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Self-assembly of microparticles in stable ring structures in an optical trap
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Microparticle self assembly under the influence of optical forces produced by higher-order optical beams or
by projection of a hologram into the trapping volume is well known. In this paper, we report the spontaneous
formation of a ring of identical microspheres (each with diameter 1.1 μm) in conventional single-beam optical
tweezers with a usual TEM00 Gaussian beam coupled into a sample chamber having a standing wave geometry
with a cover slip and glass slide. The effects of different experimental parameters on the ring formation are
studied extensively. The experimental observations are backed by theoretical simulations based on a plane wave
decomposition of the forward- and backward-propagating Gaussian beams. The ring patterns are shown to be
caused due to geometrical aberrations produced by focusing the Gaussian beam using a high-numerical-aperture
microscope objective into stratified media. It is found that the thickness of the stratified media and the standing
wave geometry itself play a critical role in the formation of stable ring structures. These structures could be used
in the study of optical binding, as well as of biological interactions between cells in an optical trap.
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I. INTRODUCTION

Optical tweezers offer the possibilities of applying con-
trolled forces of extremely small magnitude (pN to fN) to
trap and manipulate mesoscopic particles—as a result of
which they have widespread applications in physics [1–3]
and biology [4–7]. For relatively large particles (size between
few to several tens of microns), it is easy to trap single
particles at the trap center, while for nanoparticles, clusters
assemble with time in the central region [8]. Microparticle
self-assembly is interesting since it provides an insight into the
dynamics of particles in a well-understood force environment,
interactions between particles (such as cells [9]), and processes
where particles themselves modify the force environment as
is manifested in optical binding [10]. The most widely used
way of creating a microparticle assembly in optical traps
is by modifying the trapping beam to include higher-order
axial modes (TEM10, TEM11, etc.), vortex beams (Laguerre-
Gaussian modes), as well as interference patterns by using
a spatial light modulator [11]. Microparticle assembly has
also been observed due to surface tension effects between
adjacent particles. It has been shown that multiple polystyrene
microspheres can coalesce together inside a single trap, to form
highly symmetric closed pack structures [12]. Another effect
that has been shown to form specifically ring-like structures at
the laser focus is the phenomenon of thermocapillarity [13],
where the high power of the trapping laser causes convection
currents at the focal spot, resulting in the microspheres being
displaced away from the center. When an equilibrium is
reached between the trapping force and the forces exerted
from the convection currents, a ring-like structure forms.
Thermocapillary effects are highly sensitive to the change
in the power of the trapping beam, with the ring diameter
increasing proportionally with the power until the chain of
particles breaks at certain powers.
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In this paper, we report the stable trapping of polystyrene
beads of diameter 1.1 μm in ring structures with the use a
single pure Gaussian beam (TEM00) for trapping the particles.
The diameter of the rings can be varied between ∼3–5 μm
by changing the z focus of the trapping microscope, with
the number of trapped particles in a closed ring varying
between 9 to 15. Our sample chamber consisted of a cover
slip and a slide, with the sample (polystyrene beads dispersed
in water) sandwiched between. This particular configuration
was critical to the formation of rings, which were not seen
in the absence of a top slide. Our beam was checked to be a
pure Gaussian TEM00 by a standard beam profile measurement
using a sharp edge mounted on a translation stage—in addition,
to remove any uncertainty about higher-order axial modes
being contained in the beam, we coupled our trapping laser
into a single mode optical fiber. The ring formation remained
unaffected by this step in the experimental procedure, which
thus implied that the effect was not due to such higher-order
modes in the trapping beam itself. Also, the closed pack
structures reported in Ref. [12] are not dependent on the
presence of a top slide and typically occur when one of the
beads is in contact with a surface—both circumstances being
very different from our observations. Such dependence is not
observed in our experiments. In addition, the fact that we do
not observe any dependence of ring radius on the power of the
laser beam indicates that thermocapillary effects [13] are not
involved in the formation of particle rings.

It therefore appears that the phenomenon we observe has
not been reported in the literature. We thus perform theoretical
simulations to understand the structure of the electric field
inside the sample chamber that could support the formation
of such stable ring structures. The structure of the paper is
as follows: In Sec. II, we discuss the experimental conditions
for obtaining the ring structure in detail. In Sec. III, we lay
out the theoretical model we have used to find the field in
both the radial and axial directions inside the sample chamber.
Section IV describes the simulations performed and a thorough
analysis of the simulation results to explain our experimental
findings. We end the paper with a few possible applications
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of such ring formations and future work that is planned in
Sec. V.

II. EXPERIMENT AND OBSERVATIONS

The setup consisted of an inverted microscope with a high-
power ir laser (Lasever LSR1064ML, 1064 nm, maximum
power 800 mW) fed into the microscope (Carl Zeiss Ax-
iovert.A1) back port, so that the laser beam was focused tightly
on the sample using a high-numerical-aperture objective (Zeiss
100×, oil immersion, plan apochromat, 1.41 NA, infinity
corrected) lens arrangement. The typical specified working
distance of this objective is 170 μm—however, we observed
that we could focus into our sample chamber at distances
around 300 μm from the exit pupil of the objective. This
was verified by using the 250 μm cover slip and putting two
fiducial marks—one on the top surface of the cover slip, and
the other on the bottom surface of the slide. We observed that,
when we increased the sample thickness to more than 40 μm,
the fiducial mark on the slide could no longer be imaged.
The sample consists of a dilute solution of monodispersed
polystyrene microspheres (mean diameter 1.1 μm, Sigma
Aldrich LB11) in distilled water (dilution 1:10000) placed
in a sample chamber consisting of a glass slide and cover
slip. The cover slips we used were of two types: (1) made of
English glass (RI = 1.512 at 1064 nm) having a thickness of
160 μm, and (2) made of a polymer (Sigma Aldrich Hybrid
Cover-slips, Part no. Z365912-100EA) having a refractive
index of 1.575 (at 1064 nm) and a thickness of 250 μm.
The refractive index of the type 2 cover slips was measured
using a commercial refractometer (Prism Coupler - Metricon
Model-2010). Therefore, only in the case of the 250 μm
cover slip was there a significant refractive index mismatch
between the cover slip and immersion oil. We used two
methods of preparing the sample chamber: (a) configuration
1, where we put the sample on the cover slip and directly
attached the cover slip on top so that there was a thin film
of microsphere solution between slide and cover slip, and (b)
configuration 2, where we used a spacer of thickness around
100 μm consisting of double-sided sticky tape between the

cover slip and slide. Note that this configuration could not
be used for 250 μm cover slips due to focusing problems
of the microscope objective. The arrangements are shown in
Fig. 1.

When we performed the experiment using configuration 1
with 250-μm-thick cover slips, for a sample chamber thickness
of around 30 μm (distance between slide and cover slip), we
observed the spontaneous formation of ring-like structures
of microparticles, as shown in Fig. 2. The particles were
allowed to accumulate gradually and soon formed closed ring
structures after slight manipulation of the microscope focus. If
the trap was switched off, the particles diffused away, only to
reassemble almost instantaneously in the same ring structure
after the trap was switched on again. There was occasionally
a particle trapped in the center, but the most likely region of
trapping was in the ring some distance away from the center
(also the focus of the microscope). The radius of the ring could
be varied as well by changing the focus of the microscope. We
could change the diameter of the rings between a minimum of
around 3 to 5 μm. The diameter was obtained by noting the
circumference of the ring, which to close approximation was
the product of the number of microspheres (that varied between
9 to 15) in a complete ring and the individual microsphere
diameter (1.1 μm). The ring diameter could then be obtained
by dividing the circumference by π . The diameter was also
verified by analyzing the image of a given ring in standard
softwares such as Canvas or Adobe Illustrator. This observa-
tion clearly contradicts the normal model of optical trapping
of dielectric objects by Gaussian beams. At best, simultaneous
trapping of multiple particles would have led to clustering of
particles at the trap center and not the assembly of particles
in an axis-symmetric ring. In fact, we observe such clustering
with 160 μm slides in both configurations 1 and 2, as shown in
Fig. 3. An obvious step is to image the trapping field for both
250 and 160 μm cover slips. It is important to note, though,
that the imaged field will be a superposition of the fields at all
planes in the sample, containing both scattered fields from the
microsphere, and reflected fields from the different chamber
surfaces. Figures 4(a) and 4(b) show images recorded by the
CCD camera at the microscope back port for 160 and 250 μm
cover slips, respectively. The difference in the two images are
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FIG. 1. (Color online) Two types of sample chamber configurations used in the experiment. (a) Configuration 1: sample chamber without
spacer. (b) Configuration 2: sample chamber with spacer.
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(a) (b)
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FIG. 2. Radial Pattern formation with 250 μm cover slips with
(a) 8, (b) 10, (c) 12, and (d) 14 particles in the ring. Panels (a), (b),
and (c) could possibly accommodate one more particle. Dimensions
are in microns.

obvious—in the 160 μm case the field looks more like that
expected for a focused Gaussian beam with a central intensity
maxima and faint Airy rings visible. The situation is different
in the 250 μm case, where the central maxima is surrounded
by a distinct secondary maxima. In fact, the ring formation is
likely due to particles getting trapped in the secondary maxima,
as shown in Fig. 5, where we have a single 1.1-μm-diameter
bead trapped in that region. The question now arises as to why
the intensity distribution is so different for the different cover

FIG. 3. CCD camera image of a cluster of 1.1-μm-diameter
particles trapped in the focus of the trapping laser for 160-μm-
thickness cover slips.

FIG. 4. CCD camera images of trapping field taken in the back
focal plane of the trapping microscope for (a) 160 μm cover slips and
(b) 250 μm cover slips. The beam intensity in case (a) is concentrated
at the center with weak Airy rings visible, as is expected for a focused
Gaussian beam, but in case (b), a ring structure is clearly seen with
intensity similar to the central region. Note that the field pattern
displayed in these images will be a superposition of the fields at
all planes in the sample, containing both scattered fields from the
microsphere and reflected fields from the different chamber surfaces.

slips. While there are reports of weak trapping of particles in
Airy fringes produced by the optics of the trapping system [14],
we do not observe such effects in the 160 μm cover slips. On
the other hand, the ring formation of particles for 250 μm is
extremely stable and does not show any dependence on the
power of the trapping laser. Also, the diameter of a ring can be
controlled by changing the focus of the objective lens, which
means we do have axial trapping. Changing the distance of the
objective lens from the sample moves the focus up or down
and this changes the diameter of the ring. The rings are formed
about 6 to 10 μm below the top glass slide, or around 20 to
24 μm inside the sample chamber for a sample thickness of 30
μm. This calibration was performed by the z axis vernier of
the microscope (least count 1 μm). It is also important to note
that rings are not observed for sample thicknesses of more than
40 μm in configuration 1 and never in configuration 2. We do
not observe any ring formation without the presence of a top
surface (i.e., in the absence of a glass slide on top of the cover
slip).

FIG. 5. CCD image of a single 1.1 μm particle trapped in the
secondary ring for a 250-μm-thickness cover slip in configuration 1.
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To find the stiffness of our optical trap, we performed
measurements of the corner frequency of a single bead trapped
in the central maxima, as well as that of a bead trapped in
the ring. A standard measurement of corner frequency can
be performed by the power spectrum method [15]. It is well
known that a trapped probe executing Brownian motion obeys
a simplified Langevin equation so that the power spectrum of
the probe motion is a Lorentzian. Now, a position sensitive
detector or a quadrant photodiode is used to record the
displacement of the probe using a detection laser (in our case
a laser at 780 nm whose power was kept low enough so as to
not affect the trapping) so that the power spectrum can then be
obtained. The corner frequency is also a direct measure of the
trapping force [16], and we obtain values of around 165 Hz
for a single trapped bead at the beam focus for a glass cover
slip, and a maximum of around 25 Hz for a bead trapped in a
ring for a polymer cover slip.

From the findings above, it is apparent that we need to
understand the reason why the electric field in the sample
chamber in configuration 1 is so different for 160 and 250 μm
cover slips. It is thus obvious that a theoretical model of our
system is needed.

III. THEORETICAL MODELING

It is clear that the total field in our sample chamber will
be a superposition of forward- and backward-propagating
waves with respect to the sample chamber. What really
complicates the problem is the radial variation of the beam
that arises from its transverse distribution. While there exists
literature on the axial distribution of the light field [17,18],
the radial distribution has not been adequately investigated in
optical traps. We use a similar model as in Refs. [17,18], but
extend it in the radial direction to find the field distribution
inside the sample chamber under various circumstances.
Accordingly, we use the well-known angular spectrum method
(also referred to as vectorial Debye diffraction theory or the
Debye integral) [19] to calculate the electric field distribu-
tion for high-numerical-aperture optics in stratified media
without the use of the paraxial approximation. The approach
basically consists of using proper boundary conditions that
are necessary to propagate electric fields across multiple
interfaces between layered media incorporating the effects
of high-numerical-aperture lenses on refracted fields. Finally,
we use the vectorial electric field distribution integrals for
the forward- and backward-traveling fields inside a particular
media with the appropriate Fresnel coefficients for multiple
interfaces.

The field at the focus of an aplanatic lens (which, for
our case, would be the microscope objective) is given by the
angular spectrum integral [19]

�E(ρ,ψ,z) = i
kf e−ikf

2π

∫ θmax

0

∫ 2π

0

�E∞(θ,φ)eikz cos θ

× eikρ sin θ cos(φ−ψ) sin(θ )dθdφ, (1)

where r is set to f , which is the focal length of the lens, since
the integration is over the spherical wavefront of radius f . The
limit for the θ integral is set by the numerical aperture of the
microscope objective. The coordinate system used is shown in

x

y

z

x

y
f

exit pupil
plane

Geometrical
focus at origin

0

θ

( ρ,ψ, z)

ρ

φ′

′

FIG. 6. Coordinate system for the problem.

Fig. 6. Note that the electric field is calculated in cylindrical
coordinates, while the k vectors are represented in spherical
polar coordinates. The choice of cylindrical coordinates for
the electric field makes it convenient to track the polarization
of the light beam at the output of a high-numerical-aperture
objective, where it is completely modified from the incident
polarization [20]. We have assumed the incident polarization
to be in the x direction in Cartesian coordinates. The final
polarization E∞(ρ,φ) is related to the incident polarization
Einc(ρ ′,φ′) by

�E∞(ρ ′,φ′) = Einc(ρ ′,φ′)(cos φ′θ̂ − sin φ′φ̂′). (2)

Using the Cartesian form of the unit vectors θ̂ and φ̂, we
obtain

θ̂ = cos θ cos φî + cos θ sin φĵ + sin θk̂,

φ̂ = φ̂′ = − sin φî + cos φĵ , (3)

so that the final polarization can be written as

�E∞(θ,φ)= Einc(θ,φ)

2

⎡
⎣ {(1+ cos θ )−(1− cos θ ) cos(2φ)}î

{−(1 − cos θ ) sin(2φ)}ĵ
{−2 cos φ sin θ}k̂

⎤
⎦

×
√

cos θ, (4)

where the
√

cos θ term came from the apodization function
for an aplanatic lens [17]. Now, in general, �Einc can have a
phase curvature. However, to keep things simple, we assume
that it hits the entrance pupil of the lens with a planar phase
front perpendicular to the optical axis. Also if the beam is
a fundamental Gaussian, then the intensity distribution is
independent of φ, and Eq. (1) can be written as

�E(ρ,ψ,z) = ikf

2
e−ikf

⎡
⎣ c{I0 + I2 cos(2ψ)}î

{I2 sin(2ψ)}ĵ
{i2I1 cos(ψ)}k̂

⎤
⎦ ,

where

I0 =
∫ θmax

0
Einc(θ )

√
cos θ (1 + cos θ )J0(kρ sin θ )eikz cos θ

× sin θdθ, (5)
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k1 k2 ki k(N-1) kN

z1 z(j-1) zj z(N-1)

FIG. 7. Aplanatic lens focusing inside the j th medium in an N -
layered stratified medium.

I1 =
∫ θmax

0
Einc(θ )

√
cos θJ1(kρ sin θ )eikz cos θ

× sin2 θdθ, (6)

I2 =
∫ θmax

0
Einc(θ )

√
cos θ (1 − cos θ )J2(kρ sin θ )eikz cos θ

× sin θdθ, (7)

where the φ integrals have been carried out and related to
Bessel functions Jn.

Thus, with the vector field equations at the focus of an
aplanatic lens known, we now consider the aplanatic lens
placed in front of a multilayered media, with the focused light
beam propagating through n different dielectric interfaces, as
shown in Fig. 7. The integrals for finding the forward- and
backward-traveling fields inside the j th media can then be
written down directly:

�Et (ρ,ψ,z) = ikf

2
e−ikf

⎡
⎢⎢⎣

c
{
I t

0 + I t
2 cos(2ψ)

}
î{

I t
2 sin(2ψ)

}
ĵ{

i2I t
1 cos(ψ)

}
k̂

⎤
⎥⎥⎦ ,

where

I t
0 =

∫ min(θmax,θc)

0
Einc(θ )

√
cos θ

(
T (1,j )

s + T (1,j )
p cos θj

)
× J0(k1ρ sin θ )eikj z cos θj sin(θ )dθ,

I t
1 =

∫ min(θmax,θc)

0
Einc(θ )

√
cos θT (1,j )

p

× sin θjJ1(k1ρ sin θ )eikj z cos θj sin θdθ,

I t
2 =

∫ min(θmax,θc)

0
Einc(θ )

√
cos θ

(
T (1,j )

s − T (1,j )
p cos θj

)
× J2(k1ρ sin θ )eikj z cos θj sin θdθ, (8)

where we use the Fresnel coefficients Ts and Tp for multiple
interfaces. These are related to the Fresnel coefficients ti and
ri (i = s,p polarizations) for a single interface by

T
(n−1,n+1)
i =

j−1∑
n=1

(
t

(n−1,n)
i t

(n,n+1)
i eiβ

1 + r
(n−1,n)
i r

(n,n+1)
i ei2β

)

× exp [i(zn−1kn−1 cos θn−1 − znkn+1 cos θn+1)],

R
(n−1,n+1)
i =

j−1∑
n=1

(
r

(n−1,n)
i + r

(n,n+1)
i ei2β

1 + r
(n−1,n)
i r

(n,n+1)
i ei2β

)

× exp [i2zn−1kn−1 cos θn−1], (9)

where

β = (zn − zn−1)kn cos θn. (10)

It is interesting to note that an aberration term is also present
in Eq. (8), hidden inside the transmission coefficients, and is
given by

�(θ ) =
j−1∑
n=1

zn(kn cos θn − kn+1 cos θn+1), (11)

where zn is the location of the nth interface. This is basically
the well-known spherical aberration term that appears due to
refractive index mismatch at different dielectric interfaces. The
reflected field integral inside the j th medium is also calculated
similarly and is given by

�E(ρ,ψ,z) = ikf

2
e−ikf

⎡
⎢⎢⎣

c
{
I r

0 + I r
2 cos(2ψ)

}
î{

I r
2 sin(2ψ)

}
ĵ{ − i2I r

1 cos(ψ)
}
k̂

⎤
⎥⎥⎦ ,

where once again we have

I r
0 =

∫ min(θmax,θc)

0
Einc(θ )

√
cos θ

(
R(1,j )

s − R(1,j )
p cos θj

)
× J0(k1ρ sin θ )e−ikj z cos θj sin θdθ,

I r
1 =

∫ min(θmax,θc)

0
Einc(θ )

√
cos θR(1,j )

p

× sin θkJ1(k1ρ sin θ )e−ikj z cos θj sin θ1dθ,

I r
2 =

∫ min(θmax,θc)

0
Einc(θ )

√
cos θ

(
R(1,j )

s + R(1,j )
p cos θj

)
× J2(k1ρ sin θ )e−ikj z cos θj sin θdθ. (12)

Note that, in all subsequent simulations, we have used n = 3.

IV. RESULTS AND DISCUSSIONS

A. Simulations

A computer simulation was developed using Eqs. (8) and
(12) to determine the electric field inside our sample chamber.
As per specifications, the Zeiss objective focal length was taken
to be 1.8 mm or 1800 μm, and the numerical aperture (NA)
was taken to be 1.41. The wavelength of light was 1.064 μm,
while the velocity of light in vacuum was considered to be
1. The beam waist radius after the objective was assumed
to be 0.5 μm, which we obtained by measuring the beam
waist after our trapping objective. This is consistent with the
minimum obtainable theoretical resolution corresponding to

λ
2NA

, λ and NA for our experiment being 1064 nm and 1.41,
respectively. We also considered only propagating light waves
and not the evanescent components. This is consistent with our
experimental observation of not obtaining any ring formation
near the cover slip, a fact that rules out any evanescent coupling
with the microspheres.
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FIG. 8. (Color online) XZ intensity plot for (a) 160 μm cover slip and (b) 250 μm cover slip (0 μm < x < 10 μm, −15 μm < z < 15 μm)
in configuration 1. The trapping beam propagates along the z direction. Both plots show distortions of the focal spots with power being
redistributed into side lobes. In (a), the focal spot has shifted in the negative z direction and side lobes arise in the backward direction with
respect to beam propagation, while in (b), the focal spot has shifted in the positive z direction and side lobes arise in the forward direction with
respect to beam propagation. The intensity color bars on the right axes are given in a logarithmic scale.

The model was verified for the field intensity distribution
around the focus of a high-numerical-aperture lens and
produced the well-known Airy fringes at the beam focus.
The field distribution also showed a slight asymmetry or
elongation around the direction of polarization of the light
beam, as expected. However, Airy fringes alone are not
sufficient to trap particles away from the center since the power
in these fringes is very low compared to that in the central
maxima. Next, we considered an aplanatic lens focusing
into a single interface (glass/water). Again as expected, we
saw signatures of spherical aberration, with the focal spot
shifting from the geometric focus and, more importantly,
some power being redistributed in the form of side lobes in
the beam. Note that, for both of these cases, only Eqs. (8)
were used since there was no reflected component of the
field.

Finally, we considered three interfaces akin to our ex-
perimental sample chamber in configuration 1. After the
microscope objective, the three interfaces are (1) index-
matching microscope, objective oil, and cover slip (English
glass or polymer); (2) cover slip and sample (water); (3) water
and top slide (glass). To determine the effect of the 160 and
250 μm cover slips in the radial distribution of the field for
sample thicknesses used in our experiment, we did not consider
a third interface. The thickness of the sample (water layer) for
all simulations was 30 μm, the same as the experimental value
used. The geometric focus was placed 15 μm inside the water
layer in each case, the distance being measured from the cover
slip-water interface. Only the results for the transmitted field
are given. For Figs. 8, 9, and 10, only Eq. (8) was used, while
for Fig. 11, the field inside the chamber was calculated by a
superposition of Eqs. (8) and (12).

(a) (b) (c)
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FIG. 9. (Color online) Radial intensity plot inside sample chamber at a plane (a) 1 μm, (b) 2 μm, and (c) 3 μm away from focus for a
160 μm cover slip. The sample (water with polystyrene beads) thickness is 30 μm. The focus is situated around 13 μm inside the cover slip.
As is clear, the maximum field intensity is concentrated in the central region for all three plots. The x axis is in microns.
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FIG. 10. (Color online) Radial intensity plot inside sample chamber at a plane (a) 1 μm, (b) 2 μm, and (c) 3 μm away from focus for a
250 μm cover slip. The sample (water with polystyrene beads) thickness is 30 μm. The focus is situated around 20 μm inside the cover slip. In
plots (b) and (c), the intensity is no longer highest in the center, but in a ring of diameter around 3 μm for plot (b) and 5 μm for plot (c). The x

axis is in microns.

B. Analysis

Figure 8 shows the results for the field profile in the xz

plane obtained for 160 and 250 μm cover slips. Both plots
show considerable aberrations, which results in the distortion
of the focal spot and distributes more power to the side
lobes. For 160 μm cover slips, as shown in Fig. 8(a), the
focal spot has shifted toward the negative z direction (i.e.,
toward the cover slip) and is now around 13 μm (a change of
−2 μm) inside the water layer of the sample chamber. The
plot clearly shows the side lobes that arise in the backward
direction due to excess aberration. In contrast, for 250 μm
cover slips as shown in Fig. 8(b), the focus has shifted in a
direction opposite to that obtained in the former case (i.e., in
the positive z direction) and is now at 20 μm (a change of
5 μm). The plot clearly shows the side lobes that arise in this
case in the forward direction due to excess aberration. A crucial
difference between two types of cover slips is that, for the
160 μm case, the intensity is almost completely concentrated
in the center, with very little intensity in the side lobes. This
has been tested out by taking three-dimensional (3D) plots
of the electric field inside the sample chamber at various
distances from the actual focus for both 160 and 250 μm
cover slips. Figure 9 shows the field distribution at distances
1, 2, and 3 μm away from the focus for the 160 μm case. As
is clear, the intensity is highest in the beam center, with the
diameter of the beam expanding as it propagates beyond the
focus. However, for 250 μm cover slips, the situation is very
different, as is shown in Fig. 10. Again, we plot at 1, 2, and
3 μm distances from the focus and observe that, for the 2 and
3 μm cases [Figs. 10(b) and 10(c)], the maximum intensity
is not in the center, but actually in the secondary maximum
away from the center. The diameter of the secondary maxima
is also around 3 μm in Fig. 10(b) and 5 μm in Fig. 10(c),
which matches the ring diameters we obtain experimentally.
This gives us confidence about the authenticity of our mod-
eling and our understanding of the phenomenon behind ring
formation.

However, the radial fringes are still not enough to support
axial trapping, as is evident from our experimental findings
where we do not obtain ring structures with just the sample on
a cover slip. This tells us that there is still a need to accentuate
axial trapping for achieving stable trapping in a ring. The
enhanced axial trapping is provided by the top slide. Enhanced
axial trapping due to the presence of a reflective surface has
been studied in Ref. [21]. That study dealt with a similar
setup such as ours with a trapping chamber consisting of the
sample sandwiched between cover slip and a top slide. It was
shown that the top and bottom surface form a standing-wave
cavity with interference fringes formed by superposition of
the transmitted trapping light and that reflected from the top
slide of the sample chamber causing alternate regions of
stable axial trapping near the slide. The authors calculated
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FIG. 11. Axial fringes produced due to reflections from top slide
(0 μm < x < 10 μm, −15 μm < z < 15 μm). The intensity color
bar on the right axis is given in a logarithmic scale.
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the nodes of the trapping force developed near the top slide
and experimentally showed trapped particles hopping between
different stable equilibrium axial positions. However, they did
not consider the radial component of the trapping field in their
theoretical calculations and did not experimentally observe any
confinement away from the trap center. The enhanced spherical
aberration in our system provides the radial confinement, while
the top slide stabilizes the trap axially. To investigate this by
a simulation, we consider four layered media now, with the
fourth medium representing the glass slide having a refractive
index of 1.516. The top slide contributes to reflected waves that
causes additional axial fringes to develop within the electric
field distribution as shown in the xz plot in Fig. 11. The
location and separation of the fringes depends on the thickness
of the water layer and also on the position of the focus with
respect to the top glass slide/water interface. The figure was
generated with focal spot 6 μm below the glass slide/water
interface.

It is also clear why the rings are observed only when the
beam focus is close to the top glass slide. As is apparent from
our simulations shown in Fig. 11, as well as in the results
given in Ref. [21], the axial fringes are located near the top
slide only and die away very fast as one goes farther into the
sample solution. This is intuitively understandable considering
the fact that we are working with very fast diverging Gaussian
beams in this case, and a constructive superposition could
be achieved only when the incident beam and reflective
surface are very close. This also explains why we did not
observe the patterns at sample thicknesses of more than around
30 μm. For greater distances, we could not get the beam
focus close enough to the top slide to facilitate axial trapping,
as a result of which the ring structures were not axially
stable.

V. CONCLUSIONS

The self-assembly we observe could be used for several
interesting applications, the most obvious being the study of
optical binding. This is the phenomenon where the equilibrium
position of a trapped microparticle is modified due to the
presence of a second trapped particle in its vicinity [10]. The
electric field due to one microparticle, which is actually an
induced dipole, alters the electric field perceived by the other,
and therefore alters its equilibrium position. An important
requirement to see the effects of optical binding in an optical
trap is that the trap stiffness should not be very high, since the
binding forces are only on the scale of 0.1–1 pN [22]. A strong
optical trap would not allow an experimental determination
of such a weak interaction force, as Ref. [22] points out.
As we mentioned in Sec. II, the corner frequency we obtain
is around 25 Hz for polystyrene beads trapped in the ring,
which corresponds to a trap stiffness of around 1.3 pN/μm
[15]—ideal to study optical binding experimentally. One could
in principle, continuously monitor the corner frequency of a
trapped microparticle and study how it gets modified due to the
entry of other particles into the ring. The measurement could
be performed by a high-speed camera or even by a standard
position detector such as a quadrant photodiode. Thus, direct
measurements of optical binding could be facilitated by such
structures.

The ring pattern can be of use in biological applications as
well, with the possibility of studying controllable cell-to-cell
interactions, such as that between cancer cells and natural killer
cells [9]. Also, the possibility of applying differential force in
the center and the sides of a single trapped cell could facilitate
measurements of cell elasticity, where the cell is stretched
and then unstretched by momentarily switching off the trap
(which may be accomplished by modulating the trap by an
acousto-optic modulator).

Future work would revolve around the applications men-
tioned above. However, one of the immediate things we are
working on is the calculation of the forces in the axial and
radial directions by using the generalized Lorentz Mie theory
[23–26]. While the intensity calculations shown in this paper
give us a clear understanding of the phenomenon we report, a
detailed force calculation would also give more quantitative
understanding and also identify the stable positions where
particles could be trapped in the axial and radial directions
in the trapping chamber in an optical trap.

In conclusion, we have shown spontaneous assembly of
1.1 μm particles in a ring formation for single-beam optical
tweezers without the use of spatially manicured optical
beams or holographic patterns coupled into the optical trap.
The patterns are observed in a standard trapping chamber
consisting of a cover slip stuck to a top slide with the sample
consisting of 1.1-μm-diameter polystyrene beads in water
solution sandwiched between them. The patterns are seen only
when we use polymer cover slips that are thicker and have
higher refractive index than glass cover slips typically used for
optical trapping. This is due to the fact that spherical aberration
comes into play because of the enhanced thickness of the
polymer cover slips and the mismatch of the refractive indices
between the immersion oil, cover slip, and water in which
the beads were suspended. By a simulation of the electric
field inside our sample chamber, we demonstrate that the net
spherical aberration is able to elongate the beam focus axially
so that the intensity in the central region is reduced and more
power is diverted into side lobes that are formed radially, thus
increasing the chances of ring formation. The axial trapping
is provided by top glass slide. The reflected light from the
glass slide produces axial interference fringes on the radial
fringes existing already, which in turn creates pockets of high
intensity such that the trapping of the microspheres gets axially
stabilized within the rings. Note that his kind of assembly
formation is only due to optical effects. We envisage several
applications for this assembly, including optical binding and
the study of biological interactions.
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