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Generation of mechanical squeezing via magnetic dipoles on cantilevers
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A scheme to squeeze the center-of-mass motional quadratures of a quantum mechanical oscillator below its
standard quantum limit is proposed and analyzed theoretically. It relies on the dipole-dipole coupling between a
magnetic dipole mounted on the tip of a cantilever to equally oriented dipoles located on a mesoscopic tuning
fork. We also investigate the influence of several sources of noise on the achievable squeezing, including classical
noise in the driving fork and the clamping noise in the oscillator. A detection of the state of the cantilever based
on state transfer to a light field is considered. We investigate possible limitations of that scheme.
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I. INTRODUCTION

Mechanical cantilevers have a long and rich history as
force and field meters. In recent decades, microfabrication and
nanotechnology have led to advances in the development of tip
microscopy [1] that have resulted in significant advances in the
measurement of feeble forces [2], the imaging of single atoms,
nanoscale magnetic resonance imaging [3], and single-spin
detection [4], to mention just a few applications. And rapid
advances in cavity optomechanics [5–7], recently culminating
in the cooling of at least three micromechanical systems [8–10]
to the deep quantum regime with just a fraction of a phonon
of center-of-mass excitation left, indicate that mechanical
sensing appears to be at the threshold of an important new
breakthrough.

One potential advantage of operating micromechanical
sensors in the quantum regime is that this opens the way
to measurement techniques that can circumvent the standard
quantum limit. These techniques rely on the capability to
locate the unavoidable quantum noise in a quadrature of the
field to be measured that does not interact with the measuring
apparatus and to implement back-action evading techniques
that prevent that noise from feeding back into the outcome of
successive measurements. Such measurement techniques were
pioneered by Braginskii and coworkers [11,12] and became
popular in the context of gravitational wave detection [13].
For a comprehensive summary of these early results, see [14]
and [15].

In quantum optics, the most famous states that permit one
to have quadrature variances below the standard quantum limit
are single-mode squeezed states, where the variance of one of
the quadratures, X̂1 = (â + â†)/2 or X̂2 = (â − â†)/2i, of the
light field is below 1/4, with 〈�X̂2

1�X̂2
2〉 � 1/16. Here â and

â† are normalized bosonic annihilation and creation operators
of the field mode, and 〈�X̂2

i 〉 = 〈X̂2
i 〉 − 〈X̂i〉2.

While back-action evading measurement below the am-
plifier limit [16] and classical noise squeezing of microme-
chanical oscillators have already been achieved [17,18],
squeezing below the standard quantum limit still remains
to be demonstrated. A number of techniques have been
proposed, including conditional squeezing using a paramet-
rically coupled electromagnetic cavity driven by one [19] or
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two [20,21] sidebands detuned from the cavity resonance by
the mechanical oscillation frequency, and are expected to be
demonstrated experimentally in the near-future. This paper
proposes an alternative scheme where a nanoscale cantilever
can be prepared in a squeezed state by purely mechanical
means via the nonlinearity provided by the magnetic dipole-
dipole interaction between a classically driven fork and the
cantilever. We also show that the squeezing can be detected
via state transfer to an optical field coupled to the cantilever
in an optical resonator configuration [22–24]. We discuss the
impact of the various sources of noise, including both the
noise of the classical driving force and the clamping noise of
the cantilever, and also comment on limitations to the state
transfer scheme resulting from the dynamics of the light field
and from the opening of an associated dissipation channel.

The remainder of this paper is organized as follows:
Section II introduces our model system and demonstrates how
the anharmonic potential that describes the magnetic coupling
between the classical fork and the quantum mechanical
cantilever results in quadrature squeezing of the cantilever
motion under appropriate conditions. Section III analyzes
the robustness of the system against various sources of
noise. Section IV discusses the beam-splitter state transfer
mechanism, and section V is a conclusion and outlook.
Calculational details are relegated to two appendices.

II. MODEL SYSTEM

We consider a nanomechanical system consisting of a
cantilever magnetically coupled to a nanoscale tuning fork,
as shown in Fig. 1, the coupling being realized via point-like
magnetic dipoles located at both extremities of the fork as
well as on the cantilever. Apart from this magnetic coupling,
the two subsystems are isolated from each other. While the
oscillation direction of the fork is taken to be the z axis, the
cantilever’s motion of interest is perpendicular to it, along the x

axis. The magnetic dipoles are assumed to point in the positive
z direction. We consider specifically the center-of-mass mode
of vibration of the fork, in which the distance between its
two extremities remains constant. This arrangement provides
a stable mode of operation for experimentally reasonable
parameters.

Denoting the displacement of the cantilever from its
equilibrium position by xc, the interaction energy among the
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FIG. 1. (Color online) Tuning fork magnetically coupled to a
quantum-mechanical cantilever. The equilibrium position of the
cantilever is equidistant from the two extremities of the nanoscale
tuning fork.

three magnetic dipoles can be written as

V = μ0

4π
df dc

[
x2

c − 2�2
+(

x2
c + �2+

)5/2
+ x2

c − 2�2
−(

x2
c + �2−

)5/2

]
, (1)

where df and dc are the dipole moments of the magnets at-
tached to the tips of the fork and to the cantilever, respectively,
and �± are the distances between the two tips of the fork and
the cantilever along the z direction.

A. Symmetric case

We assume first that the equilibrium position of the
nanomagnet on the cantilever is equidistant from the two tips
of the fork. For that setup the attractive forces from the two
dipoles acting on the cantilever cancel each other, but for any
departure from that situation this is no longer the case, so that
the stability of the system must be enforced by the stiffness of
the cantilever.

For the mode of vibration under consideration we have, in
the symmetric case,

�+ ≈ � + zf , (2a)

�− ≈ � − zf , (2b)

where zf denotes the displacement of the tuning fork tips from
their equilibrium position and � = (�+ + �−)/2. For small
displacements of the mechanical elements, zf ,xc � �, the
interaction Hamiltonian can be expanded to second order in
xc, yielding

V ≈ μ0

4π

df dc

�5

[
−24z2

f + 12x2
c + 180

z2
f x2

c

�2

]
, (3)

where we ignored a constant term. The first two terms in Eq. (3)
describe frequency shifts due to the magnetic interaction.

For high-amplitude driving, the motion of the fork of
effective mass mf and frequency ωf can be treated classically.
The cantilever motion, on the other hand, is much smaller
and is therefore treated quantum mechanically, with its
displacement xc given in terms of the bosonic annihilation
and creation operators b̂ and b̂† by

x̂c = x0(b̂ + b̂†), (4)

with

x0 =
√

h̄

2mcωc

, (5)

where ωc and mc denote the cantilever’s frequency and
effective mass. The Hamiltonian governing the dynamics of
the cantilever is then

H = h̄ω′
cb̂

†b̂ + V̂ , (6)

where

ω′
c = ωc + �ωc, (7)

with �ωc the frequency shift from the magnetic interaction,

�ωc ≈ 6μ0df dc

h̄π

x2
0

�5
(8)

[see Eq. (3)]. In terms of b̂ and b̂†, the dipole interaction V̂

becomes

V̂ = 45μ0df dc

π

z2
0x

2
0

�7
(β + β∗)2(b̂ + b̂†)2, (9)

where

β = zf

2z0
+ i

z0pf

h̄
(10)

and

z0 =
√

h̄

2mf ωf

. (11)

A final simplification is obtained by taking the driving
frequency of the fork to be

ωf = ω′
c, (12)

then invoking the rotating-wave approximation and switching
to a frame rotating with ωf , where V reduces to the familiar
single-mode squeezing Hamiltonian (see, e.g., Refs. [25–27]),

V = 1
2h̄χs(b̂†2e−i2φ + b̂2ei2φ), (13)

with

χs = 90μ0df dc

h̄π

z2
0x

2
0

�7
|β|2 (14)

and φ the relative phase between the classical fork and the
cantilever. It defines which quadrature gets squeezed, and
in the following we always consider the quadrature which
experiences maximum squeezing, omitting the explicit value
of φ.

B. Asymmetric case

We now turn to the case where the equilibrium position
of the cantilever nanomagnet is displaced by a distance ζ

from the center of the fork, the stability of that configuration
being guaranteed as before by the mechanical stiffness of the
cantilever. We now have

�+ ≈ � + ζ + zf , (15a)

�− ≈ � − ζ − zf , (15b)

and within the same limit as before,

V ≈ μ0

4π

df dc

�5

[
−24(ζ + zf )2 + 12x2

c + 180
(ζ + zf )2x2

c

�2

]
.

(16)
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FIG. 2. (Color online) Coupling frequencies χ2(ζ ) [solid (red)
line] and χ1(ζ ) [dashed (blue) line], in MHz, as a function of
displacement ζ , in nm, for parameters in Sec. II C.

Compared to the symmetric case, Eq. (3), interaction (16)
comprises an additional squeezing contribution given by the
term proportional to ζzf x2

c . By driving at twice the cantilever
frequency, and invoking the rotating-wave approximation, one
can access either of the two squeezing interactions separately,
in a fashion reminiscent of the situation in parametrically
coupled optomechanical resonators [19].

The resulting Hamiltonian is then the sum of two terms of
the same form as in Eq. (13), with the coupling coefficient of
the term oscillating at 2ω′

c given by

χ2(ζ ) = 15μ0df dc

h̄π

[
1

(� − ζ )6
− 1

(� + ζ )6

]
x2

0z0|β|, (17)

and that for the term oscillating at ω′
c by

χ1(ζ ) = 45μ0df dc

h̄π

[
1

(� − ζ )7
+ 1

(� + ζ )7

]
x2

0z2
0|β|2. (18)

The coupling constant χ1(ζ ) scales as the square of the
amplitude of oscillations |β|2 of the classical fork, rather than
|β| as is the case for χ2(ζ ), and hence can be dominant for
strong fork driving. However, its dependence on �−7 rather
than �−6 indicates that, for appropriate values of �, the term
proportional to χ2 can be dominant instead (see Fig. 2).

C. Experimental considerations

Consider, for concreteness, a nanomechanical cantilever
with natural frequency ωc = 2π × 168 kHz, effective mass
mc = 5 × 10−15 kg, and magnetic dipole moment dc = 2 ×
10−14 A m2. The fork is assumed to have effective mass
mf = 1 × 10−11 kg, tip separation 2� = 2.0 μm, and mag-
netic dipole moments df = 1 × 10−10 A m2. These values
result in a frequency shift of the cantilever of �ωc ≈ 2π ×
72 MHz � ωc, indicating that the driving frequency of the
fork is dominated by the frequency shift ωf ≈ �ωc. We further
assume a fork oscillation amplitude of Af = 2z0|β| = 10 nm,
i.e., Af = 0.01�, with associated mean phonon occupation
|β|2 = 2.1 × 1015, which justifies a classical treatment.

For the asymmetric setup, we need to estimate the frequency
of the cantilever in the z direction, which we obtain from
ω(z)

c /ωc ≈ w/h, where h and w are the cantilever’s thickness

and width. For h = 12 nm and w = 600 nm this gives ω(z)
c ≈

2π × 8.4 MHz. With this value and Eqs. (15), we can find
the critical points of the full interaction potential, Eq. (1).
For these parameters the maximum value of ζ that yields a
stable configuration is 162 nm. The resulting strengths of the
squeezing interaction are shown in Fig. 2 as a function of ζ .

III. FLUCTUATIONS

It is known that, in the absence of fluctuations and starting
from the oscillator ground state, the squeezing Hamiltonian,
(13), produces a perfect “squeezed vacuum” with average
phonon number

〈b̂†b̂〉 = sinh2(χt). (19)

(In the following we use the symbol χ generically to describe
all setups in the previous section.) Clearly, this is unrealistic in
the long-time limit. What is missing from the discussion so far
is a proper accounting of fluctuations. This section discusses
the effects of three sources of noise: the amplitude and phase
fluctuations of the fork motion and the clamping noise resulting
from the attachment of the cantilever to a thermal reservoir.

A. Amplitude fluctuations

We assume that the cantilever is slightly displaced from
the center of the fork, driven at frequency ωf = 2ω′

c, so that
the squeezing strength is given by Eq. (17). The other case
can be handled similarly, and we give the results pertaining to
them at the end of this subsection. Assuming, as usual, that the
amplitude of oscillations of the tuning fork can be decomposed
into the sum of a constant amplitude and random amplitude
fluctuations,

|β|(t) = |β0| + δβ(t), (20)

we find the equation of motion

˙̂b = − [χ0 + δχ (t)] b̂†, (21)

where χ0 is given by Eq. (17) and

δχ (t) = χ0

|β0|δβ(t). (22)

Following Ref. [28], we assume that the mean and two-
time correlation functions of the amplitude fluctuations are
described by an Ornstein-Uehlenbeck process, so that

〈δχ (t)〉 = 0, (23)

〈δχ (t)δχ (t ′)〉 = χ2
0

|β0|2 σ�e−�|t−t ′ |, (24)

where σ is proportional to the variance of amplitude fluc-
tuations and � is the inverse of the correlation time of the
fluctuations. From Ref. [28], we find readily that the variances
of the quadratures X̂1 and X̂2 of the phonon mode are then
given by

[�X̂1(t)]2 = e−2χ0t e−2
∫ t

0 dt ′δχ(t ′)[�X̂1(0)]2, (25)

[�X̂2(t)]2 = e2χ0t e2
∫ t

0 dt ′δχ(t ′)[�X̂2(0)]2, (26)
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which, upon carrying out the appropriate ensemble averages
and taking into account that the initial state of the cantilever is
uncorrelated with the fluctuations, yields〈

�X̂2
1

〉 = 1
4e−2χ0t+4f (t), (27)〈

�X̂2
2

〉 = 1
4e2χ0t+4f (t), (28)

where

f (t) = χ2
0

|β0|2
σ

�
[e−�t + �t − 1]. (29)

Amplitude fluctuations reduce the rate at which the vari-
ances get squeezed. They do not, however, limit the maximum
squeezing that can be generated. Moreover, Eq. (29) shows
that the lengthening of time scale resulting from amplitude
fluctuations scales as χ2

0 /|β0|2, which is typically a small factor
for a high-amplitude drive, indicating that, in contrast to phase
fluctuations, to which we turn next, amplitude fluctuations in
the classical drive do not significantly affect the dynamics of
the system. Finally, we note that if the squeezing factor is given
by Eq. (18), we have to modify Eq. (22) with an additional
factor of 2, and the function f (t) of Eq. (29) is thus multiplied
by a factor of 4.

B. Phase fluctuations

Again following Ref. [28], we consider phase fluctuations
δφ(t) about the relative phase φ, approximated as a phase
diffusion process characterized by the correlation functions

〈δφ(t)〉 = 〈δφ̇(t)〉 = 0,

〈δφ(t)δφ(t ′)〉 = D(t + t ′ − |t − t ′|), (30)

〈δφ̇(t)δφ̇(t ′)〉 = 2Dδ(t − t ′),

where D is the phase diffusion coefficient. From Ref. [29] (see
details in Appendix A), we find the variances of the quadratures
to be 〈

�X̂2
1

〉 = 1
4 [cosh (2χt) exp(−Dt/2)

− sinh (2χt) exp(−5Dt/3)], (31)〈
�X̂2

2

〉 = 1
4 [cosh (2χt) exp(−Dt/2)

+ sinh (2χt) exp(−5Dt/3)], (32)

which reduce to〈
�X̂2

1

〉 = 7
48Dt exp(2χt) + 1

4 exp(−2χt),
(33)〈

�X̂2
2

〉 = 1
4 exp(2χt) + 7

48Dt exp(−2χt)

for Dt � 1. Figure 3 depicts the squared quadrature 〈�X̂2
1(t)〉

as a function of the dimensionless time χt for several values
of the diffusion coefficient D, illustrating the disappearance
of squeezing for long enough times, an effect familiar from
quantum optics.

C. Clamping noise

We now turn to a discussion of the effects of clamping noise
on cantilever squeezing. We describe the thermal fluctuations
coupled into the cantilever via a standard input-output formal-
ism [27], resulting in the Heisenberg-Langevin equations,

˙̂b = −χb̂† − γ

2
b̂ + √

γ b̂in. (34)
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2

FIG. 3. (Color online) 〈�X2
1(t)〉 as a function of the dimension-

less time χt for various amount of phase fluctuations: no fluctuations
[solid (blue) line]; D = 10−5χ [dashed (green) line]; D = 10−4χ

[dot-dashed (orange) line]; D = 10−3χ [dotted (red) line].

Here γ is the damping rate of the cantilever, and b̂in a noise
operator that accounts for thermal fluctuations, with

〈b̂in(t)〉 = 〈b̂†in(t)〉 = 0,

〈b̂†in(t)b̂in(t ′)〉 = n̄thδ(t − t ′),
(35)

〈b̂in(t)b̂†in(t ′)〉 = (n̄th + 1) δ(t − t ′),

〈b̂†in(t)b̂†in(t ′)〉 = 〈b̂in(t)b̂in(t ′)〉 = 0,

and n̄th = kBT /h̄ω′
c. This yields the quadrature evolution

equations,

d

dt

〈
�X̂2

1

〉 = −(2χ + γ )
〈
�X̂2

1

〉 + γ

4
(2n̄th + 1), (36)

d

dt

〈
�X̂2

2

〉 = (2χ − γ )
〈
�X̂2

2

〉 + γ

4
(2n̄th + 1), (37)

and for a cantilever initially prepared in its ground state of
center-of-mass motion,

〈
�X̂2

1

〉 = (χ/γ ) − n̄th

2[1 + 2(χ/γ )]
exp[−(2χ + γ )t]

+ 1 + 2n̄th

4[1 + 2(χ/γ )]
, (38)

〈
�X̂2

2

〉 = −(χ/γ ) − n̄th

2[1 − 2(χ/γ )]
exp[(2χ − γ )t]

+ 1 + 2n̄th

4[1 − 2(χ/γ )]
. (39)

For t → ∞, 〈�X̂2
1(t)〉 approaches a steady state with

reduced squeezing, as expected. Figure 4 shows 〈�X̂2
1(t)〉 for

several thermal occupations of the clamp and the mechanical
damping rate γ . Consider, for example, a cantilever with a
quality factor Qm = ω′

c/2γ = 104, γ ≈ 2π × 3.6 kHz, in a
cryogenic environment at T = 20 mK. The phonon occupation
number at ω′

c is n̄th � 5.7. For a strong-squeezing coupling
constant of χ = 2π × 2.8 MHz, this corresponds to a maximal
squeezing of 2 × 10−3 (27 dB).
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FIG. 4. (Color online) 〈�X2
1(t)〉 as a function of scaled time with

thermal fluctuations for different damping constants and occupation
numbers: no fluctuations [solid (blue) line]; nth = 5, γ = 10−2χ

[dashed (green) line]; nth = 10, γ = 3 × 10−2χ [dot-dashed (orange)
line]; and nth = 10, γ = 8 × 10−2χ [dotted (red) line].

IV. DETECTION

The detection of motional squeezing could be performed
along the same lines as in the experiments in Ref. [17],
which generated classical squeezing in a parametrically driven
mechanical cantilever and characterized it by measuring the
two quadratures of oscillations using a fiber-optical interfer-
ometer. A more ambitious approach that offers many potential
advantages involves a full determination of the cantilever
state [30], rather than its covariances only. One promising
way to achieve this goal involves first transferring that state
to an optical field, where detection techniques developed in
quantum optics can then be applied.

Quantum state transfer has already been the subject of a
number of studies [22–24,31]. In particular, it is known that the
two-mode beam-splitter interaction yields exact state transfer
between two harmonic oscillators, for appropriate interaction
times and in the absence of dissipation, and that this type of
interaction can be realized in principle in the optomechanical
interaction between the harmonically bound end-mirror of a
Fabry-Pérot and a near-resonant intracavity light field.

To implement that detection scheme, we expand the scheme
in Fig. 1 to couple the cantilever to the intracavity light field
of a resonator whose moving end-mirror is attached to the
cantilever. This could be achieved, e.g., with a cantilever of
the type used in nanoscale magnetic resonance imaging [3]
(see Fig. 5). Combined with a large fixed mirror, this can
form a high-finesse optomechanical resonator. Alternatively,
one could also consider an arrangement where the cantilever
forms a moving plate of a capacitor in a driven microelectronic
LC-circuit [9,19]. In that case the coupling could actually
be stronger, but one would be confronted with the lack of
single-photon detectors in the microwave regime.

In this section we consider two possible scenarios: In the
first one the coupling to the optical field is present at all times,
while in the second one a squeezed state of the cantilever is
first prepared via magnetic dipole coupling to the classical
tuning fork, and an optical field is subsequently turned on. We
show that in both approaches the additional dissipation channel

FIG. 5. (Color online) Schematics of the intracavity optical field
optomechanically coupled to the magnetically driven cantilever.

associated with the finite transmission of the Fabry-Pérot leads
to a significant reduction in squeezing and imperfect state
transfer.

A. Continuous optical coupling

With the additional optomechanical coupling of the can-
tilever to the optical field, the system Hamiltonian becomes

Hsys = Hc + Hp + Hom + Hm + Hγ + Hκ. (40)

Here

Hc = h̄ω0â
†â (41)

describes the optical cavity mode â of frequency ω0;

Hp = ih̄η(â†e−iωLt − âeiωLt ) (42)

accounts for the driving of the cavity by an external field
of frequency ωL at rate |η| = √

2Pκ/h̄ωL, with P the input
power and κ the cavity linewidth; and

Hom = −h̄gâ†â(b̂ + b̂†) (43)

is the optomechanical coupling between the intracavity field
and the cantilever mirror, with single-photon coupling fre-
quency g. Finally, Hγ and Hκ describe the interaction of the
mirror and cavity field with thermal reservoirs and account
for dissipation at rates γ and κ , respectively, and Hm is
the Hamiltonian of the magnetically driven cantilever in the
previous sections.

Considering a coherent pump of constant amplitude red-
detuned from the cavity resonance by ω′

c, we expand the am-
plitudes of both the cavity field and the cantilever oscillations
as the sum of their expectation value and quantum fluctuations,

â = 〈â〉 + δâ ≡ E0 + δâ,
(44)

b̂ = 〈b̂〉 + δb̂,

where 〈δâ〉 = 〈δb̂〉 = 0 and we neglect contributions from
δâ†δâ compared to those from 〈â〉δâ† + 〈â〉∗δâ as usual, so
that |E0|2 = 〈â†〉〈â〉 ≈ 〈â†â〉. (Note that E0 is dimensionless.)
As is well known, this decomposition allows one to separate the
optomechanical interaction Hamiltonian into a classical Kerr-
type contribution proportional to |E0|2 and a beam-splitter
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interaction, so that the cantilever dynamics is approximately
described by the Hamiltonian

H = −h̄g(E∗
0δâδb̂† + E0δâ

†δb̂) + Hκ

+h̄χ

2
(δb̂†2e−iφ + δb̂2eiφ) + Hγ , (45)

where E0 accounts consistently for the Kerr nonlinearity. In
the steady state, the main consequence of the Kerr effect is a
slight shift in the cavity resonance, an effect that can lead, under
appropriate conditions, to optical bistability [32]. Away from
this multistable regime, the intracavity amplitude 〈â〉 ≡ E0 of
the radiation field is given approximately by (see Appendix B)

E0 = η

κ/2 − i[� + 2g2|E0|2/ω′
c]

. (46)

In the interaction picture, after making the rotating-wave
approximation, and for ω′

c = −�, the equations of motion
for δâ and δb̂ are [see Eqs. (B5) and (B6)]

δ̇â = −κ

2
δâ + igE0δb̂ + √

κâin, (47)

˙δb̂ = −γ

2
δb̂ + igE∗

0δâ − χδb̂† + √
γ b̂in, (48)

where we have assumed that the optical field is subject only to
shot noise,

〈â†
in(t)âin(t ′)〉 = 0,

〈âin(t)â†
in(t ′)〉 = δ(t − t ′), (49)

〈âin(t)âin(t ′)〉 = 0.

We consider for concreteness the case E0 = |E0|e−iπ/2,
which holds when ω′

c � κ . The equations of motion for the
variances of the position quadrature of the optical and phonon
modes are then given by

V̇ = AV + B, (50)

with

A =

⎡
⎢⎣

] − κ 2g|E0| 0

−g|E0| − (κ/2 + γ /2 + |χ |) g|E0|
0 −2g|E0| −(2|χ | + γ )

⎤
⎥⎦, (51)

B =

⎡
⎢⎣

κ/4

0

(γ /8)(3nth + 1)

⎤
⎥⎦ , (52)

V =

⎡
⎢⎣

〈(�X̂o,1)2〉
〈(�X̂om,1)2〉
〈(�X̂m,1)2〉

⎤
⎥⎦ , (53)

where 〈(�X̂i,1)2〉, i ∈ {o,om,m}, are the variance of the
position quadrature of the optical field, the covariance of
position quadratures of the optical field and cantilever, and
the variance of the position quadrature of the cantilever,
respectively.

The steady-state squeezing of the intracavity field follows
from some elementary algebra, but its general form is
cumbersome and we omit it here. In the physically relevant
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FIG. 6. (Color online) Steady-state squeezing of the cavity field
as a function of the dimensionless coupling parameters r = g|E0|/κ
and s = χ/κ .

regime κ � γ , it reduces to the simple form

〈(�X̂o,1)2(∞)〉 = 2r2 + s + 2s2

4(2r2 + s)(1 + 2s)
, (54)

where r = g|E0|/κ is the classically amplified optomechan-
ical coupling and s = χ/κ . Figure 6 shows the steady-state
squeezing of the optical field as a function of these parameters.
It illustrates the monotonic increase in steady-state squeezing
as s and r are increased, which is intuitively expected.
However, this conclusion needs to be qualified by considering
the steady-state limit of the cantilever squeezing. In the same
limit, it is likewise easily obtained as

〈(�X̂m,1)2(∞)〉 = r2

2(2r2 + s)(1 + 2s)
(55)

and is illustrated in Fig. 7 as a function of r and s. In contrast
to the situation for the optical field, we observe now that while
increasing s increases the degree of squeezing, as would be
expected, increasing the optomechanical coupling results in
a decrease in squeezing. Indeed, while, in the absence of
optomechanical coupling, the state of the cantilever mode
would be almost perfectly squeezed, this ceases to be the
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FIG. 7. (Color online) Steady-state squeezing of the cantilever
as a function of the dimensionless coupling parameters r = g|E0|/κ
and s = χ/κ .
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FIG. 8. (Color online) Steady-state squeezing of the cavity field
[solid (red) line] and cantilever [dashed (blue) line] as a function of
κ/χ in the resolved-side band regime for fixed χ and g|E0|/χ = 9.

case once the optical coupling is present. However, realistic
experimental parameters yield enough squeezing transfer to
the cavity field to be successfully detected.

The physical origin of this behavior is that, in addition
to the magnetic squeezing interaction, the cantilever is now
also subjected to the beam-splitter interaction. It results in
a transfer of squeezing to the optical field, where it is now
exposed to a dominating decoherence channel associated with
the cavity loss rate κ , normally much faster than the mechanical
decay rate γ. This is more readily apparent in Fig. 8, which
clearly illustrates how cavity damping decreases the steady-
state squeezing of both the cavity field and the cantilever for
fixed beam-splitter and squeezing coupling constants g|E0|
and χ .

B. Delayed detection

The take-home message of the previous section is that,
while the coupling of the cantilever to the optical cavity allows
detection of the squeezing, it does so at the cost of opening
up a fast decoherence channel. For reasonable experimental
parameters the resulting loss in squeezing is much larger than
the limit imposed by thermal losses in the mechanics. This
suggests that a better scenario might involve first preparing the
cantilever in a strongly squeezed state and only subsequently
coupling it to the optical field. On the other hand, a possible
drawback of this approach is that it takes a time of the order
of κ−1 to switch on the intracavity optical field, a time during
which the optical decoherence channel is already open.

As before, we decompose the cantilever phonon field
and intracavity optical field as the sum of their expectation
value and quantum fluctuations [see Eqs. (44)], except that
〈a(t)〉 ≡ E0(t) is now an explicit function of time. The
linearization process is questionable for very short times when
the intracavity field is still extremely small. However, the
optomechanical coupling is normally weak in that case, so
that it should not qualitatively change the main features of the
system dynamics.

As shown in Appendix B, Eqs. (B5) and (B6), the
Heisenberg equations of motion for δâ(t) and δb̂(t) are
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FIG. 9. (Color online) Squared quadratures of position for the
cavity field [solid (red) line] and the mechanical oscillator [dashed
(blue) line] as a function of scaled time. The optomechanical coupling
is turned on at the dimensionless time χt = 1 and coherently builds
up toward g|E0|/χ = 9,κ/χ = 10.

approximately given by

δ̇â = [i� − κ/2]δâ + igE0(t)(δb̂ + δb̂†) + √
κâin, (56)

˙δb̂ = [−iω′
c − γ /2]δb̂ + ig[E∗

0 (t)δâ + E0(t)δâ†]

− 4iχ cos(ωf t + φ)(δb̂ + δb̂†) + √
γ b̂in, (57)

and the evolution of E0(t) is determined by Eqs. (B12)–(B16).
From these equations, it is possible to derive a closed set of
equations for the first and second moments of the operators δâ

and δb̂ (see Appendix B). These equations could not be solved
analytically, so this subsection presents selected numerical
results that illustrate the main features of the system dynamics.

Figure 9, which is for a relatively high-loss optical cavity
that allows for fast switching of the optical field, shows the
coupled dynamics of the cantilever and optical fields in a
situation where the cantilever was first prepared in a squeezed
state, before the optical field is switched on at t0 = χ−1. It
illustrates a situation where squeezing transfer suffers from
the broad decoherence channel of the optical cavity. Thus
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FIG. 10. (Color online) Squared quadratures of position in the
cavity field [solid (red) line] and the mechanical oscillator [dashed
(blue) line] with strong coherent optomechanical coupling. Here
g|E0|/χ = 9,κ/χ = 1.
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FIG. 11. (Color online) Minimum values of squared quadrature
variance in the cavity field plotted as a function of g|E0|/κ .

the squeezing is not efficiently detectable in the cavity field.
Note also that since the beam-splitter interaction frequency
g|E0| � κ in that example, the oscillatory coherent state
transfer between the cantilever and the optical field is strongly
suppressed, with the energy of the cantilever-field system being
rapidly lost through the optical decay channel. A much more
significant coherent exchange between the two subsystems
requires either a stronger field amplitude |E0| or a slower
decay of the light field, so that g|E0| � κ . Such an example is
illustrated in Fig. 10, which shows the characteristic coherent
state transfer between the phonon and the photon field, as
expected. One problem here is, of course, that by decreasing
the cavity damping rate, one requires a longer time to turn on
the light field to its final value |E0|, thereby increasing the role
of dissipation. Still, in this situation it is possible to achieve a
reasonably good transfer of squeezing from the cantilever to
the optical field.

During the coherent state transfer, the maximum squeezing
in the intracavity field occurs after half an exchange period. In
Fig. 11, the minimum values of the quadrature variance in the
cavity field are plotted as a function of g|E0|/κ . As expected,
a lower cavity damping rate or higher coupling strength gives
rise to stronger maximum squeezing in the cavity field.

V. CONCLUSION

In summary, we have presented a theoretical analysis of the
motional squeezing of a cantilever magnetically coupled to
a classical tuning fork via microscopic magnetic dipoles. We
showed that this coupling can result in significant squeezing
of a quadrature of motion of the cantilever if appropriately
driven by a classical force and found that the system is
robust against various sources of noise, with phase noise in
the driving of the classical driving tuning fork the dominant
source of decoherence. We proposed a scheme for the detection
of the effect based on state transfer to the intracavity field
of an optical resonator with one end-mirror formed by the
oscillating cantilever. Challenges to the measurement process
associated with the additional decoherence channel opened by
the coupling to the optical resonator have been discussed.

It has recently been proposed that pulsed optomechan-
ical configurations permit mapping the quantum state of
optomechanical oscillators by using a sequence of appropri-

ately shaped optical pulses separated in time by half a vibration
period of the mechanical system [33]. This approach presents
several advantages, the first one being that it allows for the use
of low-finesse optical resonators that permit fast switching and
the second being that the oscillator is coupled to the optical
dissipation channel for very short times only. Unfortunately,
this scheme relies on the mechanical oscillator being subject
only to free evolution between the light pulses, which is not
the case here since the squeezing interaction is acting at all
times. It is not clear how it could rapidly be switched off to
make the pulsed detection scheme applicable. Future studies
will consider whether adapting pulsed detection scenarios to
the present situation may be possible. We will also consider
a quantum treatment of the dynamics of the tuning fork, the
interaction between these two subsystems on a quantum level,
and a further optomechanical coupling schemes to control and
probe the system, including the use of multimode light fields.
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APPENDIX A: EFFECT OF PHASE FLUCTUATIONS

This appendix presents details of the evaluation of the
effect of phase fluctuations for the case of an asymmetric
setup. The symmetric case is analogous. In the presence of
phase fluctuations, the Heisenberg evolution of the phonon
annihilation operator b̂(t) becomes

d

dt
b̂(t) = −χe−iδφ(t)b̂†(t), (A1)

and the full dynamics of the system can be expressed in the
general form

dY

dt
= (A + iδφ̇(t)B)Y, (A2)

where Y is the vector of bilinear operators b̂2, b̂†2, and
b̂†b̂ + b̂b̂†. Due to the form of the Heisenberg equations
of motion for the problem at hand, the phase fluctuations
δφ(t) can only be eliminated in one bilinear entry in Y , and
it is therefore impossible to readily perform the statistical
average over phase noise. As shown by Wodkievicz [29],
this difficulty can be circumvented by solving two systems
of matrix equations separately for two particular choices of Y ,
b̂2, and b̂†b̂ + b̂b̂†. For b̂2 we have

Y =

⎡
⎢⎣

b̂2

e−iδφ(t)(b̂b̂† + b̂†b̂)

e−2iδφ(t)b̂†2

⎤
⎥⎦ , (A3)

A =

⎡
⎢⎣

0 −χ 0

−2χ 0 −2χ

0 −χ 0

⎤
⎥⎦, (A4)

B =

⎡
⎢⎣

0 0 0

0 −1 0

0 0 −2

⎤
⎥⎦, (A5)
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while for b̂†b̂ + b̂b̂† we have

Y =

⎡
⎢⎣

b̂b̂† + b̂†b̂

eiδφ(t)b̂2

e−iδφ(t)b̂†2

⎤
⎥⎦ , (A6)

A =

⎡
⎢⎣

0 −2χ −2χ

−χ 0 0

−χ 0 0

⎤
⎥⎦, (A7)

B =

⎡
⎢⎣

0 0 0

0 1 0

0 0 −1

⎤
⎥⎦. (A8)

If the initial state is uncorrelated with the fluctuations, as
is physically the case, this form of equations can be solved
exactly, to give

〈Y (t)〉 = e(A−DB2)t 〈Y (0)〉, (A9)

so that

〈b̂2〉 ≈ − 1
2 sinh (2χt) exp[−5Dt/3], (A10)

〈b̂†b̂ + b̂b̂†〉 ≈ cosh (2χt) exp[−Dt/2], (A11)

where we have assumed that D � χ for simplicity.

APPENDIX B: EQUATIONS OF MOTION FOR AN
OPTICALLY COUPLED SYSTEM

In the rotating frame at frequency ωL the system
Hamiltonian, (40), is

H = −h̄�â†â − h̄gâ†â(b̂ + b̂†) + ih̄η(â† − â) + h̄ω′
cb̂

†b̂

+ h̄χ cos(ωf t + φ)(b̂ + b̂†)2 + Hγ + Hκ, (B1)

where

� = ωL − ω0, (B2)

and the equations of motion for â and b̂ are

˙̂a = i�â + ig(b̂ + b̂†)â − κ

2
â + η + √

κâin, (B3)

˙̂b = −iω′
cb̂ + igâ†â − 2iχ cos(ωf t + φ)(b̂ + b̂†)

− γ

2
b̂ + √

γ b̂in, (B4)

where φ is the phase difference between the tuning fork and the
cantilever. Introducing δâ = â − 〈â〉 and δb̂ = b̂ − 〈b̂〉 then
yields for δâ and δb̂ the linearized equations of motion,

δ̇â ≈ [i� − κ/2] δâ + ig〈b̂ + b̂†〉δâ
+ ig〈â〉(δb̂ + δb̂†) + √

κâin

≈ [i� − κ/2] δâ + ig〈â〉(δb̂ + δb̂†) + √
κâin, (B5)

˙δb̂ ≈ [−iω′
c − γ /2

]
δb̂ + ig(〈â〉∗δâ + 〈â〉δâ†)

− 2iχ cos(ωf t + φ)(δb̂ + δb̂†) + √
γ b̂in. (B6)

The second, approximate form of Eq. (B5) results from the
fact that the mean phonon number is of order unity, which is
much smaller than the mean number of intractivity photons
(104–108). Under these conditions one can neglect the term
ig〈b̂ + b̂†〉δâ in that equation.

From these approximate linearized equations we easily
obtain the equations of motion for expectation values of the
quadrature operators of â and b̂,

〈 ˙̂Xa〉 = −�〈Ŷa〉 − κ

2
〈X̂a〉 − 2g〈X̂bŶa〉 + η, (B7)

〈 ˙̂Ya〉 = �〈X̂a〉 − κ

2
〈Ŷa〉 + 2g〈X̂bX̂a〉, (B8)

〈 ˙̂Xb〉 = ω′
c〈Ŷb〉 − γ

2
〈X̂b〉, (B9)

〈 ˙̂Yb〉 = −[ω′
c + 4χ cos(ωf t + φ)]〈X̂b〉 + g〈N̂a〉 − γ

2
〈Ŷb〉,
(B10)

〈 ˙̂Na〉 = 2η〈X̂a〉 − κ〈N̂a〉, (B11)

where X̂a = (â + â†)/2, Ŷa = (â − â†)/2i, and N̂a is the
intracavity photon number operator. In the regime where ω′

c �
χ � γ and 〈N̂a〉 ≡ |E0|2 � 1, the change in the classical
component of the intracavity field due to the cantilever os-
cillations remains very small. It can be ignored in determining
the dynamics of the beam-splitter coupling constant g|E0(t)|,
which is then governed by the approximate equations of
motion,

〈 ˙̂Xa〉 = −�〈Ŷa〉 − κ

2
〈X̂a〉 − 2g〈X̂bŶa〉 + η, (B12)

〈 ˙̂Ya〉 = �〈X̂a〉 − κ

2
〈Ŷa〉 + 2g〈X̂bX̂a〉, (B13)

〈 ˙̂Xb〉 = ω′
c〈Ŷb〉, (B14)

〈 ˙̂Yb〉 = −ω′
c〈X̂b〉 + g|E0|2, (B15)

˙|E0|2 = 2η〈X̂a〉 − κ|E0|2. (B16)

These equations yield the time evolution of 〈â(t)〉, as well as its
classical steady-state value. We find, upon factorizing 〈X̂bŶa〉,

|E0|ss = η

κ/2 − i
[
�eff + 2g2

〈|E0|2ss

〉
/ω′

c

] . (B17)

In the rotating frame at frequency ωL, the position quadra-
tures of both the cantilever and the cavity field are defined
as

X̂1,o = 1
2 (δâe−i�t + δâ†ei�t ), (B18)

X̂1,m = 1
2 (δb̂eiω′

ct + δb̂†e−iω′
ct ). (B19)

In order to calculate their variances we need to have the
expectation value of second moments of the fluctuations.
Taking quantum averages of the equations of motion for these
quantities results in the closed set of equations

d

dt
〈δâ2〉 = 2i�〈δâ2〉 − κ〈δâ2〉 + 2ig〈â〉〈δâδb̂ + δâδb̂†〉,

(B20)
d

dt
〈δâ†δâ〉 = −κ〈δâ†δâ〉 − ig[〈â〉∗〈δâδb̂ + δâδb̂†〉

−〈â〉〈δâ†δb̂ + δâ†δb̂†〉], (B21)
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d

dt
〈δb̂2〉 = −2iω′

c〈δb̂2〉 − γ 〈δb̂2〉

+ 2ig[〈â〉∗〈δâδb̂〉 + 〈â〉〈δâ†δb̂〉]

− 2iχ cos(ωf t + φ)〈2δb̂2 + δb̂†δb̂ + δb̂δb̂†〉,
(B22)

d

dt
〈δb̂†δb̂〉 = −γ 〈δb̂†δb̂〉 − ig[〈â〉∗〈δâδb̂ − δâδb̂†〉

+ 〈â〉〈δâ†δb̂ − δâ†δb̂†〉]
+ 2iχ cos(ωf t + φ)〈δb̂2 − δb̂†2〉 + γ nth,

(B23)

d

dt
〈δâδb̂〉 = i(� − ω′

c)〈δâδb̂〉 − [(κ + γ )/2] 〈δâδb̂〉
+ ig[〈â〉〈δb̂2 + δb̂†δb̂〉 + 〈â〉∗〈δâ2〉
+〈â〉〈δâδâ†〉]
−2iχ cos(ωf t + φ)〈δâδb̂ + δâδb̂†〉, (B24)

d

dt
〈δâδb̂†〉 = i(� + ω′

c)〈δâδb̂†〉 − [(κ + γ )/2]〈δâδb̂†〉
+ ig[〈â〉〈δb̂†2 + δb̂δb̂†〉 − 〈â〉∗〈δâ2〉
−〈â〉〈δâδâ†〉]
+ 2iχ cos(ωf t + φ)〈δâδb̂ + δâδb̂†〉.

(B25)

These are the equations that are solved numerically to obtain
the figures in Sec. IV B.
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