (Color online) The radiation rate relative to the initial
energy is plotted logarithmically as a function of the slow time for the
shell-plus-hollow configuration. (a) β = 0.5; (b) β = 0.8. (Dashed
line corresponds to Dicke’s theory.)

the “trace” argument is disturbed, in the case of Im(λ), by
the singularity of the operator at �r = �r ′. But if all occupied
regions have the same uniform density, then the disturbance
can be localized to the interfaces between regions. A convex
interface (filled region on the inside) contributes 1/3 to

∑
s μs

(as in a uniform sphere in an empty world), whereas a concave
interface (filled region on the outside) contributes 2/3 (as in
an empty sphere in a uniformly filled world).

The surviving strength at any time of the original polariza-
tion distribution is given by P+(t). On the fast time scale, if P+
is found in the two-mode problem from Eqs. (3.25) and (3.19),
then its graph against T = Ct is that of a simple sinusoidal
function. In the shell-plus-core configuration, however, the
three modes give rise to an interplay of incommensurate beat
frequencies. Figure 5 illustrates this behavior.

In summary, the evolution of both the polarization and
radiation rate, even in the limit k0R → 0, shows marked
deviations from Dicke behavior, both on the slow time scale
t ≈ O(λ−1

D ) and on the fast scale t ≈ O(C−1).

APPENDIX A

Here we derive Eq. (4.23) for the shell-plus-core configu-
ration.

The ratio of B1 to D1 in any mode is obtained by combining
(4.14) with Eqs. (4.11a) and (4.12a):

B1

D1
= 2(ε − 1)

3Sγ

(ε + 2)Sγ − (ε − 1)Sβ

2(ε − 1) + (ε + 2)Sβ

. (A1)

q0
q

q

0.4 0.6 0.8 1.0
β

0.2

0.4

0.6

0.8

1.0
q

FIG. 3. (Color online) The ratio of the real part of the true
eigenvalue to Dicke’s value for the different modes for the shell-
plus-core configuration are plotted as a function of β, with γ = 0.2.

Μ

Μ0

Μ

0.4 0.6 0.8 1.0
β

0.2

0.4

0.6

0.8

1.0
μ

FIG. 4. (Color online) The normalized imaginary part of the
eigenvalue [μ = Im(λ)/C] for the different modes for the shell-plus-
core configuration is plotted as a function of β, with γ = 0.2.

Since ε = 1 − μ−1 , ε+2
ε−1 = 1 − 3μ, (A1) is equivalent to

B1

D1
= 2

−3Sγ μ

Sγ (1 − 3μ) − Sβ

2 + Sβ(1 − 3μ)
. (A2)

For the modes ±, we have also

(1 − 3μs)(2 − 3μs) = 2β̃3 = 2

(
β3 − γ 3 + γ 3

β3

)
,

(A3a)

or

3μ±(1 − 3μ±) = 2(1 − 3μ±) − 2

(
β3 − γ 3 + γ 3

β3

)
.

(A3b)

Multiplying by SβSγ ,

3μ±(1 − 3μ±)SβSγ = 2
(
SβSγ − Sγ + Sβ − S2

β

)
− 6μ±SβSγ , (A4)

and adding 6μ±Sγ on both sides,

3μ±Sγ [2 + Sβ(1 − 3μ±)]

= −2 (1 − Sβ)[Sγ (1 − 3μ±) − Sβ]. (A5)

Comparing (A5) to (A2), we see that

B±
1

D±
1

= 1

(1 − Sβ)
. (A6)

20 40 60 80
T Ct

0.2
0.4
0.6
0.8
1.0

P

FIG. 5. P +(t) (proportional to the square magnitude of the
forward emission amplitude) from an initially uniform polarization
is plotted as a function of the fast normalized time (T = Ct) for the
shell-plus-core configuration. β = 0.6 andγ = 0.2.
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Also from (4.12a) and (4.12b),

B±
2

B±
1

= (3μ± − 1)

2
. (A7)

Thus (4.23) is confirmed.

APPENDIX B

We seek a formula for q± in the shell-plus-core configu-
ration. Substituting (4.23) into (4.21), we have (remembering
that Sβ = 1/β3)

q± = [(1 − β3) + γ 3 (1 − Sβ)] 2

{
(1 − β3)

[
1 + 2 Sβ

( 3 μ±−1
2

)2] + γ 3 (1 − Sβ)2
}

(1 − β3 + γ 3)

= (1 − Sβ)2 (β3 − γ 3)2

−(1 − Sβ)
{
β3

[
1 + 1

2 Sβ (3 μ± − 1)2
] − γ 3 (1 − Sβ)

}
(1 − β3 + γ 3)

= −(1 − Sβ) (β3 − γ 3)2[
β3 − γ 3 + γ 3

β3 + 1
2 (3 μ± − 1)2

]
(1 − β3 + γ 3)

. (B1)

Since

β3 − γ 3 + γ 3

β3
= β̃3 = 1

2
(3μ± − 1)(3μ± − 2), (B2)

the square bracket in the denominator of Eq. (B1) is

1
2 (3μ± − 1)(3μ± − 2) + 1

2 (3μ± − 1)2

= 1
2 (3μ± − 1)(6μ± − 3) = 3

2 (3μ± − 1)(μ± − μ∓)

(B3)

where we have used μ± + μ∓ = 1. Therefore,

q± = 2(S
β
− 1)(β3 − γ 3)2

3(3μ± − 1)(μ± − μ∓)(1 − β3 + γ 3)
(B4)

Thus Eq. (4.24) is confirmed.

APPENDIX C

In this Appendix, we shall compute the eigenvalues for the
shell-plus-shell configuration. In this configuration, the sphere
is divided into two shells, both filled with the active atoms but
where the density in the inside shell is ζn, and is n in the outer
shell, where 0 < ζ < 1. There is no hollow part. The potential
is given by Eqs. (3.1)–(3.3), but the dielectric constant in the
region r < βR is no longer 1. Superscripts b and c will be
used, respectively, for the outer shell, βR < r < R, and the
inner shell, r < βR.

(a)

0.25 0.5 0.75 1
ζ

0.1

0.2

0.3

Im

(b)

0.2 0.4 0.6 0.8 1.0
ζ

0.6
0.7
0.8
0.9
1.0
Im

FIG. 6. Im(�) is plotted, for the two modes, as a function of the
relative densityζ in the two shells in the shell-shell configuration. β =
0.5. Analytic result, for k0R = 0, from Appendix C superimposed on
a numerical curve for k0R = 0.05.

The boundary conditions corresponding to Eqs. (3.4)
and (3.5) become

A2 = B1 + B2, (C1a)

−2A2 = ε(b)
s (B1 − 2B2), (C1b)

C1 = B1 + B2/β
3, (C2a)

ε(c)
s C1 = ε(b)

s (B1 − 2B2/β
3), (C2b)

and hence (
ε(b)
s + 2

)
B1 = 2

(
ε(b)
s − 1

)
B2, (C3)(

ε(b)
s − ε(c)

s

)
B1 = (

2ε(b)
s + ε(c)

s

)
B2/β

3. (C4)

The solvability condition reduces to(
ε(b)
s + 2

)(
2ε(b)

s + ε(c)
s

) − 2
(
ε(b)
s − 1

)(
ε(b)
s − ε(c)

s

)
β3 = 0.

(C5)

The dielectric constants in the two regions are given by

ε(c)
s = 1 + ζC

iλs

, (C6)

ε(b)
s = 1 + C

iλs

, (C7)

where λs = iCμs and C = 4πn℘2

h̄
.

The characteristic equation reduces to

(3μs − 1)[3μs − (2 + ζ )] = 2(1 − ζ )β3. (C8)

(a)

0.25 0.5 0.75 1
ζ

5.0 10 6

0.000015

0.000025
Re

(b)

0.25 0.5 0.75 1
ζ

5.0 10 7

1.5 10 6

2.5 10 6

3.5 10 6
Re

FIG. 7. Re(�) is plotted, for the two modes, as a function of the
relative density ζ in the two shells in the shell-shell configuration.
β = 0.5, k0R = 0.05.
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Its roots are given by

μ± = 1
6 (3 + ζ ±

√
1 + 8β3 + 2ζ − 8β3ζ + ζ 2). (C9)

We plot in Fig. 6 these analytic expressions for β = 1
2 as

a function of ζ and compare them with the same quantities

numerically obtained by solving the Maxwell equation as
described in Ref. [1] for u0 = 0.05. We note that the two
curves are indistinguishable. For the sake of completeness, we
plot in Fig. 7 the corresponding numerical values for Re(�s).
As can be noted, as ζ → 1, giving uniform density, Re(�−) →
�Dicke = 2

9u3
0, while Re(�+) → 0 (i.e., the pseudostate [11]).
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