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We present theoretical studies of high-order-harmonic generation (HHG) produced by nonhomogeneous fields
resulting from the illumination of plasmonic nanostructures with a short laser pulse. We show that both the
inhomogeneity of the local fields and the confinement of the electron movement play an important role in the
HHG process and lead to the generation of even harmonics and a significantly increased cutoff, more pronounced
for the longer-wavelength cases studied. In order to understand and characterize the new HHG features, we
employ two different approaches: the numerical solution of the time-dependent Schrödinger equation and the
semiclassical approach known as the strong-field approximation (SFA). Both approaches predict comparable
results and show the new features, but by using the semiclassical arguments behind the SFA and time-frequency
analysis tools, we are able to fully understand the reasons for the cutoff extension.
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I. INTRODUCTION

Coherent light sources in the ultraviolet (UV) to extreme
ultraviolet (XUV) spectral range are in high demand nowadays
for basic research, material science, biology, and possibly
lithography [1]. Their caveat is a demanding infrastructure
for XUV generation and target delivery as well as its low
efficiency and low duty cycle. The recent demonstration
based on surface plasmon resonances as light enhancers could
provide a possible solution to this problem [2].

Field-enhanced high-order-harmonic generation (HHG)
using plasmonics, generated starting from engineered nanos-
tructures, requires no extra cavities or laser pumping to amplify
the pulse power. By exploiting surface plasmon resonances,
local electric fields can be enhanced by more than 20 dB [3,4].
This amplification is strong enough to exceed the threshold
laser intensity for HHG generation in noble gases and the pulse
repetition rate remains unaltered without any extra pumping or
cavity attachment. Furthermore, the high-harmonics radiation
generated from each nanostructure acts as a pointlike source,
enabling collimation or focusing of this coherent radiation by
means of (constructive) interference. This opens a wide range
of possibilities to spatially arrange nanostructures to enhance
or shape spectral and spatial properties in numerous ways.

The basic principle of high-order-harmonic generation
based on plasmonics can be summarized as follows (the
full explanation can be found in Ref. [2]): a femtosecond
low-intensity pulse is coupled to the plasmon mode inducing
a collective oscillation of free charges within the metal. The
free charges redistribute the electric field around each of the
nanostructures, thereby forming a spot of highly enhanced
electric field. The enhanced field exceeds the threshold of
HHG, thus by injection of noble gases onto the spot of the
enhanced field, high order harmonics are generated.

In the seminal experiment of Kim et al. [2], the output
beam emitted from a modest-power femtosecond oscillator
(100 kW peak power, 1.3 nJ pulse energy, 10 fs pulse duration,
and 800 nm of wavelength) was directly focused onto a
10 × 10 μm bowtie nanoantenna array with a pulse intensity
of 1011 W cm−2, which is about two orders of magnitude
less than the threshold intensity to generate HHG in noble

gases. Their experimental result showed that the field intensity
enhancement factor exceeded 20 dB, which is sufficient to
produce XUV wavelengths from the 7th (114 nm) to the
21st (38 nm) harmonics with the injection of xenon gas.
Additionally, each bowtie acts as a pointlike source, thus a
three-dimensional (3D) arrangement of bowties should enable
us to perform control of the generated harmonics in various
ways by exploiting interference.

Numerical and semiclassical approaches to study laser-
matter processes in atoms and molecules, in particular HHG,
are largely based on the assumption that the laser electric
field is homogeneous in the region where the electron
dynamics takes place [5,6]. Due to the strong confinement of
plasmonic hot spots, the laser electric field is clearly no longer
homogeneous in the region where the electron dynamics takes
place, and consequently important changes in the laser-matter
processes would occur. From a theoretical viewpoint, the
HHG process can be tackled using different approaches (for a
summary, see, e.g., [7,8] and references therein). In this paper,
we concentrate our effort on extending two of the most widely
used approaches: the numerical solution of the time-dependent
Schrödinger equation (TDSE) in reduced dimensions and the
strong-field approximation (SFA) [9]. So far, the theoretical
work in strong-field physics has been focused on the processes
driven by homogeneous coherent electromagnetic radiation on
atoms and molecules. Only recently, studies about how HHG
spectra are modified due to nonhomogeneous fields, such as
those present in the vicinity of a nanostructure irradiated by a
short laser pulse, have been published [10,11].

The paper is organized as follows. In Secs. II A and
II B, we will present two theoretical approaches to model
HHG spectra produced by nonhomogeneous fields, namely,
the numerical solution of the time-dependent Schrödinger
equation in reduced dimensions (1D-TDSE) and the strong-
field approximation (SFA), respectively. We have developed
both approaches in such a way as to allow the treatment of
very general nonhomogeneous fields, showing the flexibility
of both the 1D-TDSE and SFA models. Particular studies of
HHG spectra for the simplest case are presented in Sec. III.
We will discuss how the nonhomogeneous field produces
noticeable modifications in the HHG spectra, namely, a
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change in the harmonic periodicity (odd and even harmonics
now appear) and a distinct extension in the position of the
cutoff (more pronounced for the longer-wavelength cases
studied). Both the 1D-TDSE and SFA approaches provide
comparable predictions, but by analyzing the HHG process
using semiclassical arguments, we can present strong evidence
about the motives of the cutoff extension. The paper ends with
a short summary and an outlook.

II. THEORY

A. Numerical solution of the time-dependent Schrödinger
equation in reduced dimensions (1D-TDSE)

Since the dynamics of an atomic electron in a strong laser
field is mainly along the direction of the field (in a linearly
polarized laser pulse), it is reasonable to model the HHG in a
1D spatial dimension by solving the following 1D-TDSE:

i
∂�(x,t)

∂t
= H(t)�(x,t)

=
[
−1

2

∂2

∂x2
+ Vatom(x) + Vlaser(x,t)

]
�(x,t).

(1)

To model an atom in 1D, it is common to use the quasi-
Coulomb potential,

Vatom(x) = − 1√
x2 + 1

, (2)

which was first introduced in Ref. [12] and has been widely
used in the 1D analysis of an atom. The potential due to
the laser electric field linearly polarized along the x axis
will be modified in order to treat nonhomogeneous fields.
Consequently, we write

Vlaser(x,t) = E(x,t)x, (3)

with

E(x,t) = E0 f (t)[1 + εg(x)] sin ωt (4)

as the laser electric field. In Eq. (4), E0 is the peak amplitude
and ω is the frequency of the coherent electromagnetic
radiation. Furthermore, f (t) defines the pulse envelope and ε is
a small parameter that characterizes the inhomogeneity region.
g(x) represents the functional form of the nonhomogeneities
of the electric field (the homogeneous case is g(x) = 0).
In this work, we concentrate our analysis on the simplest
form for g(x), i.e., g(x) = x, but we should emphasize that
the numerical algorithm allows us, in principle, to use any
functional form for g(x). We note that for the particular case
g(x) = x, ε has dimensions of inverse length. To model the
laser pulses, we shall use a trapezoidal envelope f (t) given by

f (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t
t1

for 0 � t < t1,

1 for t1 � t � t2,

− (t−t3)
(t3−t2) for t2 < t � t3,

0 elsewhere,

(5)

where t1 = 2πnon/ω, t2 = t1 + 2πnp/ω, and t3 = t2 +
2πnoff/ω. Here, non, np, and noff are the number of cycles
of turned on, plateau, and turned off, respectively.

The initial state in the 1D-TDSE is the ground state (GS)
of the system before we turn on the laser (t = −∞) and
it can be found solving an eigenvalue problem once the
spatial coordinate x has been discretized. The corresponding
eigenvalue for the potential (2) is found to be EGS = −18.2 eV
(−0.67 a.u.). For comparison, we note that the ground-state
energy of Ne is −21.6 eV (−0.79 a.u.), and −15.8 eV
(−0.58 a.u.) for Ar.

Equation (1) can be solved numerically by using the Crank-
Nicolson scheme [5]. In order to avoid spurious reflections
from the boundaries, at each time step, the total wave function
is multiplied by a mask function of the form cos1/8, which
varies from 1 to 0 starting from the 2/3 of the grid [13].

Once the state �(x,t) of the system from the 1D-TDSE (1)
is found, we can calculate the harmonic spectrum as follows
[14]. The harmonic yield of an atom is proportional to the
Fourier transform of the acceleration a(t) of its active electron.
That is,

D(ω) =
∣∣∣∣ 1

Tp

1

ω2

∫ ∞

−∞
dte−iωta(t)

∣∣∣∣
2

, (6)

where Tp is the total duration of the laser pulse. In Eq. (6) a(t)
can be obtained by using the commutator relation

a(t) = d2〈x〉
dt2

= −〈�(t)|[H(t),[H(t),x]]|�(t)〉, (7)

where H(t) is the Hamiltonian defined in the Eq. (1). The
function D(ω) is called the dipole spectrum, since D(ω) gives
the spectral profile measured in HHG experiments.

B. The strong-field approximation (SFA)
for inhomogeneous fields

Another model to evaluate high-harmonic spectra for
atoms in intense laser pulses is the Lewenstein model [9].
The main ingredient of this approach is the evaluation of
the time-dependent dipole moment d(t). Within the single
active electron (SAE) approximation and considering that the
harmonic radiation is directed mainly in the x axis, d(t) can
be written, in the length form [9], as

dx(t) = −i

∫ t

t0

dt ′
∫

dk dion,x(k + A(t ′),t ′)

× d∗
rec,x(k + A(t)) exp[−iS0(k,t,t ′)] + c.c. (8)

In Eq. (8),

S0(k,t,t ′) =
∫ t

t ′
dt ′′

{
[k + A(t ′′)]2

2
+ Ip

}
(9)

is the semiclassical action, Ip is the ionization potential of
the atom, and A(t) = − ∫ t

−∞ E(t ′)dt is the vector potential
associated with the laser electric field E(t). The ionization and
recombination matrices are given by

dion,x(k,t) = 〈�k|E(t) x|φ0〉 (10)

and

drec,x(k) = 〈�k| − x|φ0〉, (11)
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respectively. Here, �k is a normalized plane wave of momen-
tum k,

�k(r) = (2π )−3/2eik·r, (12)

and φ0 is the undressed initial state of the atom. In our studies,
we use normalized hydrogenic 1s states of the form

φ0(r) =
√

λ3

π
e−λr , (13)

and we choose the effective charge λ in order to match the
energy of the ground state EGS of the 1D model atom (see
Sec. II A), i.e., λ = √

2|EGS|. Using (12) and (13), the explicit
expressions for dion,x(k) and drec,x(k) are

dion,x(k,t) = i
27/2λ5/2

π

kx

(k2 + λ2)3
E(t) (14)

and

drec,x(k) = −i
27/2λ5/2

π

kx

(k2 + λ2)3
, (15)

respectively. The spectrum of the emitted light polarized
along the x axis is obtained by modulus squaring the Fourier
transform of the dipole acceleration,

ax(	) =
∫ Tp

0
dtd̈x(t) exp(i	t), (16)

where the integration is carried out over the duration of the laser
pulse, Tp, by applying a fast Fourier-transform algorithm. The
numerical calculation of Eq. (8) involves a multidimensional
integration over momentum and time. As usual [9], we have
performed the three-dimensional integration over k using the
saddle-point or stationary phase method, meanwhile all time
integrations are performed numerically.

Equation (8) has a direct interpretation in terms of the three-
step or simple man’s model [9]. The first step is the strong-field
ionization of the atom or molecule as a consequence of the
nonperturbative interaction with the coherent electromagnetic
radiation. The classical propagation of the electron in the field
defines the second step of the model. Finally, the third step in
the sequence occurs when the electron is steered back in the lin-
early polarized field to its origin, recombining under the emis-
sion of a high-energy photon. One of the main features of the
HHG process is the coherence of the emitted radiation, which,
e.g., opens the possibility of generating attosecond pulses [15].

The Lewenstein model implicitly considers homogeneous
electric and vector potential fields, i.e., fields that do not change
in the region where the electron dynamics takes place. In order
to consider nonhomogeneous fields, the SFA approach needs to
be modified accordingly. Our goal is to find the modifications
in the electron momentum and the classical action produced by
nonhomogeneous fields. The first step is to find the electron
trajectories starting from classical arguments employing the
Newton equation for an electron moving in a nonhomogeneous
electric field E(x,t), linearly polarized in the x axis. It can be
then written as

ẍ(t) = −∇xVlaser(x,t) = −E(x,t) − [∇xE(x,t)]x

= −E(t)[1 + 2εx(t)], (17)

where Vlaser(x,t) is given by (3) and we have collected the
time-dependent part of the electric field in E(t), i.e., E(t) =

E0f (t) sin ωt . We use the Picard iteration [16] extended to the
second-order ordinary differential equations to solve Eq. (17),
and we restrict ourselves only to the first-order term. The
(n + 1)th-order solution can be written in terms of the nth one
as follows:

Xn+1(t) = x0 + v0(t − t0)

+
∫ t

t0

[ ∫ t ′

t0

f (t ′′,Xn(t ′′),Ẋn(t ′′))dt ′′
]
dt ′, (18)

where x0 = x(t0), v0 = ẋ0 = ẋ(t0) and, in our case,
f (t,Xn(t),Ẋn(t)) = −E(t)[1 + 2εXn(t)], with E(t) being the
time-dependent part of E(x,t), i.e., E(t) = E0f (t) sin ωt .
Considering the initial conditions, i.e., x0 = 0 and v0 = 0 (the
electron starts its movement at the origin with zero velocity),
we finally obtain

X1(t) = α(t) − α(t0) − A(t0)(t − t0), (19)

where we have defined α(t) = ∫ t

0 dt ′A(t ′). The next step
is to calculate the classical action and the saddle-point

FIG. 1. High-order-harmonic generation (HHG) spectra for a
model atom with EGS = −0.67 a.u. generated using the 1D-TDSE
model and with a spatial grid of xlim = ±7.5α0 (see text for details).
The laser parameters are I = 2 × 1014 W cm−2 and λ = 800 nm.
We have used a trapezoidal-shaped pulse with two optical cycles
turned on, i.e., non = 2, and turned off, i.e., noff = 2, and a plateau
with six optical cycles, i.e., np = 6 (10 optical cycles in total, i.e.,
approximately 27 fs). The arrow indicates the cutoff predicted by
the semiclassical model [9]. (a) Homogeneous case, (b) ε = 0.01
(100 a.u.), (c) ε = 0.02 (50 a.u.), and (d) ε = 0.05 (20 a.u.).

033828-3



CIAPPINA, BIEGERT, QUIDANT, AND LEWENSTEIN PHYSICAL REVIEW A 85, 033828 (2012)

electron momentum starting from the electron trajectories.
After elementary algebra, we can write, for the modified action
S(k,t,t ′),

S(k,t,t ′) = S0(k,t,t ′) + 2ε

[
k ·

∫ t

t ′
dt ′′A(t ′′)X1(t ′′)

+
∫ t

t ′
dt ′′A2(t ′′)X1(t ′′)

]
, (20)

where S0(k,t,t ′) is defined in Eq. (9) and X1(t) is the electron
trajectory of Eq. (19). The saddle-point electron momentum is
found from the stationary condition

∇kS(k,t,t ′) = 0. (21)

Consequently,

∇kS(k,t,t ′) = ∇kS0(k,t,t ′) + 2ε

∫ t

t ′
dt ′′A(t ′′)X1(t ′′), (22)

with

∇kS0(k,t,t ′) = k(t − t ′) + α(t) − α(t ′). (23)

Finally, we obtain, for the saddle point or stationary electron
momentum kst(t,t ′),

kst(t,t
′) = −α(t) − α(t ′)

(t − t ′)
− 2ε

(t − t ′)

∫ t

t ′
dt ′′A(t ′′)X1(t ′′).

(24)

Replacing (24) in Eq. (20) results in

S(ks ,t,t
′) = S0(ks ,t,t

′) + 2ε

[
kst ·

∫ t

t ′
dt ′′A(t ′′)X1(t ′′)

+
∫ t

t ′
dt ′′A2(t ′′)X1(t ′′)

]
. (25)

The time-dependent dipole moment, given by Eq. (8), can be
written, after the saddle-point method for the momentum k is
applied [9], as

dx(t) = −i

∫ t

t0

dt ′
[

π

η + i(t − t ′)/2

]3/2

× dion,x(kst(t,t
′) + A(t ′),t ′)

× d∗
rec,x(kst(t,t

′) + A(t)) exp[−iS(kst,t,t
′)] + c.c.,

(26)

where η is a small parameter. We recover the homogeneous
dipole moment putting ε = 0 in Eq. (26) [9].

III. RESULTS

The results using the 1D-TDSE model developed in
Sec. II A are presented in Figs. 1–7. In Figs. 1–6, the laser inten-
sity is I = 2 × 1014 W cm−2 and the laser wavelength is λ =
800 nm. We have used a trapezoidal-shaped pulse with two
optical cycles turned on, i.e., non = 2, and turned off, i.e.,
noff = 2, and a plateau with six optical cycles, i.e., np = 6 (10
optical cycles in total, i.e., approximately 27 fs). The model
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FIG. 2. (Color online) (a)–(d): Gabor analysis for the HHG spectra of Fig. 1. The zoomed regions in all panels show a time interval during
the laser pulse for which the complete electron trajectory, from birth time to recollision time, falls within the pulse plateau (see Ref. [17] for
details); color scale is logarithmic. (e) Shape of the laser electric field.
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FIG. 3. Same as Fig. 1, but with a spatial grid of xlim = ±4.5α0.

atom has EGS = −0.67 a.u. and it is driven by a laser electric
field of the form E(x,t) = E0f (t)[1 + εx(t)], where E0 is the
peak amplitude and f (t) is the pulse envelope [see Fig. 2(e)
for a plot of the laser electric field].

One additional parameter we take into account in the
1D-TDSE simulations is the spatial region where the electron
moves. This parameter will naturally appear in real situations
using bowtie-shaped nanostructures, as those employed in the
experiments of Kim et al. [2], and when linearly polarized
pulses are utilized, which restricts the electron dynamics
mostly to one dimension. The bowtie-shaped nanostructures
are characterized by a spatial gap that can be, in principle,
changed between certain ranges when the nanostructure is
engineered. We use, in our 1D-TDSE model, spatial grids
in terms of the quiver radius, α0 = E0/ω

2, with ω being the
driven laser frequency (ω = 0.057 a.u. for a laser wavelength
λ = 800 nm) that in the case under study is α0 ≈ 23.2 a.u.
(1.23 nm). Three different spatial grid sizes will be employed,
namely, xlim = ±7.5α0, xlim = ±4.5α0, and xlim = ±1.5α0,
corresponding to gaps of 18.7, 11, and 3.7 nm, respectively.

In Fig. 1, we plot the HHG spectra for different values
of ε and for a grid size of xlim = ±7.5α0. Figure 1(a) is
the homogeneous case, and we have chosen values of 0.01
[Fig. 1(b)], 0.02 [Fig. 1(c)], and 0.05 [Fig. 1(d)] for the
inhomogeneity parameter ε that corresponds to inhomogeneity
regions of 100 a.u. (5.3 nm), 50 a.u. (2.7 nm), and 20 a.u. (1
nm), respectively. Two distinct characteristics can be observed
in Figs. 1(b)–1(d), and we can summarize them as follows: (i)
Odd and even harmonics are now present. This new feature
appears because we have broken the symmetry of the total
potential, Vatom + Vlaser, introducing a new asymmetric term,
i.e., εx2; (ii) There is an absence of a clear HHG cutoff. This
effect is related to the electron trajectories that contribute to
the harmonic spectra and will be the object of study using the
Gabor analysis and the semiclassical simulations (see below
for details).

Our next step is to use time-analysis tools in order to
characterize the HHG spectra calculated using the 1D-TDSE
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FIG. 4. (Color online) Gabor analysis for the HHG spectra of Fig. 3. The zoomed regions in all panels show a time interval during the laser
pulse for which the complete electron trajectory, from birth time to recollision time, falls within the pulse plateau (see text and Ref. [17] for
details).
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FIG. 5. Same as Fig. 1, but with a spatial grid of xlim = ±1.5α0.

model. To this end, we employ the Gabor transformation,
developed in the 1940s by Gabor [18], which has proven to be
a very powerful tool to estimate the emission times of HHG in
atoms and molecules and to discriminate the different electron

trajectories [17]. Starting from the dipole acceleration a(t) of
Eq. (7), the Gabor transform is defined as

aG(	,t) =
∫

dt ′a(t ′)
exp[−(t − t ′)2/2σ 2]

σ
√

2π
exp(i	t ′), (27)

where the integration is usually taken over the pulse duration.
In our studies, we use σ = 1/3ω, with ω being the central
laser frequency. With this value of σ , we achieve an adequate
balance between the time and frequency resolutions (see
Ref. [17] for details). The results of the Gabor analysis of
the HHG spectra of Fig. 1 are presented in Fig. 2. From Figs.
2(a)–2(d) can be observed the clear differences between the
homogeneous [Fig. 2(a)] and nonhomogeneous [Figs. 2(b)–
2(d)] cases. In the zoomed regions, we show a time interval
during the laser pulse for which a complete electron trajectory,
from birth time to recollision time, falls within the pulse
plateau. From these plots, it is possible to clearly observe
the short (for emission times smaller than ∼320 a.u.) and
long (the emission times are larger than ∼320 a.u. for this
case) trajectories (see Ref. [17] for more details). The highest
harmonic order (around the 40th) is generated at an emission
time of ∼320 a.u. for the homogeneous case. On the other hand,
only an extended short trajectory (with emission times smaller
than ∼320 a.u.) is present for all of the nonhomogeneous cases,
and no clear harmonic cutoff is visible.

Alternatively, in Figs. 3 and 4, we plot the HHG spectra
for different values of ε and the Gabor analysis, respectively.
Here a grid size of xlim = ±4.5α0 is used. Figures 3(a) and
4(a) are the homogeneous case and we have chosen values of
0.01 [Figs. 3(b) and 4(b)], 0.02 [Figs. 3(c) and 4(c)], and 0.05
[Figs. 3(d) and 4(d)] for the inhomogeneity parameter ε that
corresponds to inhomogeneity regions of 100 a.u. (5.3 nm),
50 a.u. (2.7 nm), and 20 a.u. (1 nm), respectively. We note that
the difference between these last two figures (Figs. 3 and 4) and
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FIG. 6. (Color online) Gabor analysis for the HHG spectra of Fig. 5. The zoomed regions in all panels show a time interval during the laser
pulse for which the complete electron trajectory, from birth time to recollision time, falls within the pulse plateau (see text and Ref. [17] for
details).
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FIG. 7. HHG spectra for a model atom with EGS = −0.67 a.u.
generated using the 1D-TDSE model and with a spatial grid of
xlim = ±1.5α0 (see text for details). The laser parameters are I = 1 ×
1013 W cm−2 and λ = 3.2 μm (3200 nm). We have used a Gaussian-
shaped pulse with six cycles FWHM. The arrow indicates the cutoff
predicted by the semiclassical model [9] and the zoomed regions
correspond to harmonic order values between (a) 100 and 120 ω, and
(d) 330 and 350 ω, respectively (see text for further details).

Figs. 1 and 2 is hardly visible for all of the cases, showing that
the decrease of the grid size has no effect in the HHG spectra,
both for the homogeneous and nonhomogeneous cases.

Finally, in Figs. 5 and 6, we plot the HHG spectra for
different values of ε and the Gabor analysis, respectively, and
now with a grid size of xlim = ±1.5α0. Figures 5(a) and 6(a)
are the homogeneous case and we have chosen values of 0.01
[Figs. 5(b) and 6(b)], 0.02 [Figs. 5(c) and 6(c)], and 0.05
[Figs. 5(d) and 6(d)] for the inhomogeneity parameter ε that
corresponds to inhomogeneity regions of 100 a.u. (5.3 nm),
50 a.u. (2.7 nm), and 20 a.u. (1 nm), respectively. Here it is
possible to observe the substantial differences between the
results shown in Figs. 5(b)–5(d) and 6(b)–6(d) and those
from panels (b)–(d) of Figs. 1–4, showing that the electron
confinement, jointly with the inhomogeneities of the laser
electric field, are responsible for the appearance of a clearly
extended harmonic cutoff. We also note that the HHG spectra
for the homogeneous case [Figs. 1(a), 3(a), and 5(a)] are
identical for all of the cases, confirming that the electron
confinement is not the only responsible for the distinct features
present in the HHG spectra. In some sense, when we restrict
the electron movement, only the short trajectories contribute
to the formation of the harmonic spectrum, and this feature is
clearly visible in the zoomed regions of the Gabor analysis in

FIG. 8. (Color online) HHG spectra for a model atom with
EGS = −0.67 a.u. generated using the extended SFA approach.
The laser parameters are I = 6 × 1014 W cm−2 and λ = 800 nm.
We have used a trapezoidal-shaped pulse with three opti-
cal cycles turned on and turned off, and a plateau of four
constant-amplitude optical cycles [see Fig. 9(e)]. The arrow in-
dicates the cutoff predicted by the semiclassical model [9].
(a) Homogeneous case, (b) 2ε = 0.01 (100 a.u.), (c) 2ε = 0.02
(50 a.u.), and (d) 2ε = 0.05 (20 a.u.). The inset in panel (a) shows a
particular zoomed region for the harmonic spectra of (a) and (b) near
the cutoff region (see the text for details).

Fig. 6, where only short trajectories are distinguishable, i.e.,
those with emission times smaller than ∼320 a.u.

In order to explore how our 1D-TDSE approach behaves,
we have calculated HHG spectra for longer wavelengths. We
present our results in Fig. 7 for λ = 3.2 μm. This value for
λ represents an example that could be perfectly reachable
experimentally [19,20] and allow us to reach numbers for the
electron excursion region (i.e., the quiver radius α0) closer to
those considered in real experiments [2]. The laser intensity
is I = 1 × 1013 W cm−2, and we have employed a Gaussian-
shaped pulse with six cycles FWHM, f (t) = exp[− 2 ln 2

τ 2 t2],
where τ is the FWHM (full width at half maximum) duration
of the driving laser intensity I (t) (∝ |E(t)|2). We use a spatial
grid of xlim = ±1.5α0, where α0 = 83 a.u. (4.4 nm), i.e., the
electron dynamics is confined in a region of around 13.2 nm.
The panels correspond to the homogeneous case [Fig. 7(a)],
ε = 0.01 [Fig. 7(b)], ε = 0.02 [Fig. 7(c)], and ε = 0.05
[Fig. 7(d)], respectively. We have included zoomed panels
for the cases of Figs. 7(a) and 7(d). These two plots allow us
to observe clearly the presence of odd and even harmonics
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for this particular nonhomogeneous case [Fig. 7(d)], and
only the appearance of odd harmonics for the homogeneous
one [Fig. 7(a)]. From Fig. 7, we conclude that for longer
wavelengths, the cutoff extension due to the nonhomogeneities
of the field, combined with the electron confinement, is far
more pronounced, e.g., for the case of λ = 3.2 μm and
ε = 0.05, the cutoff is almost three times larger than the
homogeneous case. This extension could open the avenue for
the production of attosecond pulses in the keV regime (for a
theoretical study at λ = 800 nm, see [11]). Furthermore, the
region of confinement using these laser parameters is closer to
values that could be found in real nanostructures.

In the following, we use the modified SFA model presented
in the Sec. II B to generate HHG spectra produced by
nonhomogeneous fields. We employ a laser pulse with an
electric field of the form E(x,t) = E0f (t)[1 + 2εx(t)], where
E0 is the peak amplitude, f (t) is the pulse envelope, and we
use only the first order for x(t), i.e., x(t) ≈ X1(t) with X1(t)
of (19). In Fig. 8, we show the predictions of this model, and
Fig. 9 represents the Gabor analysis of the HHG spectra of
the former. In order to enhance the new HHG features and
see more clearly the differences between the studied cases, the
laser field now has an intensity of I = 6 × 1014 W cm−2 and a
wavelength of λ = 800 nm. We have used a trapezoidal-shaped
pulse with three optical cycles turned on (non = 3) and turned
off (noff = 4), and a plateau of four constant-amplitude optical
cycles (np = 4) [see Fig. 9(e)] and the model atom has
EGS = −0.67 a.u. With these parameters, the predicted cutoff

is nc = 85, as is shown by the arrow plotted in Fig. 8(a).
Furthermore, Figs. 8(b)–8(d) correspond to values of 2ε =
0.01, 2ε = 0.02 and 2ε = 0.05, respectively. As in the case
of the 1D-TDSE model, the SFA approach predicts the
appearance of odd and even harmonics and a cutoff extension.
In order to show these features more clearly, we have zoomed
out a small region of the HHG near the cutoff for Figs. 8(a)
and 8(b). In this graph, it is more transparent to see how
the inhomogeneous fields modify the harmonic spectra. An
additional feature appears and it could be extracted from
Figs. 8(a) (homogeneous case) and 8(d) (2ε = 0.05): there
exists a clear enhancement in the harmonic yield in the plateau
region (see, e.g., a region around the 25th–40th harmonics).
The Gabor analysis of the HHG spectra calculated using the
SFA, shown in Fig. 9, shows similarities and differences
between this model and the 1D-TDSE approach (the SFA
approach does not account for the restrictions on the electron
motion). For example, in Fig. 9(c), only short trajectories
appear to contribute to the HHG spectra (similar to the
xlim = ±1.5α0 case); meanwhile, Fig. 9(d) has analogous
features to Figs. 2(d) and 4(d) (i.e., the xlim = ±7.5α0 and
xlim = ±4.5α0 cases, respectively). This behavior could be
related to the limited validity of the perturbation-like character
of the SFA approach developed in Sec. II B. An extension of
the SFA approach including the quantum orbits analysis will
be presented elsewhere.

We now concentrate our efforts in order to explain, using the
semiclassical three-step model, the extension of the harmonic
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FIG. 9. (Color online) (a)–(d): Gabor analysis for the HHG spectra of Fig. 8. The zoomed regions in all panels show a time interval during
the laser pulse for which the complete electron trajectory, from birth time to recollision time, falls within the pulse plateau (see text and Ref. [17]
for details); color scale is logarithmic. (e) Shape of the laser electric field.
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(a)

(b)

(c)

(d)

FIG. 10. (Color online) Total energy of the free electron (in terms
of the harmonic order) in the laser field when it recollides with
its parent ion obtained from Newton’s second law and plotted as a
function of the ionization time (green open circles) or the recollision
time (red filled circles). (a) Homogeneous case, (b) ε = 0.01
(100 a.u.), (c) ε = 0.02 (50 a.u.), and (d) ε = 0.05 (20 a.u.). In all
cases, the motion of the electron is not restricted.

cutoff. As was already pointed out, this new feature appears as
a consequence of the combination of two factors, namely, the
nonhomogeneous character of the laser electric field and the
confinement in the electron motion. It is well known that
the position of the HHG cutoff holds

ncω = 3.17Up + Ip, (28)

where nc is the harmonic order at the cutoff, ω is the laser
frequency, Up is the ponderomotive energy (Up = I/4ω2, with
I being the laser intensity in a.u.), and Ip is the ionization
potential of the atom or molecule [9]. This relationship can
be obtained solving the classical Newton equation for an
electron moving in a linearly polarized electric oscillating
field under the following conditions (the resulting model is
also known as the simple man’s model): (i) the electron starts
with zero velocity at position zero at time t = t0 (t0 is known
as ionization time), i.e., x(t0) = 0 and ẋ(t0) = 0 for our 1D
model; (ii) when the electric field reverses its direction, the
electron returns to its initial position (i.e., recollides with its
parent ion) at a later time, t = t1 (t1 is also known as recollision
time), i.e., x(t1) = 0. The electron kinetic energy at the return
time t1 can be obtained from Ek(t1) = ẋ(t1)2/2, and, finding
the value of t1 (as a function of t0) that maximizes this energy,
Eq. (28) is fulfilled.

(a)

(b)

(c)

(d)

FIG. 11. (Color online) Same as Fig. 10, but with the motion of
the electron confined into a region [−α0, +α0].

We have solved numerically the Newton equation for
an electron moving in a linearly polarized (in the x axis)
electric field with the same parameters used in the 1D-TDSE
calculations. Specifically, we find the numerical solution of
ẍ(t) = −∇xVlaser(x,t) with Vlaser(x,t) given by (3), and E(x,t)
of Eqs. (4) and (5) without any approximation, i.e., we solve
Eq. (17). For fixed values of ionization time t0, it is possible to
compute the classical trajectories and to numerically calculate
the times t1 where the electron recollides, i.e., x(t1) = 0. Also,
once the ionization time t0 is fixed, the electron trajectory
is completely determined. In Figs. 10(a)–10(d), we plot the
dependence of the harmonic order on the ionization time (t0)
and recollision time (t1), calculated from n = [Ek(ti) + Ip]/ω,
with i = 0 and i = 1, and for the cases presented in the
1D-TDSE simulations, i.e., homogeneous [Fig. 10(a)], ε =
0.01 [Fig. 10(b)], ε = 0.02 [Fig. 10(c)], and ε = 0.05 [Fig.
10(d)], respectively. At this point, we have not restricted the
electron trajectories, and consequently we allow the electron
to move in all of the space (see below for details). The temporal
axis, i.e., the x axis, is plotted in terms of optical cycles and
we have chosen a temporal window from 3.5 to 5 optical
cycles (i.e., from 380 to 550 a.u.). In all of the panels of Fig.
10, both the short and long trajectories (see, e.g., [11]) are
labeled. From Fig. 10(a), it is possible to observe that the
maximum kinetic energy of the returning electron is in perfect
agreement with Eq. (28) (no harmonic order beyond nc ∼ 36
is reached). On the other hand, Figs. 10(b)–10(d) show how the
nonhomogeneous field modifies the electron trajectories and
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(a)

(b)

FIG. 12. (Color online) Dependence of the semiclassical trajec-
tories on the ionization and recollision times for different values of
ε and for (a) the nonconfined case and (b) the confined case. Red
squares are homogeneous case ε = 0; green circles are ε = 0.01;
blue triangles are ε = 0.02, and magenta diamonds are ε = 0.05.

that no clear HHG cutoff is observed. This is consistent with
the predictions of the 1D-TDSE for the largest spatial grids
[see Figs. (2) and (4)]. Although from Figs. 10(b)–10(d) we
observe no clear HHG cutoff, the kinetic energy gained by the
electron is finite in agreement with the energy conservation.
Furthermore, Figs. 10(b)–10(d) show similar features as those
observed in Figs. 2(b)–2(d) and 4(b)–4(d), i.e., only extended
short trajectories contribute to the harmonic radiation. This
characteristic is related with the modifications the electron
trajectories suffer due to the nonhomogeneities of the field
(see below for details).

In order to classically simulate the 1D-TDSE results, but
for the smallest grid size, i.e., xlim = ±1.5α0, we restrict the
classical electron trajectories to the domain [−α0,α0]. The
±α0 values represent the starting point of the mask function
and consequently a fair comparison is possible. The results
are presented in Figs. 11(a)–11(d). From these plots, we can
argue that only short trajectories contribute to the harmonic
radiation. This is related to the electron motion restriction,
i.e., the confinement, which we have now incorporated in
the classical simulations. Furthermore, a clear HHG cutoff
is now observed for all of the nonhomogeneous cases and its
value is in clear agreement with the 1D-TDSE predictions [see
Figs. 5(b)–5(d) and 6(b)–6(d)].

Finally, in Fig. 12, the recollision time t1 of the electron
is presented as a function of the ionization time t0 and for
several values of ε. Figure 12(a) represents the nonconfined
case and, in Fig. 12(b), we have restricted the electron motion
into the region [−α0,α0]. The long trajectories are those with
recollision times t1 � 4.25 optical cycles and, only for the
homogeneous case (red squares in figure), these trajectories
are clearly visible. On the other hand, short trajectories are
characterized by t1 � 4.25 optical cycles and these are present
for both the homogeneous and nonhomogeneous cases. Our
results are consistent with those shown in Ref. [11], but
note our inhomogeneity parameter is more than one order of
magnitude higher. From Fig. 12(a), we observe how the long
trajectories are modified by the nonhomogeneity, namely, the
homogeneous long trajectories (red squares) with ionization
times t0 around the 3.25 and 3.75 optical cycles merge into
unique trajectories. Additionally, the branch with t0 ∼ 3.75
now has ionization times more than half an optical cycle
smaller when ε increases; hence, the times spent by the electron
in the continuum increase. This fact explains the vanishing
long trajectories seen in Figs. 10(b)–10(d). Additionally,
the electric field strength at the ionization time for short
trajectories is higher than for long trajectories, and, considering
the ionization rate as a highly nonlinear function of this electric
field [21,22], long trajectories are much less efficient than the
short ones. On the other hand, short trajectories are almost
independent of ε and only for higher values are noticeable
differences visible. When the electron motion is confined,
shown in Fig. 12(b), only short trajectories are present for
all of the cases and this confirms the fact that long trajectories
are absent and only the short trajectories contribute to the
formation of the harmonic radiation.

IV. CONCLUSIONS AND OUTLOOK

We studied high-order-harmonic generation in a model
atom produced by nonhomogeneous fields. These fields are not
merely a theoretical speculation but are present in a vicinity
of a metal nanostructure when it is irradiated by a short
laser pulse. We have extended two of the most widely used
models, namely, the numerical solution of the time-dependent
Schrödinger equation (TDSE) in reduced dimensions and the
semiclassical approach known as strong-field approximation
(SFA). Both models are able to predict the new features that
appear due to the presence of inhomogeneities, namely, the
appearance of odd and even harmonics and an extension in
the cutoff position. The latter feature is a consequence of the
combination of the nonhomogeneous electric field and the
confinement of the electron dynamics, as can be extracted from
the Gabor analysis and the semiclassical simulations made for
all of the studied cases. We have proven the robustness of
the 1D-TDSE model using different laser parameters, and by
solving the classical equation of motion for an electron moving
in a linearly polarized nonhomogeneous electric field, we are
able to understand the reasons for the cutoff extension.

The models presented allow one to use, in principle, any
functional form for the nonhomogeneous fields. Moreover,
they are able to incorporate real parameters in the simulations,
such as the region dimensions where the electron dynamics
takes place. We plan to continue our investigations in this
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direction, jointly with studies of other laser-matter processes
driven now by these nonhomogeneous fields.
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