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Impact of dispersion and non-Kerr nonlinearity on the modulational instability
of the higher-order nonlinear Schrödinger equation
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We have studied the modulational instability (MI) of the higher-order nonlinear Schrödinger (HNLS) equation
with non-Kerr nonlinearities in an optical context and presented an analytical expression for MI gain to show the
effects of non-Kerr nonlinearities and higher-order dispersions on MI gain spectra. In our study, we demonstrate
that MI can exist not only for the anomalous group-velocity dispersion (GVD) regime, but also in the normal
GVD regime in the HNLS equation in the presence of non-Kerr quintic nonlinearities. The non-Kerr quintic
nonlinear effect reduces the maximum value of the MI gain and bandwidth and plays a sensitive role over the
Kerr nonlinearity, which leads to continuous wave breaking into a number of stable wave trains of ultrashort
optical pulses that can be used to generate the stable supercontinuum white-light coherent sources.
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I. INTRODUCTION

The interplay between dispersion and nonlinearity gives rise
to several important phenomena in optical fibers, including
parametric amplification, wavelength conversion, modula-
tional instability (MI), soliton propagation, and supercon-
tinuum generation [1]. MI is a fundamental and ubiquitous
nonlinear phenomenon that pertains to a large variety of
subfields of physics, such as fluid dynamics [2], plasma
physics [3], atomic physics [atomic Bose-Einstein condensates
(BECs)], and nonlinear optics [4]. MI is a process in which
the amplitude and phase modulations of a wave grow as a
result of an interplay between the nonlinearity and dispersion.
It refers to the exponential growth of weak perturbations
through the amplification of sideband frequencies and is
closely associated with the concept of self-localized waves,
or solitons. In all of the above cited fields, MI is one of
the principal mechanisms which leads to the emergence
of localized coherent nonlinear structures and the formation
of a train of ultrashort pulses. MI was introduced in an optical
context in 1980 [5] and experimentally verified by Tai et al. [6]
in 1986, which showed that MI only occurs in the anomalous
GVD regime for positive cubic nonlinearity. In optical fibers,
MI occurs due to an interplay between nonlinear and dispersive
effects, and manifests itself as the breakup of continuous wave
(cw) or quasi-cw into a train of ultrashort pulses. Although
the phenomena of MI has some detrimental effect on beam
propagation, it has been shown that MI in an optical fiber can
be exploited in an optical pulse source with high repetition rates
that are not achievable by active mode locking. In other words,
MI can be exploited as a passive mode-locked mechanism in
a fiber laser [7]. MI has been well analyzed in an optical
context with a view to applications in the generation of train of
ultrashort pulses with Terahertz repetition rates. In this context,
Pitois et al. [8] experimentally investigated the influence of
fourth-order dispersion (FOD) in the MI study in a single-mode
optical fiber and demonstrated evidence of a new MI spectral
window due to the FOD effect in the normal-dispersion
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regime, and also showed that the FOD-induced MI can be
used for broadband wavelength conversion. It also has been
shown [9] that MI is able to generate extremely broad spectra.
Demircan et al. [10] showed that MI is responsible for the
generation of ultrabroadband octave-spanning continua for
pico- and subpicosecond pulses in the anomalous-dispersion
as well as in the normal-dispersion region in the context of the
extended nonlinear Schrödinger (NLS) equation with cubic
nonlinearities. MI is once again the subject of significant
interest as a mechanism to describe the emergence of strongly
localized rogue wave structures in hydrodynamics and optics.
In this context, Peregrine [11] identified the key role of
the modulational instability in the formation of patterns
resembling freak waves or a rogue wave. Recently, Dinda
and Porsezian [12] analyzed the MI of light waves in glass
fibers with a local saturable nonlinear refractive index in the
presence of the fourth order of the fiber dispersion [10,13,14].

In this paper, we consider that the higher-order NLS
(HNLS) equation with non-Kerr nonlinear terms can be written
in terms of a slowly varying complex envelope of the electric
field E(z,t) as

Ez = i(β2Ett + γ1|E|2E) + β3Ettt + iβ4Etttt + α1(|E|2E)t
+α2E(|E|2)t + iγ2|E|4E + α3(|E|4E)t + α4E(|E|4)t .

(1)

Here, z is the normalized distance along the fiber and t is the
normalized time with the frame of the reference moving along
the fiber at the group velocity. The subscripts z and t denote
the spatial and temporal partial derivatives, respectively. The
coefficients βi (i = 2, 3, 4) are the real parameters related
to group-velocity dispersion (GVD), third-order dispersion
(TOD), and fourth-order dispersion (FOD), respectively. γ1,
α1, and α2 are related to self-phase modulation (SPM), self
steepening, and self-frequency shift due to stimulated Raman
scattering (SRS). The terms related to the coefficients γ2, α3,
and α4 in Eq. (1) represent the quintic non-Kerr nonlinear-
ity. The quintic nonlinearities arise from the expansion of
the refractive index in powers of intensity I of the light pulse:
n = n0 + n2 I + n4 I 2 + · · ·. Here, n0 is the linear refractive
index coefficient, and n2 and n4 are the nonlinear refractive
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FIG. 1. (Color online) Variation of optimum modulation frequency (�op) (a) β2 = 1
2 ps2/km > 0, (b) β2 = − 1

2 ps2/km < 0 as a
function of β4, and (c) β4 = 5

24 × 10−5 ps4/km > 0, (d) β4 = − 5
24 × 10−5 ps4/km < 0 as a function of β2. The other parameter

values used here are P0 = 15 W, γ1 = 1 W−1/km, γ2 = 1 W−2/km, α1 = −0.0247 W−1/[(2π ) km THz], α2 = 0.03705 W−1 fs/km, α3 =
−0.0247 W−2/[(2π ) km THz], and α4 = 0.030875 W−2 fs/km.

index coefficients, which originate from third- and fifth-order
susceptibility. The polarizations induced through these suscep-
tibilities give the cubic and quintic (non-Kerr) terms in the NLS
equation, respectively. The nonlinearity arising due to fifth-
order susceptibility can be obtained in many optical materials,
such as semiconductors, semiconductor doped glasses, poly-
diacctylene toluene sulfonate (PTS), calcogenide glasses, and
some transparent organic materials. When the terms related
to β4, γ2, α3, and α4 of Eq. (1) are ignored, the resulting
equation becomes the higher-order nonlinear Schrödinger
(HNLS) equation, which includes shock and Raman terms.
This equation is well analyzed by many authors from different
points of view (e.g., Painlevé property, inverse scattering
transform, Hirota direct method, and conservation laws) [15].
Special attention is also given to study the MI of the HNLS
equation by many authors [16]. But the non-Kerr nonlinear
terms in Eq. (1) become important when one increases the
intensity of the incident light power to produce shorter (beyond
femtosecond) pulses, in which we can see day-by-day progress
in the high repetition rate beyond ultrashort (autosecond)
pulse sources based on fiber technology [17]. Equation (1)
is very important in order to adapt to the current progress
in high-repetition-rate (beyond ultrashort, even autosecond)
optical systems. Recently, microstructured photonic crystal
fibers (PCFs) have attracted significant attention since they
provide extra degrees of freedom for the manipulation of mode
propagation. PCFs are made up of a pure silica core surrounded
by an array of microscopic air holes running along their entire
length. The large refractive-index step between silica and air
allows light to be concentrated into a very small area, resulting
in enhanced nonlinear effects. To explain the optical pulse
communication in highly nonlinear photonic crystal fiber, one
has to extend the order of nonlinear terms in the standard

nonlinear Schrödinger equation beyond Kerr nonlinearity. In
our recent works [18], we have investigated the dark-in-
the-bright (DITB) solitary wave solution of Eq. (1) without
fourth-order dispersion. The quintic non-Kerr nonlinear terms
are important [19] over the cubic Kerr nonlinearity because
non-Kerr nonlinearities are responsible for the stability of
localized solutions. In this study, we shall investigate the
MI gain of the standard generalized NLS equation, which
contains higher-order dispersion, self-steepening, and Raman
terms, as well as higher-order non-Kerr nonlinearities. The
non-Kerr quintic nonlinear terms in contemporary optics are
very important to the upcoming applications in ultrafast signal
routing systems, double doped optical fiber, optical switching,
etc.
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FIG. 2. (Color online) Variation of the MI gain G (km−1)
spectrum given by Eq. (10) for the initial power P0 = 15 W. Here the
parameter values are the same as in Fig. 1.
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II. LINEAR STABILITY ANALYSIS AND
MODULATIONAL GAIN

In order to study the modulational instability of Eq. (1) we
use the standard linear stability analysis. For this, we consider
the propagation of the cw or quasi-cw signal of the initial power
P0 inside a long fiber. The steady-state solution of Eq. (1),
corresponding to the cw signal, can be written as

E(z,t) =
√

P0e
−i�NLz, (2)

and Eq. (2) shows that the cw signal is amplified exponentially
and acquires a nonlinear phase shift, φNL = (γ1P0 + γ2P

2
0 ),

induced by self-phase modulation (SPM) and a non-Kerr
quintic nonlinear term. To study the MI of the cw wave
solution, we introduce the perturbed field of the form

E(z,t) = [
√

P0 + a(z,t)]e−i�NLz, (3)

where the complex field |a(z,t)| � √
P0. If the perturbed field

grows exponentially, then the steady state becomes unstable.
Substituting Eq. (3) in Eq. (1), we obtain the linearized
equation of the perturbed field,

az + iβ2att + β3attt + iβ4atttt + iγ1P0(a + a∗)

+ 2iγ2P
2
0 (a + a∗) + α1P0(2at + a∗

t ) + α2P0(at + a∗
t )

+α3P0(3at + 2a∗
t ) + 2α4P0(at + a∗

t ). (4)

Here, a∗(z,t) is the complex conjugate of the perturbed field.
Now we assume the following ansatz for the perturbed field:

a(z,t) = U (z)e−i�t + V (z)ei�t , (5)

where U (z) and V (z) are the complex perturbation fields and
� is the modulation frequency. By substituting Eq. (5) into the
linearized Eq. (4), we obtain the equations of the perturbed

fields in matrix form

i
d

dz

(
U (z)

V ∗(z)

)
=

(
T11 T12

T21 T22

)(
U (z)

V ∗(z)

)
. (6)

In Eq. (6), V ∗(z) is the complex conjugate of the field V (z),
and

T11 = P0(γ1 + 2γ2P0) − P0(2α1 + α2 + 3α3P0 + 2α4P0)�

−β2�
2 + β3�

3 + β4�
4), (7a)

T12 = P0[γ1 + 2γ2P0 − (α1 + α2 + 2α3P0 + 2α4P0)]�,

(7b)

T21 = −P0[γ1 + 2γ2P0 + (α1 + α2 + 2α3P0 + 2α4P0)]�,

(7c)
and
T22 = −[P0(γ1 + 2γ2P0) + P0(2α1 + α2

+ 3α3P0 + 2α4P0)� − β2�
2 − β3�

3 + β4�
4]. (7d)

The eigenvalues of the matrix T = ( T11 T12
T21 T22

) determine the
wave number K of the perturbed wave and can be calculated
through the characteristics equation Det|T − KI | = 0, where
I is a 2 × 2 unit matrix. The eigenvalues can be evaluated
by the dispersion relation determined by the characteristics
equation, and is given by

K = 1
2 [T11 + T22 +

√
(T11 − T22)2 + 4T12T21]. (8)

MI occurs when the wave number possesses a nonzero
imaginary part leading to an exponential growth of the
perturbed amplitude. The MI is measured by power gain, and
it is defined at any pump frequency � as

G(�) = 2Im(K), (9)

where Im(K) represents the imaginary part of K and is given
by

G(�) = 2�

√
−[

P0M1 + (
β2

2 + 2β4P0m2
)
�2 − 2β2β4�4 + β2

4�6
]
, (10)

where M1 = (P0m
2
1 − 2β2m2), m1 = [α1 + α2 + 2(α3 +

α4)P0], and m2 = (γ1 + 2γ2P0). The gain attains its peak
values when the modulated frequency reaches its optimum
value, i.e., its optimum modulation frequency (OMF). The
OMF corresponding to the gain spectrum (10) is given by

�op = ±
√√√√ β2

2β4
+ 2

1
3 β2

2

E 1
3

− 4
(
2

1
3
)
β4m2P0

E 1
3

+ E 1
3

12
(
2

1
3
)
β2

4

,

(11a)
where

E = (
E1 +

√
4E3

2 + E2
1

)
, (11b)

with E1 = −432(β4
4M1P0 + 2β2β

4
4m2P0) and E2 =

12(−β2
2β2

4 + 4β3
4m2P0). The MI gain can reach the peak

value when � = �op.

In Fig. 1, we have shown the variation of optimum
modulation frequency (OMF), computed from Eq. (11a) as
a function of the GVD (β2) and/or FOD (β4) parameters. The
parameter values we have used are given in the figure caption.

A. Nonlinear effects on MI gain

Higher-degree non-Kerr nonlinear terms have major in-
fluences on the MI gain. We have shown in Fig. 2 four MI
gain spectra as a function of the modulation frequency for a
particular value of the initial power (P0) to show the effect of
non-Kerr nonlinearity. The gain spectra shown in Fig. 2 de-
noted by I, II, III, and IV are so divided depending on the terms
involved in Eq. (1). Gain spectrum I, in Fig. 2, shows the MI
sidebands for the standard NLS equation (for parameter values
β2 = 1

2 ps2/km, γ1 = 1 W−1/km). Gain spectrum II shows
the MI spectra for the cubic-quintic nonlinear Schrödinger
(NLS) equation with FOD and stimulated Raman scattering
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FIG. 3. (Color online) MI gain G (km−1) as a function of β2

(in ps2/km) and � [in (2π ) THz] for fixed power P0 = 15 W and
β4 = − 5

24 × 10−5 ps4/km < 0. The other parameters are the same as
in Fig. 1.

(SRS) terms. Here we have used only the parameters β2 =
1
2 ps2/km, γ1 = 1 W−1/km, γ2 = 1 W−2/km, β4 = − 5

24 ×
10−5 ps4/km, α1 = −0.0247 W−1/[(2π ) km THz], and α2 =
0.03705 W−1 (fs/km). For the MI gain (III) in Fig. 1, we have
included an extra term related to the quintic nonlinearity, α3 =
−0.0247 W−2/[(2π ) km THz], and other parameter values are
similar to that in Fig. 1 for gain spectrum II. It is clear from
Fig. 2 that due to the quintic nonlinear term related to α3,
the peak of the gain spectrum decreases for II to III. In gain
spectrum IV, we have shown the effect of the nonlinear term
related to α4 in Eq. (1). Here we have taken the value of α3 = 0
and α4 = 0.030875 W−2 (fs/km), and other parameter values
are similar to that in Fig. 1 for gain spectrum II. The effect
of non-Kerr nonlinearities related to α3 and α4 in Eq. (1) on
MI gain are very crucial and decrease the MI gain peak value,
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FIG. 4. (Color online) MI gain G (km−1) as a function of β2

(in ps2/km) and � [in (2π ) THz] for fixed power P0 = 15 W and
β4 = 5

24 × 10−5 ps4/km > 0. The other parameters are the same as
in Fig. 1.
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FIG. 5. (Color online) MI gain G (km−1) spectrum as a function
of β4 (in ps4/km) and � [in (2π ) THz] for fixed power P0 = 15 and
β2 = − 1

2 ps2/km The other parameters are the same as in Fig. 1.

indicating the greater stability of the system and stable soliton
pulse of Eq. (1). In the above study regarding MI gain, we have
taken the initial power P0 = 15 W.

B. Dispersion effects on MI gain

Now we will see the impact of dispersion on the MI
gain. It is clear from the expression of the MI gain given
in Eq. (10) that the third-order dispersion term has no effect
on the MI condition, but GVD and FOD terms have an
influence on the MI condition. Figures 3 and 4 show the MI
gains as a function of β2 and � for β4 = − 5

24 × 10−5 ps4/km
and β4 = 5

24 × 10−5 ps4/km, respectively, with a fixed initial
power P0 = 15 W. In Figs. 3 and 4, we obtain two similar
symmetric side lobes due to MI, which appear only on the
anomalous GVD regime regardless of the sign of the FOD
parameter β4, and the side lobes vanish in the normal GVD
regime β2 < 0 in the presence of non-Kerr nonlinearities. On
the other hand, Figs. 5 and 6 display the MI gains as a function
of β4 and the modulation frequency � for a fixed initial power
P0 = 15 W and constant β2 value. Here MI gains depend

5 0 5

10

5

0

5

Β4

0
200
400
600
800
G

FIG. 6. (Color online) MI gain G (km−1) spectrum as a function
of β4 (in ps4/km) and � [in (2π ) THz] for fixed power P0 = 15 W
and β2 = 1

2 ps2/km. The other parameters are the same as in Fig. 1.

033820-4



IMPACT OF DISPERSION AND NON-KERR . . . PHYSICAL REVIEW A 85, 033820 (2012)

101

0

2

4

Β4

0
10
20

30

G

FIG. 7. (Color online) MI gain G (km−1) spectrum as a function
of β4 (in ps4/km) and � [in (2π ) THz] for fixed power P0 = 15 W
and β2 = 1

2 ps2/km. Here β4 > 0. The other parameters are the same
as in Fig. 1.

crucially on the sign of the GVD parameter (β2). We observe
two symmetrical side lobes in Fig. 5 for β2 = − 1

2 ps2/km, but
the two lobes vanish here when β4 > 0. We also observe that
the two side lobes are separate from each other, as opposed to
Figs. 3 and 4. Figure 6 displays a more interesting feature. Here
we can see that for β2 = 1

2 ps2/km, two MI gain sidebands
exist regardless of the sign of β4, and, consequently, the
product β2β4. In Fig. 7, we show the enlarged picture of
MI gain for only the positive values of the FOD parameter,
as already shown in Fig. 6. We observe that the maximum
gain decreases as β4 goes to positive values compared to the
negative FOD parameter as in Fig. 6. In contrast to Fig. 5, here
the two side lobes are attached to each other.

III. CONCLUSION

MI by which a plane wave breaks up into high filament
intensity is a ubiquitous phenomenon that occurs in many
branches of physics [2–5]. It is a symmetry-breaking instability
so that a small perturbation on top of a constant amplitude
background experiences exponential growth, and this leads
to wave breakup in either space or time. When the cw
breakup evolves into a train of subpicosecond, femtosecond,
and even autosecond pulses, the higher-order dispersion and
the higher nonlinear effects strongly affect the pulse evolution

in the optical fibers. We have studied the very interesting MI
phenomena of Eq. (1) in the context of optics. We mainly
studied the effect of non-Kerr nonlinearities on the MI gain
spectra in the presence and absence of FOD. Our study clearly
shows that the non-Kerr quintic nonlinear effect reduces the
maximum value of the gain and bandwidth. Besides that,
in particular, we also have studied the effect of GVD and
FOD on MI gain in the presence of non-Kerr nonlinearities.
Our investigation shows the existence of sidebands due to
MI gain for the negative FOD term in a normal (β2 < 0)
as well as anomalous dispersion (β2 > 0) regime. But, for
positive FOD, the sideband gain spectra by MI appears only
for the anomalous dispersion (β2 > 0) regime. As reported in
many other works, in our present study we also find that the
third-order dispersion effect does not contribute to MI, and we
show that MI can exist not only for an anomalous GVD regime,
but also in the normal GVD regime in the HNLS equation in
the presence of higher-order dispersion and non-Kerr quintic
nonlinearities, as opposed to the standard NLS equation in
which MI gain occurs only in the anomalous dispersion
regime. We have seen that in both normal and anomalous
GVD regimes, strong MI sidebands occur; as a result, when
the perturbation becomes large enough, the linear stability of
the cw breaks down in terms of a train of short-pulse solitary
waves and the evolution of the modulated state is then governed
by the HNLS equation given in Eq. (1). We have investigated
that the quintic nonlinear effects are more sensitive than the
Kerr-nonlinearity on cw, which leads to cw breaking into a
stable wave train generation of ultrashort optical pulses. As MI
has great application in soliton generation in the fiber [6,14],
physically, the equation studied by us is very important and
will be useful in modeling ultrashort (beyond femtosecond,
and even autosecond) optical pulse propagation through a
highly nonlinear medium because the study of MI shows that
the quintic non-Kerr nonlinear terms are important over the
cubic Kerr nonlinearity for the stability of localized coherent
nonlinear structures and the formation of a wave train of
ultrashort pulses with a greatly enhanced spectral bandwidth
as well as the generation of localized temporal solitons giving
rise to stable supercontinuum white-light coherent sources.
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