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Near-field mapping of optical eigenstates in coupled disk microresonators
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We report on the real-space experimental observation of whispering-gallery modes in coupled disk
microresonators excited by a tapered optical fiber. Using a high-resolution scattering scanning near-field optical
microscope (SNOM) technique, the resonator modes can be perturbed, leading to altered transmission and
reflection through the tapered fiber. The correlation of the perturbed signals with the position of the perturbing
SNOM tip results in intensity maps of the optical resonator modes under investigation. A combination of a
coupled-mode theory of the excited microresonator including the SNOM tip and a two-dimensional modal
expansion technique can be used to understand different regimes of the perturbation, leading to qualitatively
different transmission and reflection maps for the same optical resonator mode. Detailed measurements of the
intensity distributions of eigenmodes of two and three coupled disks in different arrangements are presented and
compared to theoretical calculations.
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I. INTRODUCTION

Coupled optical microresonators have been attracting con-
siderable attention in recent years. A combination of the
advantageous properties of single microresonators [1,2] with
the evanescent coupling by placing such resonators very close
to each other results in systems of specific properties. For a few
coupled resonators, effects like electromagnetically induced
transparency [3], slow light [4], and optical bistability [5,6]
were observed. The coupling of a larger number of resonators
forms a new class of optical waveguides, namely, coupled
resonator optical waveguides (CROW [7]), which can be
used, for example, as optical delay lines [8] and high-order
filters [9,10]. Extending the coupling of the resonators to
two-dimensional arrays allows the formation of photonic
molecules [11], which can be used as optical sensors [12]
or active lasing elements [13,14].

Especially for sensor applications (e.g., nanoparticle detec-
tion [15]), which are based on a resonance shift due to the
interaction of a nanoparticle with the cavity mode, the mode’s
intensity distribution is of particular interest. Due to the dif-
ferent spatial distributions of excited modes in coupled arrays
of microresonators, it is possible to constrain the position of
the perturbation across the array just by looking at changes
in the spectrum. Motivated by this, we implemented a high-
resolution mode mapping technique for coupled microdisks
using a scattering scanning near-field optical microscope
(SNOM) tip for perturbation of the eigenmodes of the system.
By recording the changes in transmission and reflection
through a tapered fiber used for excitation of the coupled
resonators depending on the position of the tip, the intensity
distribution of the modes can be mapped. The measurement
principle is adapted from waveguide mode mapping [16],
as well as investigations of eigenmodes in photonic crystal

*ca.schmidt@uni-jena.de
†Also at: Fraunhofer Institute of Applied Optics and Precision

Engineering, Jena, Germany.

cavities [17]. Previous methods for visualization of the mode
distribution of on-chip microresonators include the far-field
observation due to the collection of out-of-plane scattering
[18], up-conversion in erbium-doped microresonators [19],
and the near-field mapping of single microdisks by direct
collection with an aperture SNOM [20] or by a scattering
SNOM technique collecting the scattered light from the tip in
the far field [21].

In addition to the experimental studies presented here,
theoretical calculations are of importance to identify different
regimes of the interaction between the scatterer and the excited
cavity system. To obtain fast and reliable calculations, a
combination of two different approaches was used to address
the important parts of the experimental system. First is
the waveguide-resonator coupling, which can be modeled
using coupled-mode theory [22] and taking into account the
coupling of the scattering SNOM tip to the whispering-gallery
mode (WGM) of the microresonator, which can be described
in a semiquantum optical framework [23]. Second is the
calculation of the field distribution in arbitrarily coupled
microresonators using a rigorous two-dimensional modal
expansion method [12].

The paper is organized as follows. In Sec. II, we introduce
the coupled microresonator system and the measurement
principle. In Sec. III, we describe the theoretical model that was
used to understand the observed transmission and reflection
signals for different regimes of perturbation by the SNOM tip.
We characterize the measured signals in general in Sec. IV
and test the model for the case of a single disk to identify the
influences of the SNOM tip in detail. In Sec. V, we present
detailed results of eigenmode mappings of two coupled disks
and three coupled disks in different configurations.

II. COUPLED MICRORESONATOR SYSTEM AND
MEASUREMENT PRINCIPLE

The system of coupled microresonators under investigation
consists of freestanding fused silica microdisks on a silicon
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FIG. 1. (Color online) Different samples under investigation:
(a) single disk, (b) two coupled disks, and (c) three coupled disks in a
triangular configuration (linear arrangement not shown). (d) A sketch
of the setup showing the tunable laser source (TLS, with modulation
for lock-in), a fiber polarization controller (FPC), and a circulator (C)
for extraction of the reflection signal (R). The sample, the tapered fiber
(TF), and the SNOM tip (Tip) are placed in a nitrogen-purged box. The
reflection and transmission (T) signals are fed into a lock-in amplifier
(L-In) with the amplitude outputs connected to the SNOM controller
(SNOM-contr) where the signals are correlated to the position of the
tip. A PC is used to control all devices and to read out the measured
transmission and reflection mode maps.

chip. A detailed description of the fabrication process can
be found in Refs. [6,24]. For the presented analysis, we
used a single disk sample, two coupled disks, and three
coupled disks in a line and in a triangular arrangement (see
Fig. 1). All disks in all samples have a diameter of about
30 μm and a thickness of 1 μm. The gap size between
the coupled disks is in the range of 300 to 500 nm, which
is sufficient to observe optical coupling for the measured
wavelength range around 1550 nm. The samples were placed
in a nitrogen-purged box to prevent them from contamination
and air flow in the laboratory environment. For the optical
excitation, a tapered optical fiber was used to couple light
from a tunable laser source (Agilent 81600/81640A) to one of
the disks of the sample. In parallel, the tapered fiber was used
to collect the transmission and reflection signal modified by the
spectral response of the sample, and the signals were detected
by photoreceivers (Terahertz Technology Inc. TIA-525I). By
tuning the pump laser over a certain wavelength range (1510
to 1570 nm), the resonance wavelengths of the sample can
be determined. For the mode mapping experiments, the pump
laser wavelength was fixed to one of the resonances, which
results in a certain transmission and reflection value. The
apertureless tip of a scanning near-field optical microscope
(MV4000, Nanonics Imaging Ltd.) was placed above the disk
sample and scanned across the surface in tapping mode. When
the SNOM tip (gold coated, diameter 50 to 100 nm) reaches
the rim of the disk, where the excited WGM is located, it can
interact with the mode’s near field. The presence of the tip
(its polarizability) changes the effective refractive index of the

environment, which has influences on the resonance condition
and leads to a shift of the mode’s resonance wavelength.
Additionally, to this induced effective refractive index change,
the tip also acts as a scatterer. This can lead to coupling
of photons of the excited mode to either radiation modes
(reservoir modes) or to other WGMs, which have spectral
and spatial overlap with the excited mode. The only mode
which matches the latter conditions for the samples under
investigation is the mode counterpropagating to the excited
WGM. This leads to a coupling-induced splitting of the
resonance in the spectrum, which is observable when it is larger
than the mode’s bandwidth. On the other hand, the coupling
to the radiation modes, which is an additional loss channel,
leads to a broadening of the resonance and a signal reduction.
Both effects therefore have influences on the transmission and
reflection values depending on the strength of the interaction of
the mode with the tip. When correlating the measured signals
with the position of the tip using the SNOM controller, a
map of the near-field interaction strength can be obtained,
which is actually an intensity map of the mode due to the fact
that the interaction strength depends on the field intensity at
the position of the tip. To increase the signal-to-noise ratio,
a lock-in amplification scheme was used. It is worth noting
that the implemented lock-in technique is not essential to
get reasonable results, which underlines the sensitivity of the
described method in comparison to scattering into far-field
SNOM methods [21].

III. THEORETICAL MODEL

The interaction of the SNOM tip with the modes of the
microdisk resonator as well as the signal collection through
the tapered fiber have a strong effect on the appearance of
the measured signals. However, we are not interested in the
response of the whole system, but only in the mode distribution
of the coupled microdisks. Therefore, we combine the calcu-
lation of the intensity distribution of coupled microdisks with
a coupled-mode theory, taking into account the SNOM tip and
the tapered fiber coupling in order to calculate reflection and
transmission signals, which can be compared to the measured
data. From this, a link from the measured signals to the
intensity distribution of the mode of the coupled microdisk
sample is possible.

A. Field distribution in coupled microdisks

The system of coupled disk microresonators studied in this
paper can be described in the framework of a two-dimensional
modal expansion. Based on the detailed description in
Ref. [18], the internal (int), scattered (sc), and incident (inc)
fields can be written as a linear combination of cylindrical
harmonics [Bessel (Hankel) function inside (outside) of the
disks],

F
(p)
int =

∑
m

d (p)
m (ω)eimφpJm(ndk|r − rp|), (1)

F (p)
sc =

∑
m

b(p)
m (ω)eimφpHm(n0k|r − rp|), (2)
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F (p)
inc =

∑
m

[
a(p)

m (ω) +
∑
q �=p

∑
n

b(q)
n (ω)Hm−n(n0kRq,p)

× ei(n−m)θq,p

]
eimφpJm(n0k|r − rp|). (3)

Here, F denotes the z component of the electric field
(corresponding to TM polarization) or the magnetic field
(corresponding to TE polarization), m is the azimuthal mode
number, n0 is the refractive index of surrounding media (air),
and k is the vacuum wave number. The refractive index of the
disks nd (assumed to be equal for all disks) was obtained as the
effective mode index of a slab waveguide with the thickness
of the disks. The expansion coefficients b

(p)
m , d

(p)
m , and a

(p)
m

define contributions of the mth mode of the pth disk to the
respective fields. The polar angle φp is defined in the local
coordinate system of the pth disk centered at rp. The incident
field (3) on the pth disk has contributions from the scattered
field of all other disks q �= p, with Rq,p and �q,p as the radial
and polar coordinates, respectively, of the pth disk in the local
coordinate system of the qth disk. Using boundary conditions
as described in Ref. [18], the expansion coefficients of the
scattered and internal field can be related to the expansion
coefficients of the incoming field. From this, the total field
can be calculated with Eqs. (1)–(3) for a certain spatial and
spectral range.

As stated in Ref. [18], the spectrum of the coupled disks
is well described by a resonant mode approximation taking
into account only one fundamental WGM mode (with the
largest possible azimuthal mode number at a certain resonance
wavelength) and neglecting the coupling to higher-order
modes (smaller mode numbers m). The calculation of the field
distribution in the resonant approximation leads to disconti-
nuities of the field at the disk boundary also for physically
continuous fields (like the z component of the magnetic field
for TE polarization). Therefore, for the exact field calculation,
one has to take into account all possible modes with azimuthal
mode numbers m = −mmax, . . . ,mmax, with mmax chosen so
that convergence of the field distribution is guaranteed (usually
it depends on the symmetry of the incident field).

When dealing with the coupling of all mode numbers m,
the incident field also has to be reconsidered. In order to match
the experimental conditions of a tapered fiber excitation in a
simplest approximation, a plane wave with a one-dimensional
Gaussian distribution perpendicular to the propagation direc-
tion was used. With the center of the Gaussian distribution
r0 = (x0,y0) and the width w corresponding to the width of
the tapered fiber mode (with effective mode index neff), the
global exciting field can be written as

Finc,glob = Aeineffk[(x−x0)cosδ−(y−y0)sinδ]

× e−[(x−x0)sinδ+(y−y0)cosδ]2/w2
. (4)

Without loss of generality, the amplitude A is set to 1, and δ is
the angle between the tapered fiber axis and the x axis of the
global coordinate system (see Fig. 2 for geometrical relations).
In order to use Eqs. (1)–(3), the expansion coefficients a

(p)
m in

Eq. (3) can be calculated from the overlap integral of the local
incident field (Bessel function expansion in the coordinate

w

δ

rq

rp

yp

yq

xq

xp

x0

y0
Rp,q

Θp,q

φp

φq

x

y

k

Rp

Rq

r0

FIG. 2. (Color online) Sketch of used quantities and coordinate
relations. The red arrow marks the direction of the Gaussian
distribution of the incident field through the tapered fiber.

system centered at the pth disk) with the global Gaussian
incident field at the boundary of each disk,

a(p)
m = 1

2π |Jm(n0kR(p))|2
∫ 2π

0
dφ

[
J ∗

m(n0kR(p))e−imφ

× eineffk[(x(p)
gl −x0)cosδ−(y(p)

gl −y0)sinδ]

×,e−[(x(p)
gl −x0)sinδ+(y(p)

gl −y0)cosδ]2/w2]
. (5)

Here, R(p) is the radius of the pth disk and φ is the angle in the
local coordinate system of the pth disk, whereas (x(p)

gl ,y
(p)
gl ) are

the coordinates of all points of the boundary of the pth disk in
the global coordinate system.

As an example, the calculated spectrum and intensity
distribution of a fundamental mode (m = 35, λ ≈ 1.579 μm)
of three coupled disks is shown in Fig. 3. The disks have a
radius of 7.5 μm, a thickness of 1 μm, and a material refractive
index of 1.445. Using the resonant mode approximation
(assuming that initially the mode is already excited in one disk)
leads to a fully symmetric spectrum [Fig. 3(a)] showing four
peaks in the expansion coefficients of the scattered field. Due
to excitation of the first disk, the spectrum of this coefficient
is different from those of disks 2 and 3, which are equal due
to symmetry reasons. Figure 3(b) shows the same coefficients
when the full model is used. In this case, disk 1 is excited by
the Gaussian distribution, as shown in Fig. 3(e), and the mode
numbers range from m = −45 to m = 45, which is enough to
properly approximate the asymmetric incident field at the rim
of each disk by Eq. (5). Due to the coupling to higher-order
modes, the resonances get slightly red shifted and broadened.
Nevertheless, the resonance peaks can be identified [marked by
the dotted lines between Figs. 3(a) and 3(b)]. The degeneracy
between the expansion coefficients of disks 2 and 3 is lifted
due to the asymmetry of the exciting field. In order to test
the reliability of the model, a rigorous three-dimensional finite
difference time domain (FDTD) simulation of the structure
was performed. Here the excitation through the tapered fiber
was taken into account rigorously. To suppress the influence
of back reflections of outgoing waves, the calculation domain
was enclosed by perfectly matched layers. The spectrum [the
interesting part is shown in Fig. 3(c)] was calculated from
time series of the electric field recorded by monitors placed in
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FIG. 3. (Color online) Calculation of the spectrum and intensity distribution of three coupled disks of equal size (radius 7.5 μm, thickness
1 μm, refractive index 1.445, all gaps 400 nm). The splitting of the fundamental mode (m = 35) is observable for (a) the resonant approximation
and (b) the full model taking into account coupling to higher-order modes. Here the expansion coefficient bm=35 for the field in each disk (disk
1, blue; disk 2, red; disk 3, green) is plotted. The intensity distribution of the mode marked by an arrow in (b) is shown in (e) using the full
model. A comparison to a rigorous three-dimensional FDTD simulation (spatial resolution 30 nm) shows good agreement for (c) the spectrum,
as well as for (f) the intensity distribution [same mode marked by the arrow (c)]. Only two field monitors in disks 1 and 2 were used for the
spectrum calculation, so the green line for disk 3 is missing in (c). A comparison of the magnetic field (which needs to be continuous across
boundaries) along the dashed line in (e) for the resonant approximation and the full modal expansion in (d) underlines the need for the full
model in order to calculate the fields correctly.

disks 1 and 2 for the case of a pulsed excitation. Even though
the spectrum is blue shifted and the splitting is slightly less than
that of the mode expansion method, it also shows four peaks.
For the first resonance peak [marked by an arrow in Figs. 3(b)
and 3(c)], the intensity distribution was calculated with both
methods and is shown in Fig. 3(e) for the modal expansion
and in Fig. 3(f) for the FDTD (snapshot of a continuous-wave
excitation), which shows very nice agreement.

To point out the importance of using the full modal expan-
sion for the correct calculation of the fields, a comparison of
the normalized magnetic field across the boundaries between
disks 1 and 2 [marked by the dashed line in Fig. 3(e)] is
shown in Fig. 3(d). The used resonant approximation leads to
unphysical discontinuities, as mentioned above, whereas the
field calculated with the full model shows a smooth transition
across the boundaries.

It is worth noting that the method described above is a
good compromise between reasonable fields of (also large)
coupled disk ensembles and a relatively fast and flexible
calculation. The approximation of the excitation by a Gaussian
distribution does not take into account any influences of the
exciting tapered fiber, but the incident-field distribution is
well described. Therefore, it is also not possible to extract
any transmission and reflection signals comparable to the

experimental situation. This would be possible if the tapered
fiber would be considered as a waveguide (with boundaries) in
the calculation domain, which leads to an additional expansion
of the waveguide field and boundary conditions (overlap
integrals) and would make the calculation much more complex
(for comparison, a more rigorous model for smaller ring
resonators is presented in Ref. [25]).

B. Coupled-mode theory including the scattering SNOM tip

In order to describe the experimental situation more
properly, the coupled-mode theory [22,26] was used to model
the transmission and reflection spectra by including the tapered
fiber coupling for excitation as well as the SNOM tip as
a perturbation of the system. Using this approach, it is
also straightforward to take into account scattering losses
due to surface roughness present in the disk samples under
investigation. As a consequence of the surface roughness,
the clockwise (cw) and counterclockwise (ccw) propagating
modes in one disk are coupled. Using the notation of Sec. III A,
this means that even in a single disk, modes with opposite sign
of the azimuthal mode number m couple to each other. Taking
into account only a single cw and ccw mode in each disk
(for the spectrum, the single mode approximation is valid for
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the samples under investigation), the dynamics of the mode
amplitudes of N coupled disks can be written as [6]

ḋ (p)
cw = [iω0 − 	0 − 	ext]d

(p)
cw + i	cd

(p)
ccw

+ i

N∑
q=1,q �=p

	pqd
(q)
ccw + i

√
2	

(p)
ext a

in
cw, (6)

ḋ (p)
ccw = [iω0 − 	0 − 	ext]d

(p)
ccw + i	cd

(p)
cw

+ i

N∑
q=1,q �=p

	pqd
(q)
cw + i

√
2	

(p)
ext a

in
ccw. (7)

Here, 	0 = ω0/(2Q0) are the intrinsic material and radiation
losses related to the intrinsic quality factor Q0, and 	ext =
ω0/(2Qext) denotes the external coupling losses introduced
by the tapered optical fiber related to an external quality
factor Qext. The above-mentioned coupling between the cw
and ccw mode in a single disk due to surface roughness is
described by the coupling rate 	c and the coupling between
neighboring disks is accounted for with the coupling rate 	pq .
The pump through the tapered fiber is described by ain

cw,ccw.
It is worth noting that d and a were used to be consistent to
the notation in Sec. III A, but one has to keep in mind that
especially the external pumping ain

cw,ccw is not comparable to

the modal expansion coefficients a
(p)
m of the incident field in

Eq. (3). The relation between these quantities is expressed by
the external coupling rate 	ext from the overlap of the tapered
fiber mode with a certain disk mode, which can be handled
only numerically.

The scattering by the SNOM tip can be described in a
semiquantum optical framework [23]. When the tip is located
within the optical near field of the disk mode, the photons
can be scattered into the same or the counterpropagating
disk mode, or into a reservoir mode (additional scattering
loss). Modeling the SNOM tip as a single subwavelength
(Rayleigh) scatterer, its interaction with the microresonator
can be described using dipole approximation [27]. The electric
field of the resonator mode induces a dipole moment p =
ε0αEmode in the scatterer, which can be approximated as a
spherical particle with radius Rtip and electric permittivity εs ,
surrounded by a medium of electric permittivity εm having a
polarizability of

α = 4πR3
tip

εs − εm

εs + 2εm

. (8)

Following the derivation in the supplementary information
of [23], the coupling coefficients (g, coupling to disk mode;
g′, coupling to reservoir mode) can be expressed as

g = −αf 2(rtip)ω0

2Vmode
, (9)

g′ = −αf 2(rtip)ω0

2
√

VmodeVj

(n̂mode · n̂j ), (10)

where Vmode,j denotes the quantization (or mode) volumes
of the cavity (reservoir) mode, n̂mode,j are the respective
field unit vectors, and f (rtip) accounts for the SNOM tip
position rtip in the field distribution of the mode f . While
the induced Rayleigh scattering to a disk mode leads to an
additional splitting of the observed resonances, the coupling

to reservoir modes act as an additional loss channel and can be
described by a damping rate γrs, which can be derived using a
Weisskopf-Wigner approximation,

γrs = α2f 2(rtip)ω4
0

6πc3Vmode
. (11)

This will lead to a broadening of the observed resonances. With
g from Eq. (9), 	rs = γrs/2, and by introducing slowly varying
mode amplitudes dcw,ccw = d̄cw,ccweiωt (the bar is omitted in
the following), Eqs. (6) and (7) can be written as

ḋ (p)
cw = [i(−ω + g) − 	]d (p)

cw + [i(	c + g) − 	rs]d
(p)
ccw

+ i

N∑
q=1,q �=p

	pqd
(q)
ccw + i

√
2	

(p)
ext a

in
cw, (12)

ḋ (p)
ccw = [i(−ω + g) − 	]d (p)

ccw + [i(	c + g) − 	rs]d
(p)
cw

+ i

N∑
q=1,q �=p

	pqd
(q)
cw + i

√
2	

(p)
ext a

in
ccw, (13)

with 	 = 	rs + 	0 + 	ext and ω = ω − ω0. Here it is as-
sumed that the SNOM tip couples only the modes in one disk,
also when it is positioned in the gap region between two disks,
where in reality it can couple the modes of both disks. In the
context of microdisk mode mapping, one is interested in the
steady-state solutions ḋcw,ccw = 0. This leads to a system of
coupled linear equations, which can be compactly written in
matrix form

M · d = a, (14)

with the vector of 2N unknown mode amplitudes

d = (
d (1)

cw ,d (1)
ccw, . . .

)T
, (15)

and known input amplitudes

a = (
. . . , − i

√
2	

(p)
ext a

in
cw,i

√
2	

(p)
ext a

in
ccw, . . .

)T
. (16)

With respect to the experimental situation, it is assumed that
only one disk (p) of the coupled ensemble is excited by the
tapered fiber and the pump is single directional (ain

ccw = 0). The
mode amplitudes d can then be found by matrix inversion, and
the transmission (T ) and reflection (R) through the taper can
be described by

T =
∣∣∣∣∣1 +

i

√
2	

(p)
ext d

(p)
cw

ain
cw

∣∣∣∣∣
2

, (17)

R =
∣∣∣∣∣
i

√
2	

(p)
ext d

(p)
ccw

ain
cw

∣∣∣∣∣
2

. (18)

Using the model in Sec. III A to calculate the two-dimensional
intensity distribution of the excited mode, Eqs. (9) and (10)
give corresponding distributions of the tip-induced scattering
strength, which results in theoretical transmission and reflec-
tion mode maps [Eqs. (17) and (18)]. All unknown coefficients
in Eqs. (12) and (13) can be obtained by independent
measurements without SNOM tip perturbation.
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FIG. 4. (Color online) Typical measurement signals for scanning
across the gap of two coupled disks: (a) overlaid reflection and
topography images, (b) only transmission signal, and (c) only
reflection signal measured by scattering SNOM. A comparison with
an aperture SNOM measurement in collection mode shows the
relation between (d) the real mode structure and the measured (e)
transmission and (f) reflection signals.

IV. EXPERIMENTAL CHARACTERIZATION

The interaction of the scattering SNOM tip with the
excited disk leads to several features in the experimental data,
which are discussed in the following. A typical reflection
measurement signal (here scanning across the gap of two
coupled disks) overlaid on the obtained topography of the
sample is shown in Fig. 4(a) [transmission and reflection,
respectively, in Figs. 4(b) and 4(c)]. Generally, the contrast
obtained in the reflection signal is better than for the transmis-
sion signal. The reflection signal remains unperturbed when
the tip is positioned outside the mode volume or over the
substrate, whereas it increases and decreases when the tip is
above the location of the mode. In particular, the decrease of the
reflection signal is surprising because the method is sensitive
to the mode intensity only. When the tip is placed in a node
of the mode distribution, it should not have any influences
on the measured transmission and reflection signals. In order
to exclude systematic measurement errors, we compared the
method with the direct collection of the optical near-field
distribution by an aperture SNOM tip. Although the aperture
tip is larger compared to the apertureless scattering SNOM
tip, it can also be used to measure transmission [Fig. 4(e)]
and reflection [Fig. 4(f)] mode maps in addition to the direct
collection signal [Fig. 4(d)]. As expected, the optical collection
signal is always larger than the background also when the tip
is placed in a node of the disk mode. Due to the large tip size,
the transmission signal gets blurred out and the mode structure

in the azimuthal direction can hardly be resolved, whereas the
reflection signal is almost the same as for the scattering SNOM
tip showing values smaller and larger than the background.
From the comparison of the collection and reflection signals,
one can see that the tip in an antinode (node) of the disk
mode results in a stronger (weaker) signal compared to the
unperturbed reflection.

Another feature visible in the measured mode maps is a
narrow stripe of unperturbed signal level in the top left region
of Fig. 4(b) marked by the arrow [also visible in Fig. 4(c)]. This
can be explained by the movement of the SNOM tip across the
sample. Usually, the starting point is chosen above a disk (here
disk 1) and the fast scan axis is almost normal to the rim of the
disk (or gap between two disks). In Fig. 4(a), the scan direction
is highlighted and from the cross section of the topographical
data (black arrow) one can see that the tip drops smoothly
down toward to the substrate when it (the very end of the tip)
senses the rim of the disk. Due to the sample structure, the tip
reaches its minimum z position during the scan. When the tip
(not the very end of it) recognizes the other disk, it retracts
much faster (indicated by the steeper transition) and the tip
touches the sidewall of the disk. This leads to a very strong
interaction and a strong signal. Due to the fast retraction, the
tip overshoots when reaching the top surface level of the disk,
leading to a weaker interaction and signal. The effect is more
pronounced when the separation between the disks becomes
larger but has no significant influence on the measured data in
the region where the disks are closest to each other.

A. Single disk mode mappings

In order to test the theoretical model and its ability to
describe the experimental data, the simplest case of a single
excited disk was considered. With this restriction, the steady-
state solutions of the cw and ccw mode amplitudes [Eqs. (12)
and (13)] can be given explicitly by

dcw = −i
√

2	exta
in
cw[i(−ω + g) − 	]/D, (19)

dccw = i
√

2	exta
in
cw[i(	c + g) − 	rs]/D, (20)

with the denominator

D = [i(−ω + g) − 	]2 − [i(	c + g) − 	rs]
2. (21)

The unknown parameters 	0, 	c, and ω0 can be obtained from
an independent spectrum measurement of the weak excited
disk, as shown in Ref. [6], when the tip is absent and using the
theoretical model without SNOM tip perturbation for fitting.
For the measured disk, the obtained values are given in Table I.

For the perturbed system, the unknown parameters g,
	rs, and 	ext can be narrowed down to certain ranges. The
coupling coefficient g and the scattering rate 	rs depend on
the polarizability of the SNOM tip, the mode volume, and
the intensity distribution of the mode. The mode volume and
the normalized field strength at the position of the tip above
the disk can be found from finite element simulations (for
values, see Table I), whereas the intensity distribution can be
calculated using the model in Sec. III A. The polarizability
[Eq. (8)] depends on the radius of the tip (approximated
as a sphere) and its electric permittivity. Starting from the
approximated value for the polarizability, it is used as a fit
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TABLE I. Model parameters.

Parameter Value Source

λ0 = 2πc/ω0 1556.055 nm Fit
	0 1.55 GHz Fit
	c 2.89 GHz Fit
Rtip 50 nm SEM meas.
εm −131.718 + i12.639 Ref. [28]
Vmode 6.7 × 10−17 m3 FEM sim.

parameter because the simple spherical shape approximation
may not be accurate for the used SNOM tips. The other
parameter used for adjustment of the calculation to the
measured data is the external coupling rate 	ext. Although
it is set at the beginning of the mapping, fluctuations of the
tapered fiber position during the measurement can change the
value.

For the test of the model, a TM polarized fundamental
disk mode with a resonance at 1556.055 nm was chosen.
The transmission signal is shown in Fig. 5(a), where the

taper is slightly overcoupled (no splitting is observable). The
laser wavelength was scanned stepwise through the resonance
and, at each wavelength (marked by a red line), a mode map
was recorded. As already mentioned, the coupling condition
possibly changes slightly for each of the measurements. The
mode maps were taken close to the rim of the disk but with
the tip not scanning across to avoid vertical tip movements
and the above-mentioned artifacts. The scan window has a
size of 1.5 × 1.5 μm2 and the 11 transmission and reflection
mode maps were arranged successively in Figs. 5(c) and 5(e).
The intensity distributions for the respective wavelengths were
calculated for the same section of the disk and arranged in
the same way [Fig. 5(b)]. With this data, the coupled-mode
model was used to calculate the corresponding transmission
[Fig. 5(d)] and reflection [Fig. 5(f)] mode maps. The first,
most obvious characteristic, seen when comparing simulation
and measurement, is the expected phase shift that the mode
undergoes if one scans through the resonance. The shift is
seen in all of the picture series in Figs. 5(b)–5(f) and tracked
by the dotted lines. For the experimental data shown in
Figs. 5(c) and 5(e), the transmission again shows less contrast

FIG. 5. (Color online) Successive mode mappings for a stepped wavelength scan through a resonance of a single disk using the perturbation
of a scattering SNOM tip. For each of the 11 wavelengths marked in the transmission spectrum, (a) a scan window of 1.5 × 1.5 μm2

[which is highlighted in (f), frame 11] was mapped and arranged horizontally to a picture series (numbered 1 to 11) for (c) transmission and
(e) reflection signals. For the same area of the disk (and arranged in the same way), the intensity distributions of the mode were calculated in
(b), and from this the theoretical (d) transmission and (f) reflection signal maps were obtained. The dotted lines in (b)–(f) indicate the phase
shift that the mode distribution shows when scanning through the resonance. A good agreement is obtained for the shift of the signal maximum
in transmission [(e), (f), frames 6, 7] and reflection [(c), (d), frames 8, 9] compared to the expected intensity maximum of the mode [(b),
frame 5]. Also, complex patterned maps are obtained from the calculations in agreement with the measured signals [ring structure in (c), (d),
frame 9].
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than the reflection. Unlike the intensity, which shows only
positive values, the calculated transmission and reflection
maps show both positive and negative values, which is in
agreement with the measured data. As another detail, one can
see that the calculated intensity maximum [Fig. 5(b), frame 5]
corresponding to the minimum in the transmission spectrum
[Fig. 5(a)] does not coincide with the strongest signal either
in reflection or transmission. Also, the maximum signal in the
transmission maps [Fig. 5(c), frames 9, 10] does not coincide
with the maximum signal in the reflection maps [Fig. 5(e),
frames 6, 7], which is well reproduced by the calculated
maps. From the comparison with the optical measurements
(see Fig. 4), it is expected that the intensity maxima and
maxima in the reflection maps coincide, which is also seen
here [compare Figs. 5(b), 5(d), and 5(f)]. Additionally, one
can see that this is also the case for the transmission maps for
the lower wavelengths. For the longer wavelengths, a phase
shift occurs [Fig. 5(c), frames 10, 11], which is not observed
in the calculations. This could have happened due to a stronger
change in the excitation condition to a regime where transmis-
sion and reflection maps are inverted. This regime was also
observed for mappings in two coupled disks in an independent
measurement (not shown here). The most surprising detail,
however, is the ringlike structure in the transmission maps
observable in both measurement and calculation [Figs. 5(c)
and 5(d), frame 9]. At this particular wavelength, under the
present coupling condition and scattering rate due to the tip,
the increasing intensity (when the tip moves into an antinode)
causes a decrease in the transmission (color changes to black),
whereas at the maximum intensity (center of the antinode) the
transmission again increases. The simulation of this special
feature together with the above-mentioned details show that the
described model is capable of explaining the measured results
by the rather simple dipole approximation of the interaction
of the SNOM tip with the disk resonator mode. From this, we
conclude that the measured transmission and reflection signals
are related to the actual intensity distributions of the WGMs
in coupled microdisks.

V. EIGENMODE MAPPING OF COUPLED MICRODISKS

In the following, eigenmode mappings of two and three
coupled microdisks in different arrangements are presented.
Depending on the number of coupled disks and the symmetry
of their arrangement, a splitting into a certain number of normal
modes occurs. In the presented analysis, only fundamental
modes with a single ring of intensity maxima along the rim of
the disks were investigated. In this case, the mapping of the
mode distribution of the whole sample is not necessary because
from theoretical calculations it is expected that the differences
of the intensity distributions of the modes emerge in the gap
regions. Hence, the mappings were taken across the gap of
neighboring disks only. For each gap, a squared scan window
of 5 × 5 μm2 or 10 × 10 μm2 was chosen. The advantages
of this approach are the decrease of scanning time, especially
for large arrangements, and the avoidance of measurement
artifacts when scanning far from the gap regions, as mentioned
in Sec. IV.

For the comparison with calculations, the modal expansion
method (Sec. III A) was used. On the one hand, this is

motivated by the fact that for all measured modes and gaps,
the coupling conditions during the scan could be different,
which results in a large number of simulations (parameter ad-
justments) needed. On the other hand, the calculated intensity
distribution from the rigorous modal expansion agrees quite
nicely with the measured reflection mode maps for a relatively
large range of detunings from the exact resonance wavelength.
This leads to fast and reliable calculations for comparison with
experimental data.

A. Two coupled microdisks

For the coupling of two microdisks, a splitting in two
modes is expected and observed in the measured spectra [18].
This can be understood by the symmetric and antisymmetric
combination of the eigenmodes of each of the single disks.
The difference in the intensity distribution of both modes
can be observed when scanning across the gap region. In
Fig. 6, the respective mode mappings and calculated intensity
distributions are shown. For the antisymmetric mode [short
wavelength resonance in Fig. 6(a)], the fields in both disks
have a phase difference of π , which leads to a destructive
interference of the fields in the gap region. Therefore, the
recorded reflection mode map in Fig. 6(c) shows no signal
exactly in the gap between the disks, which is in excellent
agreement with the calculated intensity for the same section of
the sample marked in Fig. 6(b). The long wavelength resonance
is the symmetric mode, for which the fields in both disks are
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FIG. 6. (Color online) (a) The measured transmission for two
coupled disks shows splitting in two eigenmodes: antisymmetric
(resonance 1) and symmetric (resonance 2) mode. (b) In the top
view of the measured sample with the tapered fiber for excitation
of disk 1, the scan region of 10 × 10 μm2 across the gap is
highlighted. The measured reflection mode maps and calculated mode
intensity distributions are compared for the (c) antisymmetric and
(b) symmetric mode. In each measurement square in (c) and (d), the
numbers highlight the particular disk, whereas in the corresponding
simulation, the green lines mark the disk’s rim.
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FIG. 7. (Color online) (a) The measured transmission for three
coupled disks in a linear arrangement shows splitting in three
eigenmodes. (b) In the top view of the measured sample, the scan
windows are highlighted. On the left of the picture the shadow of the
SNOM head is seen while scanning the gap between disks 2 and 3.
The measured reflection mode maps and simulated mode intensity
distributions are compared for both gaps and all resonance dips in
(a), starting from the (c) antisymmetric mode or resonance 1, over
the (d) middle resonance 2, to the (e) symmetric mode or resonance
3. In each measurement square in (c)–(e), the numbers highlight the
particular disk, whereas in the corresponding simulation, the green
lines mark the disk’s rim.

in phase. This leads to constructive interference in the gap
region, which can be seen by the strong signal in the reflection
mode map in Fig. 6(d). Again, this is in agreement with the
calculated intensity distribution.

B. Three coupled microdisks in linear arrangement

For the case of three coupled disks in a line arrangement,
a splitting in three normal modes is expected. The measured
spectrum in Fig. 7 shows the three modes for which the mode
mappings were recorded. As mentioned in Ref. [18] for three
identical disks coupled in a line, the splitting of the modes
should be symmetric. The observed smaller spectral distance
of the middle resonance to the short wavelength resonance than
to the longer wavelength resonance indicates a size mismatch
between the two outer disks and the inner disk. Fitting of the
spectrum using the rigorous modal expansion shows that the
asymmetry can be explained by a radius of the middle disk
to be 3 nm larger than that of the other disks, which is in the

range of the fabrication accuracy. In Fig. 7(b), the scan regions
across the gaps between the disks are highlighted. On the left
side, the image is blurred a little, which is due to the SNOM
head scanning the gap between disks 2 and 3 and shadowing
the sample. In Figs. 7(c)–7(e), the recorded reflection mode
maps are shown and compared to the calculated intensity
distributions at the three resonances in Fig. 7(a). Again the
short wavelength resonance is the antisymmetric mode, where
the fields in adjacent disks show a phase difference of π ,
which leads to destructive interference in the gaps between
the disks. In the measured data, this can be seen clearly
because no signal changes occur when the SNOM tip is exactly
located over the gap. The differences in the signal strength
and characteristics between the measured maps of gap 1-2
and gap 2-3 are due to the procedure itself. For one gap, all
modes were mapped first before the SNOM head was moved
to the other gap. This requires new alignment of the taper-disk
gap as well as the resonance wavelength for each mode. In
Sec. IV, it was shown that these parameters have a strong
influence on the characteristics of the recorded mode maps
and it is unlikely to match exactly the same conditions for
the complex system. Nevertheless, there is a nice agreement
between the measurements and the calculated mode maps.
For the middle resonance, the phase differences between the
fields in adjacent disks is π/2, which leads to a cancellation
of the field in the complete middle disk. This can be observed
in the measurements as well as in the calculations. The long
wavelength resonance, which is the symmetric mode, shows
again a signal from all three disks, whereas the signal from the
middle disk is strongest. Due to the zero phase difference of
the fields in adjacent disks, the constructive interference leads
to an intensity signal in the gap, which can be seen clearly
in the measurements and simulations. One interesting detail
when looking at the maps in Fig. 7(e) is the agreement in
the relative signal strength in the weaker excited disks (1 and
3) when comparing measurement and simulation. Directly at
the smallest gap region, the intensity in these disks is weaker
than further away from the gap (upwards and downward along
the rim) and the signal extends more toward the center of
the disk.

C. Three coupled microdisks in triangular arrangement

For three identical disks in a triangular arrangement, a
splitting in four resonances is expected, as shown in Sec. III A.
The measured spectrum for the sample under investigation
[Fig. 8(b)] shows six resonances [Fig. 8(a)]. This can be
explained by a small size mismatch of the disks of a few
nm and the resulting lift of degeneracy of modes, which for
identical coupled disks have the same resonance wavelength
but different mode distributions. The best results for the
simulation were obtained for the radii of all disks being
slightly different (R1 = 15.1008, R2 = 15.0958, and R3 =
15.1012 μm). The weak resonances (unnumbered) in the
spectrum belong to a mode with a different polarization,
which spectrally overlap and get excited by cross-polarization
coupling. For each of the numbered resonances, a mode map
across each gap between the disks was recorded and is shown
together with the simulation in Figs. 8(c)–8(h). The first
resonance [Fig. 8(c)] is the antisymmetric mode with the fields
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FIG. 8. (Color online) (a) Measured transmission spectrum for three coupled disks in a triangular arrangement shows splitting in six
eigenmodes. The unnumbered dips belong to the other polarization state, which was not suppressed completely. (b) A top view of the measured
sample with tapered fiber for excitation of disk 1. The white squares highlight the SNOM scan window (5 × 5 μm2) with the resulting intensity
distribution shown in (c)–(h) for each of the gaps (1-2, 2-3, 1-3) and the numbered resonances from (a). In each measurement square in (c)–(h),
the numbers highlight the particular disk, whereas in the corresponding simulation, the green lines mark the disk’s rim.

showing a phase difference of π in adjacent disks, which leads
to cancellation of the field in the gaps. For the measurement
of gap 1-3, the mode was not exactly excited at the same
wavelength as for the other gaps, which can be seen by the
slight phase difference between the fields in disks 1 and 3.
Taking this into account in the simulation, the measured weak
signal in the gap can be reproduced. The second mode in
Fig. 8(d) shows no intensity in disk 3. The fields in disks 1
and 2 have a phase difference of π , whereas the difference
of both disks to disk 3 is π/2, leading to a cancellation of
the field in disk 3. For the third mode [Fig. 8(e)], no intensity
from disk 2 could be measured. Now the fields on disk 1
and 3 have a π phase difference and each shows a difference
of π/2 to disk 2. In the case of identical disks, the two
cases [Figs. 8(d) and 8(e)] would be indistinguishable and the
resonances in the spectrum would be degenerated, whereas
the small radius difference leads to different energy levels,
and hence distinguishable resonance wavelengths in Fig. 8(a).
The calculated mode maps for both of the resonances are in
good agreement with the measured maps. The mode maps for
the resonances 4, 5, and 6 show the same characteristics but for
the symmetric modes of the system. For resonance 4 shown
in Fig. 8(f), no intensity was measured in disk 3, whereas for

resonance 5 in Fig. 8(g), no intensity was obtained from disk
2. The simulations show good agreement for resonance 5, but
deviate a little for resonance 4. The unobserved intensity in
disk 3 is not well reproduced (it is lower than in disks 1 and
2, but not zero), which indicates the strong sensitivity on the
exact parameters. The fully symmetric mode of the system is
resonance 6 that shows intensity in all three disks, and gaps
in measurement as well as in the simulation. The measured
maps show weak contrast, which is due to a degradation of
the SNOM tip. After many scans made to map the modes of
the presented samples, the tip loses sharpness, which results in
reduced contrast of the measurements. Nevertheless, all modes
were identified from their mode maps in agreement with the
simulations.

VI. SUMMARY

In summary, we have implemented an experimental method
for high-resolution near-field mapping of whispering-gallery
modes in coupled disk microresonators using the perturbation
of the transmission and reflection signals in a coupled taper-
disk system by a scattering SNOM tip. Using a combination
of a rigorous modal expansion method with a coupled-mode
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model, we were able to simulate the transmission and reflection
signals measured at both tapered fiber ends. The introduced
model is capable of predicting the characteristics observed in
the scattering SNOM mode maps. Moreover, we presented
detailed mode mappings of two and three coupled microdisks,
which are in excellent agreement with theoretical calculations.
The obtained information from spectrum measurements and
the respective mode intensity distributions can be used, on the
one hand, to identify size variations of the individual disks in
the fabricated coupled disk samples and, on the other hand, to
selectively excite or tune the resonances of such a coupled
resonator system. In particular, the samples consisting of
three coupled disks can be of interest for sensing applications
because it is possible to spatially resolve perturbations of the
system (e.g., induced by nanoparticles) due to the fact that
depending on its position, only certain modes are influenced.
Also it is possible to selectively tune the spectral distance of
the modes, e.g., by changing the temperature of a certain disk

in the coupled ensemble, which might be useful for optical
filter applications.

In spite of the shown agreement between measurements and
simulation, the accuracy of the model can be enhanced further
by taking into account the real shape of the SNOM tip and
describing its interaction with the disk mode beyond the dipole
approximation. In order to improve the experimental setup, it
is possible to add an interferometric detection scheme, which
would allow us to obtain phase information of the measured
mode maps.
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