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Superradiance in spin- j particles: Effects of multiple levels
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We study the superradiance dynamics in a dense system of atoms each of which can be generally a spin-j
particle, with j an arbitrary half-integer. We generalize Dicke’s superradiance point of view to multiple-level
systems and compare the results based on a novel approach we developed previously [Lin and Yelin, Adv. Atom.
Mol. Opt. Phys. 61, in press (2012)]. Using this formalism we derive an effective two-body description that
shows cooperative and collective effects for spin-j particles, taking into account the coherence of transitions
between different atomic levels. We find that superradiance, which is well known as a many-body phenomenon,
can also be modified by multiple-level effects. We also discuss the feasibility and propose that our approach can
be applied to polar molecules, for their vibrational states have a multilevel structure which is partially harmonic.
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I. INTRODUCTION

Quantum many-body physics has been one of the most
attractive areas for decades, along with the remarkable
advances in the fields of ultracold atomic and molecular
systems and quantum optics. These systems not only provide
an excellent testbed for study of the quantum nature of various
many-body phenomena, such as Bose-Einstein condensation,
superfluidity [1–3], quantum magnetism, and quantum phase
transitions [4–7], but also inspire the implementation of
quantum machinery such as quantum simulation [8–13] and
quantum computing [14–16]. In many ways, quantum many-
body effects are “exotic” compared to their classical counter-
parts, and even to quantum single-body physics, mainly due
to the particle statistics and indistinguishability of particles.
The circumstances can become even more complicated when
an ensemble of particles interacts cooperatively, which re-
sults in higher-order nonlinear effects. Superradiance, usually
representing an N2 enhancement of the radiation intensity
due to coherent decay of a dense sample consisting of
N excited atoms, is one important example which can be
understood qualitatively through particle indistinguishability
and symmetry arguments without the need for considering
particle statistics. This phenomenon was first predicted in
1954 by R. H. Dicke [17], who pointed out that the radiative
properties of an excited atom can differ greatly just because
other atoms are present or not, given that their distance is much
smaller than the wavelength of the radiation field even if the
particle wave packets do not overlap and no direct interaction
is present. Since then, such cooperative effects have been
intensively investigated both theoretically and experimentally
[18–34]. Recently, superradiance has regained attention for
the investigation of the scattering properties of a Bose-Einstein
condensate [35–42], alkaline-earth-metal atoms [43], Rydberg
atoms [44,45], and quantum dots [46], as well as its strong
connections to quantum information through the so-called
Dicke states [47–50]. Such states are fully symmetric states
by particle permutation and mostly serve as the main stage
during the superradiance process.
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Traditionally, superradiance deals with two-level atoms or
other spin- 1

2 systems, initially at the excited states, that decay
cooperatively. It is natural as the next step to consider particles
with larger spins, i.e., systems with a multiple-level structure.
Examples include the near-harmonic level structure of low-
lying vibrational states in molecules. Generally speaking, a
multilevel structure brings up more complications for the
radiating system. For example, an excited atom in a higher level
is still excited after emitting a photon; atoms and photons from
different-level transitions can further cooperate and modify the
overall emission behavior. In order to study multilevel effects,
we reconsider Dicke’s point of view of superradiance as the
starting point by first assuming the system to be point-like and
fully symmetric.

However, Dicke’s picture is only qualitatively correct
and is insufficient to describe real situations, where the
actual arrangement of particles, the sample’s finite size,
and dipole-dipole interactions play a role. Microscopically,
single atoms build up interatomic coherence due to virtual
photon exchange caused by dipole-dipole interaction and form
many-body states such as Dicke states [26,51]. The coherence
can be breached when the geometry of particle arrangement
introduces inhomogeneity such as dipole-dipole interaction
between each pair of particles. This leads to dephasing effects
and therefore Dicke’s picture fails to be valid. To characterize
how the “finite size” influences superradiant behavior, a
parameter, cooperativity C ∼ Nλ3, is introduced, with N
the number density and λ the wavelength of the transition
field. One then expects that superradiance is observable for
C � 1 and is suppressed for small C. Our previous study
[45] further suggested the more accurate estimation that the
criterion of observing superradiance is approximately given
by the optical thickness Nλ2l (l is the sample size), in
agreement with Refs. [19,29,52,53]. To take into account
the realistic arrangement of our particle systems, we use
a novel formalism that considers only two probe particles,
treating the spread of environment atoms in the mean-field
approximation, and then take an average over all possible
particle pairs [54,55]. This approach enables us to write
down an effective master equation, retaining the degrees of
freedom of two-body coherence, which can be regarded as a
projection of the many-body coherence in the original system.
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This method has been proven to show a good agreement with
ongoing experiments with Rydberg atoms [45]. In this paper
we further apply this formalism to spin-j systems.

The article is organized as follows: In Sec. II we discuss
the original picture proposed by Dicke and generalize the
idea to multilevel systems. Section III sketches the formalism
developed in Refs. [54,55] and summarizes the governing
equations. We then apply this method to multiple levels
and present the results in Sec. IV. There we also discuss
the differences from the Dicke model and investigate the
significance of many-body and multilevel correlations. In
Sec. V we further consider the thermal Doppler broadening
and calculate the marginal conditions that superradiance can
tolerate. Finally, in Sec. VI a dipolar molecular gas is discussed
as an example, for which we consider the vibrational states and
investigate the superradiance effects from its vibrational states.

II. DICKE SUPERRADIANCE

To gain a qualitative understanding of the Dicke superradi-
ance, we start by considering an ensemble of (2j + 1)–level
atoms confined within a small region, of a size much smaller
than the wavelength of the radiation field. In this limit,
the particles are indistinguishable viewed by the field and
must be regarded as a whole quantum object. To emphasize
that the collective radiative behavior is governed solely by
many-body effects, we do not assume any instantaneous,
i.e., nonradiative, interaction between atoms. The interparticle
spacing is large enough that the overlap of particle wave
packets is negligible. In other words, the exchange interaction
plays no role, nor does the fermionic or bosonic nature of the
atoms. Suppose that the transitions are induced by dipoles
through the interaction Hamiltonian V = −∑

i �pi · �E(�ri),
where �pi is the dipole operator of the ith atom and �E(�ri) is
the local field at the coordinate �ri . Under the long-wavelength
assumption of the field for a given small system size, the
spatial dependence can be eliminated. Therefore V = − �E ·∑

i �pi = −∑
μ=x,y,z ℘μ(E−

μ D̂− + H.c.) in the rotating-wave
approximation. Here ℘μ is the dipole moment magnitude of
an atom in the μ direction, E±

μ is the positive (negative)
frequency component of the field, and D̂± ≡ ∑

i σ
±
i , with

σ−
i ≡ ∑J−1

m=−J |m〉i〈m + 1| and σ+
i ≡ (σ−

i )†. Note that V does
not break the permutation symmetry of the particles. If all
the atoms are initially excited, time evolution will only take
the state of the system around the fully symmetric manifold,
whose eigenstates are usually called the Dicke states (see
Fig. 1) [17,51]:

|J,M〉 =
√

(J + M)!

(2J )!(J − M)!
(Ĵ−)J−M |J,J 〉, (1)

where J = Nj is the total spin of N spin-j atoms and the
integer M denotes the level index that can only go from
J through −J ; the total spin ladder operators Ĵ± = ∑

i ĵ
±
i

satisfy Ĵ±|J,M〉 = √
J (J + 1) − M(M ± 1)|J,M ± 1〉, with

each ĵ±
i satisfying an analogous relation within the ith atom.

The emission rate is then given by W = ∑
M ρMWJ (M),

where ρM is the probability of the state being at the Mth

FIG. 1. (Color online) Energy level structure for N = 3 three-
level atoms (j = 1). There are (2j + 1)3 = 27 levels, including the
fully symmetric 2Nj + 1 = 7 states (Dicke states).

level, and the associated collective decay rate is WJ (M) =
γ 〈D̂+D̂−〉JM , with γ denoting the bare rate in free space.

For spin- 1
2 particles, the ladder operator ĵ±

i happens to be,
up to a constant factor, equivalent to the dipole transition oper-
ator, σ−

i = |g〉i〈e| and σ+
i = |e〉i〈g|. This connection makes it

straightforward to obtain 〈D̂+D̂−〉JM = (J + M)(J−M + 1).
For spin-j > 1

2 atoms, the spin and dipole operators are no
longer parallel. To obtain an explicit relation in this case, we
take the mean-field assumption and get

〈D̂+D̂−〉JM =
∑

i

〈σ+
i σ−

i 〉 +
∑
i 	=j

〈σ+
i σ−

j 〉

= N〈σ+
1 σ−

1 〉JM + N (N − 1)〈σ+
1 σ−

2 〉JM, (2)

where 〈σ+
1 σ−

1 〉JM and 〈σ+
1 σ−

2 〉JM can be further expressed in
terms of the Clebsch-Gordan coefficients, 〈j1j2; m1m2|J,M〉:

〈σ+
1 σ−

1 〉 = 1 − 〈j,(N − 1)j ; −j,M + j |J,M〉2 (3)

and

〈σ+
1 σ−

2 〉=
∑

m1,m2

[〈j,(N − 1)j ; m1,M − m1|J,M〉

× 〈j,(N − 2)j ; m2,M − m1 − m2|J − j,M − m1〉
× 〈j,(N − 1)j ; m1 − 1,M − m1 + 1|J,M〉
× 〈j,(N − 2)j ; m2 + 1,M − m1 − m2|
× |J − j,M − m1 + 1〉]. (4)

The equation of motion now reads

ρ̇M=J = −WJ (J )ρJ ,
(5)

ρ̇M<J = −WJ (M)ρM + WJ (M + 1)ρM+1.

The emission curves of different j ’s are shown in Fig. 2(b),
for which we calculate the intensity per particle Iem =
W (t)/N , with N = 10, by evolving Eq. (5). One can observe
that every curve shows a different degree of superradiance
behavior; i.e., the intensity grows and maximizes in a short
period of time. As j increases, the peak intensity becomes
higher. This implies that the radiation enhancement comes not
only from many-body effects but also from multiple levels.
This is also shown in Fig. 2(a), where the enhancement factor
〈D̂+D̂−〉JM as a function of M − J is plotted, consistently
explaining the higher emission rate for larger j . One feature
worth noting is that all j curves in Fig. 2(b) share the same
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FIG. 2. (Color online) (a) 〈D̂+D̂−〉JM as a function of M − J ;
(b) emission intensity per particle Iem of different spin j ’s for N = 10
atoms; (c) overall emission curves for different spin j ’s when J =
Nj = 15 is fixed. Note that Iem and W are in units of γh̄ω0, with the
energy level spacing h̄ω0.

“growing” behavior. This is also suggested by the 〈D̂+D̂−〉JM

curves in Fig. 2(a): Because we start the radiation process
from the fully excited state (the highest collective level), the
dynamics is dominantly determined by the population flows
associated with a few higher levels. The rates are proportional
to the enhancement factor 〈D̂+D̂−〉JM . For various j , we
find in Fig. 2(a) that these curves coincide on the left-hand
side, corresponding to |M − J | small (highest levels). Another
noticeable feature is that the 〈D̂+D̂−〉JM curves develop a
plateau as j increases and the highest value is found to be
bounded in the large-j limit. It can then be expected that the
peak intensity value should also have a bounded value for very
large j . We will find that this observation is still true when we
use a more sophisticated approach. More details are discussed
in Sec. III.

Finally, we compare the overall radiation by different spin-j
atoms, keeping the total spin J = Nj fixed. Among these
cases, they share the same J -Bloch sphere and therefore might
be expected to have similar behaviors. However, this is not true,
as we can see from Fig. 2(c). Smaller-j cases have faster and
more intense bursts of emission, while larger j ’s have smoother
emission rates and longer tails. This is because 〈D̂+D̂−〉JM ,
as determined by Eqs. (3) and (4), is also dependent on N , not
merely dependent on the total spin J .

III. EFFECTIVE TWO-BODY FORMALISM

We would like to emphasize that dipole-dipole interaction
plays a crucial role and is responsible for both real and
virtual photon exchange. As a consequence, the system builds
up interparticle coherence while decaying. As dipole-dipole
interaction is contained in Dicke’s picture, in the sense that
the spin flip-flops count, this picture treats the whole system
as a point-like object so that the interdipole coupling is
considered uniform. In an actual laboratory setup, Dicke’s
picture is usually an oversimplified view because a real sample
always occupies a finite size and sees a finite wavelength
of the radiative field. The spatial arrangement of particles
usually breaks permutation symmetry. (Or, more precisely,
each particle sees different dipole-dipole couplings than all
others do.) Nonuniform coupling leads to dephasing of the
Dicke states, resulting in population leakage out of the fully
symmetric manifold. Furthermore, dipole-dipole interaction
also causes other effects, e.g., frequency chirping, for which
each Dicke state |JM〉 can be dipole-dipole shifted differently
so that the emission frequency becomes variable over time
[24,26,51,56]. Superradiant behavior becomes more complex
(and less pronounced) when these effects are not excluded.
In order to better describe practical situations, we need to
go over the microscopic details of atom-field interactions. The
calculation, however, becomes intractable when the number of
particles increases typically for N � 10. In Refs. [45,54,55],
we circumvent this difficulty by explicitly writing down the
master equation of motion for only two probe atoms, taking
the average over the background atoms and tracing out the
field variables. We also assume that the field instantaneously
interacts with the whole ensemble, ignoring the retardation
effects due to the finite size. [This can be justified because the
characteristic time of propagation l/c (∼10−12 s for a sample
of size l ∼ 1 mm) is usually much shorter than any other decay
time scales.] We summarize the main results here and leave
the details of the derivation to the Appendix. The relevant
two-body master equation is given by

ρ̇ = −
∑

i,j=1,2

�ij

2
([ρσ−

i ,σ
†
j ] + [σ−

i ,σ
†
j ρ])

−
∑

i,j=1,2

�ij + γ δij

2
([ρσ

†
j ,σ−

i ] + [σ †
j ,σ−

i ρ]), (6)

where ρ is the two-body density matrix with dimension (2j +
1)2 × (2j + 1)2, γ = ℘2ω3

0
3πh̄ε0c3 is the free-space spontaneous

decay rate, � ≡ �ii is the single-particle induced pump/decay
rate, and �̄ ≡ �ij (i 	= j ) denotes the two-particle damping
rate responsible for the atom-atom correlation. The mean-field
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approximation with the second-order correction in fields gives
the self-consistent form for the induced rate:

� = γ (e2ζ − 1)
A(t)

V (t)
+ 2C2
4 γ 2I (ζ,
)

� + γ /2
Y (t), (7)

�̄ = γ 2I (ζ,
)

� + γ /2
[3C
A(t) + 2C2
4Y (t)], (8)

with

A(t) =
j∑

m=−j+1

ρ(1)
mm, (9)

V (t) = ρ
(1)
jj − ρ

(1)
−j,−j , (10)

Y (t) =
j−1∑

m,m′=−j

ρm+1,m;m′,m′+1, (11)

where ρ(1) ≡ 1
2

∑
i=1,2 tri[ρ] denotes the reduced single-

particle density matrix and ρab;cd ≡ 1
2 [〈a,c|ρ|b,d〉 +

〈c,a|ρ|d,b〉]. The factor 1
2 comes from averaging the inter-

changing of two particles. Note that interchange symmetry
requires ρab;cd = ρcd,ab and ρ∗

ab;cd = ρba;dc. The cooperativ-
ity parameter is defined as C ≡ Nλ3/(4π2); 
 ≡ ωl/(2c)
characterizes the system size l in terms of the radiation
wavelength. These results are based on assumptions that there
is no external field and hence the generated field has to be
on-resonant with the transition frequency. Function I (ζ,
) ≈
e2ζ [(ζ − 1)2 + 
2]/(ζ 2 + 
2)2 for large ζ and 
. If no thermal
broadening is assumed, we have ζ ≡ 1

2C

γ

�+γ /2V (t). When
the Doppler broadening needs to be considered, the fields allow
detuning, and these quantities must be averaged. More details
are discussed in Sec. V.

IV. RESULTS

A. Emission and decay rates

By Eq. (6) we are able to solve for the temporal emission
rate curve. Figure 3(a) shows the radiation intensity per
particle Iem with C = 10 and 
 = 10 for different spin-j
species, where Iem ≡ h̄ω0

∑j

m=−j (j + m) d
dt

ρ(1)
mm(t). Here we

take ρjj,jj = 1 and set 0 for all other density-matrix elements
as the initial state. It can be seen that for each j the
radiation intensity reaches a peak, providing strong evidence of
superradiance. These curves follow roughly the same intensity
profile in the beginning. The maximal value of intensity first
grows as j increases from 1

2 and then stops growing when
j � 2. The time of reaching the peak intensity also converges
to a fixed constant tmax in the large-j limit. This has also
been observed in the Dicke superradiance picture. Here we
give an intuitive explanation as follows: When the system
starts to relax from the state with all atoms initially excited
to the highest level, only a few highest levels are involved
in determining the radiative behavior during the early stage.
Even for a very high-spin particle, which has a huge multilevel
structure, the levels lower than the first few have not been
populated yet and hence do not have contributions. The time
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FIG. 3. (Color online) Temporal profiles of (a) the emission
intensity per particle (in units of γh̄ω0) and (b) the induced single-
atom pump/decay rate � and two-atom correlation damping rate �̄

(in units of γ ). In all cases we use C = 10 and 
 = 10.

evolution of the decay rates is also plotted in Fig. 3(b). Note
that at t = 0 the diagonal decay rate �(0) determines the
initial emission intensity, followed by sharp growth and, hence,
resulting in intensity peaks. In the meantime, the off-diagonal
�̄ emerges and mixes single-body states. Differently from
the Dicke picture, where we choose the eigenbasis to be the
symmetric states constructed by a giant-spin object J = Nj ,
here we use products of single-particle states as the eigenbasis,
allowing the degrees of freedom of the population being
transferred to asymmetric levels. Note that the dipole-dipole
interaction is builtin in our formalism and is responsible
for these effects. Consequently, in more realistic cases
the superradiance enhancement with j , when characterized
by the growth of peak intensity, cannot be as large as predicted
by the Dicke model. On the other hand, since the asymmetric
levels have lower or vanishing decay rates, the occupation of
these levels modifies the tails of the emission curves. In some
circumstances, the energy is trapped. Such effects cannot be
described by the Dicke model.

A few remarks are made here regarding the connection of
cooperativity and superradiant curves. As we increase C(
)
while fixing 
(C), the emission peak intensity per particle
increases proportionally while the time scale of the initial
intensity burst is inversely proportional to C(
). This is due
to “many-body enhancement,” as discussed using Dicke’s
picture. Such features are commonly observed even in the
original two-level systems. Further, the emission curves are
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found to be similar when C
 is kept the same (not shown).
This can also be seen analytically (see the Appendix). This
suggests that C
 ∼ Nλ2l is the relevant factor that determines
the primary superradiant behavior.

B. Significance of atom-atom coherence

Cooperation of many-body states is crucial to superra-
diance. The beauty of this formalism is that we retain the
accessibility to atom-atom correlations under the framework
of the mean-field approximation. Here we investigate the
role of many-body correlations, which, in our case, are
contained in the off-diagonal terms of the two-body density
matrix. To see this, the method allows us to manipulate
these off-diagonal terms and evolve Eq. (6). The results are
then compared. Note that these off-diagonal terms have the
form ρa,a±m;b,b∓m. In the spin- 1

2 case, the only possibility
is ρeg,ge(=ρge,eg). Figure 4(a) shows the emission curve
for C = 10, 
 = 10, and ρeg,ge = 0 at all times. This curve
is now found to be monotonically descending, signaling
mere amplified spontaneous emission instead of superradiance
because of the apparent lack of an intensity peak. Such
monotonicity is shared by larger j cases [Figs. 4(b) and 4(c)]
when all off-diagonal terms are set to 0. The reason is
clear: Without atom-atom correlation, the density matrix is
reduced to a single-particle description and therefore no
cooperative effects are observed. On the other hand, for larger
j atoms the off-diagonal terms not only concern atom-atom
correlations from the same-level transitions but also involve
those from different-level density-matrix elements. In the
following we try to distinguish the importance of three kinds
of coherence terms: (i) same-level coherence ρa,a±1;a±1,a ,
(ii) cross-coherence ρa,a±1;b±1,b for a 	= b, and (iii) higher
order coherence ρa,a±m;b,b∓m for m � 2. For example, in
Fig. 4(b) for spin-1 and Fig. 4(c) for spin- 9

2 atoms, we plot the
emission curves corresponding to all off-diagonal terms being
dropped out, and (i), (ii), and then (iii) being added back to the
system. It is found that with the inclusion of (i) and (ii), the
system already behaves like the actual dynamics, indicating
that higher order coherence is negligible in determining the
evolution of the system. However, if only (i) is included,
although intensity enhancement can still be observed, the
details of the emission profile show discrepancies from the
actual behaviors. The distinction becomes even more obvious
when j gets large, as shown in Fig. 4(c). The fact that the cross-
coherence terms must be taken into consideration implies that
the interferences due to “cross-level” transitions, i.e., degen-
erate transitions from different levels such as |a,b ± 1〉 →
|a ± 1,b〉 with a 	= b, make some kind of “multilevel” con-
tributions to the superradiance, analogously to the many-body
effects.

V. DOPPLER BROADENING

When a thermal gas is considered, the radiation is inho-
mogeneously broadened due to the Doppler effect. In this
section we consider Doppler broadening when the frequency
mismatch causes loss of coherence. Suppose that the thermal
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FIG. 4. (Color online) Evolution curves for emission intensity
when the off-diagonal terms are fully considered (full), partially
removed [with both (i) and (ii) or only with (i); see text], or entirely
removed (no off-diag) for (a) spin- 1

2 , (b) spin-1, and (c) spin- 9
2

particles. Other parameters are the same as in Fig. 3. Inset in (a): Three
curves of superradiance [SR; solid (blue) line], amplified spontaneous
emission [ASE; dashed (red) line], and single-particle free-space
spontaneous emission [dotted (black) line] for comparison.

gas is described by a Gaussian distribution function:

fD(δ) = 1√
2π�D

exp

[
− δ2

2�2
D

]
, (12)

where δ is the Doppler shift from the transition frequency
and fD(δ)dδ is the fraction of the sample within a frequency
interval from δ to δ + dδ with normalization

∫ ∞
−∞ fD(δ)dδ =

1. This distribution is characterized by the Doppler width
�D . In order to take the thermal distribution into account,
we need to recall the results in Refs. [54,55], also summarized
in the Appendix. Consider first the fraction fD(δ)dδ of the
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ensemble. The observed field detuning is now � − δ rather
than � [cf. Eqs. (A20) and (A21)]. Therefore we can simply
calculate the modified rates by replacing � with �′ = � − δ

in Eqs. (A20) and (A21) because the two integrations deal
with only the spatial variables and lead to the same spatial
dependence as the nonbroadened case. Special attention must
be paid to the source functions, (A22) and (A23), the retarded
function, (A25), and Green’s function, (A24), which must be
treated in an average manner over the distribution fD because
they contain contributions from all fractions. For convenience,
we use overbar notation Q̄ = ∫ ∞

−∞ Q(δ′)fD(δ′)dδ′ to represent
a Doppler averaged quantity (with the exception of �̄,
which denotes the coherence damping rate for consistency).
Consequently,

P̃ ret(�′) = N℘2

h̄2 V (t)
1

�f − i(� − δ′)

= N℘2

h̄2

V (t)

�D

√
π

2
U (iz0), (13)

P̃ s(�′) = N℘2

h̄2

2A(t)

�D

√
π

2
Re[U (iz0)], (14)

D̃ret(�x,�′) = − ih̄ω2

6πε0c2

eq ′′
0 x

x
e−iq ′

0x, (15)

where U (z) ≡ 2√
π

∫ ∞
z

ez2−s2
ds is the scaled

complementary error function and z0 = �+γ /2+i�′√
2�D

;

q ′′
0 = Cγ


d
V (t) 1

�D

√
π
2 U (iz0), while q ′

0 = q0 = ω/c remains
the same. Finally, we have

�(�′) = γ (e2ζ̄ − 1)
A(t)

V (t)

+ 2
γ 2

�D

C2
4I (ζ̄ ,
̄)Re[U (iz0)]Y (t), (16)

�̄(�′) = γ 2

�D

I (ζ̄ ,
̄)Re[U (iz0)]

× [3C
A(t) + 2C2
4Y (t)], (17)

where


̄(�′) = 
 + 1

2

√
π

2
Cγ 


V (t)

�D

Re[U (iz0)], (18)

ζ̄ (�′) = 1

2

√
π

2
Cγ 


V (t)

�D

Im[U (iz0)]. (19)

In the following we consider only the resonant case by setting
� = 0 because of the absence of an external field. The effective
rates are then obtained through averaging over all fractions

�D =
∫ ∞

−∞
dδ

1√
2π�D

e−δ2/(2�2
D )�(δ), (20)

as well as �̄D given in the same manner.
We then calculate the modified emission intensity by

solving Eq. (20) numerically, as shown in Fig. 5. With Doppler
broadening, it is clear that the superradiance behavior is
suppressed as the Doppler width �D increases. This is due
to the increase in the frequency mismatch fraction, where the
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FIG. 5. (Color online) Doppler-broadened emission intensity
curves for (a) spin- 1

2 and (b) spin- 9
2 particles at various characteristic

Doppler widths �D . Here we use C = 10 and 
 = 10 for both cases.
Insets: For each spin particle, we plot two curves, corresponding to
�D slightly smaller and slightly larger than the marginal Doppler
width �m. Explicitly, in (a) we plot �D/γ = 400 and 500 for
�m/γ = 433; in (b), �D/γ = 1700 and 1800 for �m/γ = 1650.

particles lose track of coherence and decay more indepen-
dently. Note that the extinction of superradiance is a smooth
transition rather than an abrupt change. The superradiance
peak defers and spreads in time, becoming dimmer in intensity
with increasing �D . At very large �D , the peak vanishes
and the overall emission curves appear to be monotonically
descending. In order to characterize the tolerance that the
superradiance can “survive,” we define a marginal Doppler
width �m beyond which the peak value no longer surpasses
the initial intensity, i.e., at t = 0. Obviously, �m depends
on the total number of particles and how these particles are
distributed and, hence, the cooperativity parameter C. In Fig. 6
we plot �m as a function of C
 for spin- 1

2 and spin- 9
2 particles,

respectively, with constant 
 = 10. It is quite notable that we
find approximately a quadratic dependence �m ∝ C2. This
can be understood as follows: As the cooperativity parameter
C is interpreted as the number density, increasing C not only
increases the total number of particles but also makes the
sample denser, thus enhancing the dipole-dipole interaction
℘2/(2πε0r

3) ∝ r−3 ∝ C. As a result, it is expected that the
tolerance �m should be quadratically proportional to C rather
than a linear relation. The “multilevel” enhancement is also
observed when comparing Figs. 6(a) and 6(b). This can also
be qualitatively understood because, even with fewer particles
within the frequency matching zone when the distribution
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FIG. 6. (Color online) Marginal Doppler width �m as a function
of the cooperativity for (a) spin- 1

2 and (b) spin- 9
2 particles. Here

we take 
 = 10. Crosses (blue) represent our calculated data; solid
(red) lines are the best-fitting power-law curves with an exponent
close to 2.

is broad, more near-resonant transitions are still allowed for
particles with more levels.

VI. MOLECULAR VIBRATIONAL STATES

One direct example of multilevel structure is vibrational
modes of polar molecules, where the deeply bound potential
can be well approximated by a harmonic one. The number
of low-lying eigenstates that are quasi–equally spaced energy
levels is usually up to a few tens. These particles are thus
analogous to high-“spin” particles. Take the typical example of
heteronuclear diatomic alkali molecules [57]: the state X 1�+
for LiCs has an averaged energy spacing ω0 ≈ 2π × 5 THz.
For a sample of LiCs molecules with a density N ≈ 4 ×
109 cm−3, this energy spacing corresponds to cooperativity
C ∼ 20 � 1. The transitional dipole moment between two
adjacent vibrational states is about 5 D, and therefore the
single-particle spontaneous emission rate γ ∼ s−1. We then
expect, within this parameter regime, that the superradiance
intensity peak can be observed on a time scale of milliseconds
while �max � 1000γ .

The cascade relaxation of an excited population from
higher to lower levels is reminiscent of motional cooling.
When the cooperative effect comes into play, the down-ladder
process will be accelerated because the stimulated decay
becomes dominant while superradiance takes place (without
other pumping processes such as thermal excitation). As we
have pointed out, the induced rate can be a few orders of

magnitude upon increasing the number of particles and hence
the cooperativity. This suggests a scheme of “superradiance-
assisted cooling.” This scheme may be an alternative to cool
vibrational states of molecules, which, generally speaking,
have previously been obstructed by the fact that such states are
only weakly optically coupled.

VII. CONCLUSION

We have investigated the superradiance cascade for a dense
ensemble of multilevel, or spin-j , particles. Our main results
are summarized as follows: (1) While superradiance is known
as many-body enhanced radiation in an ensemble, the decay
process can be further facilitated by the presence of multiple
levels. This multilevel enhancement is due to cooperative
emission by correlating different levels. (2) Such multilevel
effects get stronger as the quantum number j increases but
saturate when j becomes too large. This is because only
populations in higher levels come into play within the time
scale of the buildup of particle coherence and, meanwhile,
superradiation. Both of these features can be seen in the
ideal generalized Dicke model and our effective two-body
mean-field description. The former method provides generally
a more pedagogical picture of superradiance, neglecting the
finite-size effect and dephasing due to inhomogeneous dipole
interaction, while these nonideal but more realistic factors
are considered in the latter approach. (3) Our approach
further suggests a way to differentiate the importance of
different types of coherence. We find that although interparticle
coherence is essential to superradiance, the higher-order off-
diagonal terms (involving nonadjacent level transitions) play a
negligible role. In addition, cooperation between “cross levels”
is evident. (4) We also study the fade-out of superradiance,
as a consequence of the fact that the frequency mismatch
part of the gas gradually takes over the near-resonance part
when a thermal distribution is introduced. By calculating the
tolerance of superradiance in terms of the thermal width, we
show that the particle density, which determines the strength
of dipole-dipole interaction, is an important parameter, as
is the total number. (5) We, finally, assess the feasibility
of applying our results to dipolar molecular systems, where
the transitions between harmonic ladders of vibrational states
are to be considered. Our estimation of the relevant labo-
ratory parameters suggests that the results predicted in this
paper should be observable using the current experimental
technology.
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APPENDIX: EFFECTIVE TWO-BODY
MASTER EQUATION

Although this method for effective two-body description
has been discussed in great detail in Refs. [54,55], we sum-
marize here the derivation of the formalism, for completeness.
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We start with the microscopic Hamiltonian, which reads

H = Hatom + Hfield −
∑

j /∈{1,2}
�pj · [ �E(�ri,t) + �E(�rj ,t)]︸ ︷︷ ︸

H0

−
2∑

i=1

�pi · [ �E(�ri,t) + �E(�ri,t)]︸ ︷︷ ︸
V

. (A1)

Here, we separate the field into two parts: the external classical
driving field �E(�ri,t) and the induced local field �E(�ri,t). When
a uniform dense gas of atoms is considered, it is reasonable
to assume that every atom sees the same field and the same
background due to other atoms. On the other hand, in order to
take into account atom-atom quantum correlation, we need
to retain adequate degrees of freedom involving at least
two particles. Our proposal is therefore to write an effective
description for two probe atoms such that all other atoms’
contribution will be averaged in the mean-field sense. In
Eq. (A1) V is the field-atom interaction only of the probe
atoms (i = 1, 2) and is treated as a small perturbation. H0

consists of the unperturbed atomic and field Hamiltonian as
well as the contribution from the background atoms. In the
interaction picture, the evolution operator is given by

SI (t) = T exp

[
− i

h̄

∫ t

−∞
VI (t ′)dt ′

]
, (A2)

where T is the time-ordering operator. We here introduce
the positive and negative components x(t) = x+(t) + x−(t)
with x±(t) = x̃(t)e∓iωt , where x ∈ {piμ,Eμ,Eμ} with μ = x,
y, z and the amplitude x̃(t) is slowly varying compared to
the inverse of the radiation frequency ω−1. The polarization
operator is related to the transition operator through p̃+

iμ =
℘μσ−

i and p̃−
iμ = ℘μσ+

i , with the magnitude ℘μ assumed to
be real. In the rotating-wave approximation, the interaction
becomes VI (t) � ∑

iμ[p+
iμ(E−

μ + E−
μ ) + H.c.]. Equation (A2)

can be cast in the framework of the Schwinger-Keldysh
formalism, in which VI (t) −→ V (τ̌ ) and SI (t) −→

SC = TC exp

[
− i

h̄

∫
C

V (τ̌ )dτ̌

]
, (A3)

where C denotes the Schwinger-Keldysh contour as shown in
Fig. 7, and TC is the contour-oriented time-ordering operator;
i.e., along the upper branch of the contour TC is the normal
time-ordering operator, while along the lower branch it is the
inverse time-ordering operator. To prevent possible confusion
we denote the contour-oriented “time” parameter as τ̌ (with
a haček). We then trace out the degrees of freedom of the
fields and the background atoms, which leads to an effective

FIG. 7. Schwinger-Keldysh contour.

evolution operator,

Seff
C = 〈SC〉field = TC exp

{
i

h̄

∫
C

dτ̌

2∑
i=1

∑
μ

[p+
iμ(τ̌ )E−

Lμ(�ri,τ̌ )

+p−
iμ(τ̌ )E+

Lμ(�ri,τ̌ )] − 1

2h̄2

∫ ∫
C

dτ̌1dτ̌2

2∑
i,j=1

∑
μν

× [p+
iμ(τ̌1)Diμ,jν(τ̌1,τ̌2)p−

jν(τ̌2)

+p−
iμ(τ̌1)Ciμ,jν(τ̌1,τ̌2)p+

jν(τ̌2)]

}
, (A4)

where �E±
L (�ri,τ̌ ) = �E±(�ri,τ̌ ) + 〈 �E±(�ri,τ̌ )〉 is the local field seen

by the probe atom i, and the Green’s function of the interacting
field,

Diμ,jν(τ̌1,τ̌2) = 〈〈TCE−
μ (�ri,τ̌1)E+

ν (�rj ,τ̌2)〉〉 (A5)

Ciμ,jν(τ̌1,τ̌2) = 〈〈TCE+
μ (�ri,τ̌1)E−

ν (�rj ,τ̌2)〉〉. (A6)

To obtain Eq. (A4) we used

〈TC exp[sÂ]〉 = exp

[∑
m

sm

m!
〈〈TCÂm〉〉

]
, (A7)

with 〈〈·〉〉 denoting the cumulant, defined by

〈〈Â〉〉 = 〈Â〉, 〈〈ÂB̂〉〉 = 〈ÂB̂〉 − 〈Â〉〈B̂〉,
where Â and B̂ are operators. We also set the higher order
cumulants 〈〈Em〉〉 = 0 for m > 2 by assuming that the radiation
field is Gaussian. The two-field Green’s function Diμ,jν(τ̌1,τ̌2),
depending on the order of τ̌1 and τ̌2 on C, has four possible
forms:

D++
iμ,jν = 〈〈T E−

μ (�ri,τ1+)E+
ν (�rj ,τ2+)〉〉, (A8)

D−−
iμ,jν = 〈〈T −1E−

μ (�ri,τ1−)E+
ν (�rj ,τ2−)〉〉, (A9)

D−+
iμ,jν = 〈〈E−

μ (�ri,τ1−)E+
ν (�rj ,τ2+)〉〉, (A10)

D+−
iμ,jν = 〈〈E+

ν (�rj ,τ2−)E−
μ (�ri,τ1+)〉〉. (A11)

Here we have added the subscript + or − to τ (but no haček,
meaning that it is now a “regular” time variable) to keep
track of its original location, i.e., the upper or lower branch,
respectively, on the Schwinger-Keldysh contour C. The other
Green’s function Ciμ,jν has analogous forms. We then rewrite
the double-integral involving Diμ,jν in Eq. (A4) as∫ ∫

C

dτ̌1dτ̌2p
+
iμ(τ̌1)Diμ,jν(τ̌1,τ̌2)p−

jν(τ̌2)

=
∑

A,B∈{+,−}
κAB℘μ℘ν

∫ ∞

−∞
dτ1

∫ ∞

−∞
dτ2

× σ−
iADAB

iμ,jν(τ1,τ2)σ+
jBeiω(τ2−τ1), (A12)

where κAB = 1 for A = B and κAB = −1 for A 	= B. Again,
we have added the subscripts A and B (A,B ∈ {+,−}) to σ−
and σ+ to remind us of their order on the Schwinger-Keldysh
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contour C. After some math, we reach

Seff
C = Tc exp

{∑
i,μ

i℘μ

h̄

∫ ∞

−∞
dτ [σ−

i+E−
Lμ(�ri,τ )

− σ−
i−E−

Lμ(�ri,τ ) + σ+
i+E+

Lμ(�ri,τ ) − σ+
i−E+

Lμ(�ri,τ )]

−
∫ ∞

−∞
dτ

�iμ,jν

2
[σ−

i+σ+
j+ + σ−

i−σ+
j− − 2σ−

i−σ+
j+]

−
∫ ∞

−∞
dτ

�iμ,jν + γiμ,jν

2
[σ+

j+σ−
i+ + σ+

j−σ−
i−

− 2σ+
j−σ−

i+] + i

h̄

∫ ∞

−∞
dτHiμ,jν[σ−

i+σ+
j+

− σ−
i−σ+

j− − σ+
j+σ−

i+ + σ+
j−σ−

i−]

+ i

h̄

∫ ∞

−∞
dτhiμ,jν[σ+

j+σ−
i+ + σ+

j−σ−
i−]

}
. (A13)

Here we introduce

�iμ,jν(τ ; �) = ℘μ℘ν

h̄2

∫ ∞

−∞
dτ ′〈〈E−

μ (�ri,τ )

×E+
ν (�rj ,τ + τ ′)〉〉eiωτ ′

, (A14)

γiμ,jν(τ ; �) = ℘μ℘ν

h̄2

∫ ∞

−∞
dτ ′〈[E+

μ (�ri,τ ),

E−
ν (�rj ,τ + τ ′)]〉eiωτ ′

, (A15)

Hiμ,jν(τ ; �) = i℘μ℘ν

2h̄

∫ ∞

0
dτ ′{〈〈E−

μ (�ri,τ )E+
ν (�rj ,τ − τ ′)〉〉

× e−iωτ ′ − 〈〈E−
μ (�ri,τ )E+

ν (�rj ,τ + τ ′)〉〉eiωτ ′ },
(A16)

hiμ,jν(τ ; �) = i℘μ℘ν

2h̄

∫ ∞

0
dτ ′{〈[E−

μ (�ri,τ ),E+
ν (�rj ,τ − τ ′)]〉

× e−iωτ ′ − 〈[E−
μ (�ri,τ ),E+

ν (�rj ,τ + τ ′)]〉eiωτ ′ },
(A17)

where we have changed the time variables such that
DAB

iμ,jν(τ1,τ2) −→ DAB
iμ,jν(τ,τ ′), with τ1 = τ − τ ′/2 and τ2 =

τ + τ ′/2. The right-hand side of Eqs. (A14)–(A17) is reminis-
cent of the Fourier transformation with respect to the time
distance τ ′. � = ω − ω0 is the frequency detuning of the
field from the atomic spacing ω0. Without the presence of
an external field, the radiation mainly comes from atomic
transitions, so that � = 0 for such resonant cases. But here
we first keep � explicitly, for generality.

From Eq. (A13) we extract the effective master equation:

ρ̇(t) = − i

h̄
[H0,ρ]

+
∑
j=1,2

∑
μ

i

h̄
℘μ[σ−

j E−
L,μ(�rj ) + σ

†
j E+

L,μ(�rj ),ρ]

+ i

h̄

∑
i=1,2

∑
μ,ν

Hiμ,iν(t)[[σ−
iμ,σ+

iν ],ρ]

−
∑

i,j=1,2

∑
μ,ν

�iμ,jν(t)

2
([ρσ−

i ,σ
†
j ] + [σ−

i ,σ
†
j ρ])

−
∑

i,j=1,2

∑
μ,ν

�iμ,jν(t) + γiμ,jν(t)

2

× ([ρσ
†
j ,σ−

i ] + [σ †
j ,σ−

i ρ]). (A18)

Note that the two-body density operator ρ is a (2j + 1)2 ×
(2j + 1)2 matrix. We can now identify term � as the induced
pump/decay rate and term γ as the spontaneous decay rate
inside the atomic medium. Term h as shown in Eq. (A17)
corresponds to the Lamb shifts, which are somewhat irrelevant
for our current consideration, and is therefore absorbed
by the unperturbed Hamiltonian H0; term H as shown
in Eq. (A16) accounts for the collective light shifts and
inhomogeneous broadening. In this paper, we neglect dipole
shifts and frequency chirping by dropping the term H and
focus strictly on the quantum correction relevant to superra-
diance. To slightly ease the computational complication, we
directly take γ as the free-space rate (see Appendix A in
Ref. [55]) and consider only a single polarization component
of the field so that subscripts μ and ν can also be dropped. The
relevant part of the master equation now reads

ρ̇ = −
∑

i,j=1,2

�ij

2
([ρσ−

i ,σ
†
j ] + [σ−

i ,σ
†
j ρ])

−
∑

i,j=1,2

�ij + γ δij

2
([ρσ

†
j ,σ−

i ] + [σ †
j ,σ−

i ρ]). (A19)

By following the derivation in Refs. [54,55] we are able to
calculate the right-hand side of Eq. (A14) through

�(t ; �) = ℘2

h̄2

∫
d3x|D̃ret(t ; �x,�)|2P̃ (1)s(t ; �)

+ ℘2

h̄2

∫ ∫
d3x1d

3x2D̃
ret(t ; �x1,�)

× D̃∗ret(t ; �x2,�)P̃ (2)s(t ; �), (A20)

�̄(t ; �) = ℘2

h̄2

∫
d3xD̃ret(t ; �x,�)D̃∗ret(t ; �x,�)P̃ (1)s(t ; �)

+ ℘2

h̄2

∫ ∫
d3x1d

3x2D̃
ret(t ; �x1,�)

× D̃∗ret(t ; �x2,�)P̃ (2)s(t ; �). (A21)

We now denote � ≡ �ii and �̄ ≡ �ij for i 	= j . We have also
replaced �ri and �rj with �r0 = (�ri + �rj )/2 and �x = �ri − �rj . But
�r0 dependence is then dropped because of the assumption of
a small sample. The single-particle source function P̃ (1)s and
the two-particle one P̃ (2)s are given, respectively, by

P̃ (1)s(t ; �) = N℘2

h̄2

[
2A(t)

(
γ

2 + �
)(

γ

2 + �
)2 + �2

]
, (A22)

P̃ (2)s(t ; �) = N 2℘2

h̄2

[
2Y (t)

(
γ

2 + �
)(

γ

2 + �
)2 + �2

]
, (A23)

with N the particle volume density. Quantities A(t), V (t),
and Y (t) are determined by the density matrix through
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Eqs. (9)–(11). In addition, the retarded Green’s function
is

D̃ret(t ; �x,�) = − ih̄ω2

6πε0c2

eq ′′
0 x

x
e−iq ′

0x, (A24)

with q ′
0 = ω/c and q ′′

0 = h̄ω
3ε0c

P̃ ret(t ; �), where the retarded
function

P̃ ret(t ; �) = N℘2

h̄2

[
V (t)(

γ

2 + �
) − i�

]
. (A25)

Through direct integration we finally get

� = γ (e2ζ − 1)
A(t)

V (t)
+ 2C2
4 γ 2I (ζ,
̃)

� + γ /2
Y (t), (A26)

�̄ = γ 2I (ζ,
̃)

� + γ /2
[3C
A(t) + 2C2
4Y (t)], (A27)

with

C = Nλ3/(4π2), 
 = πl/λ,

ζ = 1

2
C


γ (� + γ /2)

(� + γ /2)2 + �2
V (t),


̃ = 
 − �ζ/(� + γ /2),

I (ζ,ρ) = e2ζ [(ζ − 1)2 + 
2]/(ζ 2 + 
2)2.

It is worth noting that in Eq. (A26), ζ = ζ (C
), and the second
term is proportional to C2
4e2ζ /(ζ 2 + 
2) ∼ C2
2e2ζ for 
 �
ζ and is usually insensitive when varying C and 
 separately.
As a result, the product C
 turns out to be a determinant
factor for superradiance dynamics even though the individual
dependence on C and 
 is still evident, but less significant, in
most cases.
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Phys. Rev. Lett. 91, 183002 (2003).

[45] T. Wang, S. F. Yelin, R. Côté, E. E. Eyler, S. M. Farooqi, P. L.
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