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Transmittance signal in real ladder-type atoms
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We clarify an interpretation of transmittance signals in ladder-type atomic systems by discriminating the
contributions of one-photon resonance, two-photon resonance, and a mixed term of both in the calculated
spectra for these ladder-type multilevel atoms. When the two-photon-resonance effect is distinguished from
an accurate spectrum calculated by modeling ladder-type electromagnetically-induced transparency for the
5S1/2 − 5P3/2 − 5D5/2 transitions of 87Rb atoms, we find that the transmittance signals for the 5D5/2(F ′′ = 2,3)
states are mainly composed of the mixed term related not to pure-two-photon atomic coherence but to the
optical-pumping effect whereas the transmittance signal for the 5D5/2(F ′′ = 4) state originates from both the
pure-two-photon-resonance term and the mixed term.
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I. INTRODUCTION

Coherent interaction of several laser lights via an atomic
medium has induced the flourishing development of nonlinear
laser spectroscopy such as coherent-population trapping (CPT)
[1] and electromagnetically-induced transparency (EIT) [2]
and absorption (EIA) [3]. These subjects are being intensively
investigated due to their possible applications in fields such as
atomic clocks [4], quantum information [5], light storage [6],
and precision magnetometers [7]. EIT can be observed in
various atomic systems such as �, V, and ladder (or cascade)
schemes [2]. Among these, the � scheme has attracted
considerable interest because of the very narrow linewidth that
can be obtained compared to those of other schemes. Recently,
however, the ladder scheme has also drawn much attention as
it can be used in the study of Rydberg states [8], multiwave
mixing [9], the coherent control of polarization [10], atomic
filters [11], and laser spectroscopy via excited states [12].

Ladder-type EIT has been demonstrated in many kinds
of atoms, including sodium [13], rubidium [14–19], and
cesium [20]. In the case of ladder-type atomic systems in
alkali-metal atoms, the two-photon atomic coherence and
the optical-pumping effects cannot be distinguished from
changes in the EIT spectrum; this is because the frequency
of double-resonance optical pumping (DROP) occurs under
the conditions of two-photon resonance in a similar manner
to that of EIT [21]. A further, serious problem is that the
transmittance signal due to optical pumping is often confused
with EIT in many studies of ladder-type EIT in alkali-metal
atoms [13–20]. The basis of this misunderstanding is that in
EIT real ladder-type atoms are modeled as simple three-level
atomic systems without including the DROP effect [19].

A rigorous analytical theory for three-level atoms was
reported in 1995 [15]. However, many papers’ theoretical
work is simply based on a simplified three-level model,
and more detailed studies which consider realistic atomic-
energy levels, to the best of our knowledge, do not exist.
For the interesting topic of discrimination of one-photon
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and two-photon resonances in the EIT signals, there have
been theoretical studies on three-level atoms [22–24] and
experimental works on Na [13] and Rb [21]. It should be
noted that the quantum-jump approach has been used for
the probe response in the three-level atomic systems [25,26].
However, no detailed calculations that discriminate between
these two effects in real atoms have been reported. In addition,
although atomic coherence and optical pumping significantly
affect the polarization of the lasers interacting with the atoms,
due to the different transition probabilities related to the laser
polarization and hyperfine states [27], the simple three-level
atomic model cannot account for the polarization dependence
of the signals in real ladder-type atoms.

Since the potential applications of EIT mainly make use of
its very narrow absorption (or very steep dispersion) signals,
which is attributed to two-photon atomic coherence, it is a very
important and fundamental problem in laser spectroscopy to
accurately calculate and discriminate the effects of two-photon
coherence and two-photon resonance. In this paper we present
a general method for calculating an accurate spectrum and
discriminating the contribution of the two-photon resonance
effect in this spectrum for real 87Rb atoms using ladder-type
EIT. In addition to this specific scheme, our proposed method
can be generally applied to laser spectroscopy, including
almost all cases of EIT and EIA in which laser lights with
two colors are involved. In particular, this method can be used
to accurately calculate and discriminate the contribution of the
two-photon-resonance effect in EIT for Rydberg atoms [19].
In this paper, we study three aspects of ladder-type EIT
for 87Rb atoms: accurate calculation of the EIT spectrum,
discrimination of the one-photon- and two-photon-resonance
effects in the signal, and polarization dependence.

II. THEORY

We calculated the EIT spectrum for the 5S1/2 − 5P3/2 −
5D5/2 transitions of 87Rb atoms. Figure 1 shows a diagram
of the energy levels under consideration. A probe laser of
wavelength λ1 = 780 nm scans around the transition line
5S1/2 − 5P3/2 while a coupling laser of wavelength λ2 =
775.8 nm is locked on the transition 5P3/2 − 5D5/2. We cal-
culated the density-matrix equation, including all the relevant
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FIG. 1. (Color online) Energy-level diagram for the transi-
tions 5S1/2 − 5P3/2 − 5D5/2 of 87Rb atoms. The decay rates of
the states 5P3/2, 5P1/2, 5D5/2, 6P3/2, 6S1/2, 4D5/2, and 4D3/2

are given by �1(=2π6.065 MHz) [28], �1a(=2π5.746 MHz)
[28], �2(=2π0.6673 MHz) [29], �3(=2π1.3 MHz) [30], �4(=2π

3.492 MHz) [31], �5(=2π1.7 MHz) [32], and �5a(=2π1.8 MHz)
[32], respectively. The branching ratios are η2a = 0.74, η2b = 0.26,
η3a = 0.23, η3b = 0.55, and η3c = 0.22 [32].

magnetic sublevels for the states 5S1/2(F = 2), 5P3/2(F ′ = 3),
and 5D5/2(F ′′ = 2,3,4). As can be seen in Fig. 1, there exist
other states that are not directly coupled to the laser beams.
Including the remaining sublevels in the states 5S1/2(F = 2),
5P3/2(F ′ = 3), and 5D5/2(F ′′ = 2,3,4), we also describe all
relaxation and optical-pumping phenomena using the rate
equations for all other states.

We assume that the probe and coupling lasers are aligned
colinearly and are counterpropagating. We consider six polar-
ization configurations of the coupling-probe lasers: (i) π ‖ π ,
(ii) π ⊥ π , (iii) π − σ+, (iv) σ+ − σ+, (v) σ+ − σ−, and
(vi) σ+ − π . The incident electric fields of the probe and
the coupling beams with a given coordinate system are
described by �Ep = E0p[c+ε̂+ + c0ε̂0 + c−ε̂−]e−iω1t and �Ec =
E0c[a+ε̂+ + a0ε̂0 + a−ε̂−]e−iω2t , respectively, where E0p

(E0c) is the magnitude of the electric field of the probe (cou-
pling) beam and ω1(2) = 2πc/λ1(2). The coefficients for the
π - [σ+]-polarized coupling beam are (a+,a0,a−) = (0,1,0)
[(1,0,0)]. The coefficients (c+,c0,c−) for the probe beam are
(i) (0,1,0), (ii) (−1/

√
2,0,1/

√
2), (iii) (i/2,−1/

√
2,−i/2),

(iv) (1,0,0), (v) (0,0,1), and (vi) (−1/
√

2,0,1/
√

2). The
susceptibility of each component of the electric field is then
given by [33]

χq = −Nat
3λ3

1
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where C
F ′,m′
F,m and σ

F ′,m′
F,m are the normalized transition-

coefficient and density-matrix elements between the states

|F,m〉 and |F ′,m′〉, respectively [34]. �1 is the Rabi frequency
of the probe beam.

After traversing an infinitesimal distance of dz, the intensity
of the probe beam is changed by −I0αdz, where I0 is
the intensity of the incidence probe beam. Therefore, the
absorption coefficient is given by α0 = Im

∑1
q=−1[k1|cq |2χq],

where k1 = 2π/λ1. Finally, the absorption coefficient averaged
over the velocity distribution and transit times is given by
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⎤
⎦ ,

where u is the most probable speed of the atom, Nat is
the atomic density, the average transit time is given by
tav = (

√
π/2)d/u, and d is the diameter of the laser beam [34].

We refer the reader to Ref. [34] for the detailed method of
calculating the density-matrix elements at given t and v. When
the number of the nonvanishing coefficients of the probe beam
is greater than one, multiple Zeeman and optical coherences
between the sublevels in 5P3/2(F ′ = 3) and in 5S1/2(F = 2)
exist via multiphoton interactions. In the calculation, we
consider these interactions up to the two-photon level; this
is realistic because the intensity of the probe beam is a lot
weaker than the saturation intensity.

As described in previous reports for three-level atoms
[23,24], the coherences between the intermediate and ground
states can be decomposed into two parts: (i) the population
difference term, which is composed of the populations in the
intermediate and ground states, and (ii) the coherence term,
which is composed of the coherences between the excited and
ground states. Extending this analysis to the multilevel atoms,
the absorption coefficient is given by α = αpop + αcoh, where
αpop and αcoh represent the population-difference contribution
and coherence contribution, respectively. For example, when
the polarization configuration is π ‖ π , αpop and αcoh are given
by

αpop = −Nat
3λ2

1

2π
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�1�1
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1 + �2
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+ (8/15)

(
Q1

3 − P 1
2

) + (1/3)
(
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3 − P 2
2

)]
,

αcoh = α − αpop, (3)

respectively, where δ1 = δp − k1v and P m
2 and Qm

3 represent
the populations of the states |F = 2,m〉 and |F ′ = 3,m〉,
respectively. Equation (3) is also averaged by an analogous
method seen in Eq. (2). We can obtain similar expressions
for the other polarization configurations in the same way as
Eq. (3).

Extending the diagrammatical analysis for the three-level
atom seen in Ref. [24] to real multilevel atoms, we describe
how to discriminate the three contributions in the EIT spectrum
for 87Rb atoms: the pure-one-photon-resonance contribution,
the pure-two-photon-resonance contribution, and the mixed
term from both resonances.
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FIG. 2. (Color online) (a) The EIT spectra for the π ‖ π -
polarization configuration for the (i) calculated and (ii) experimental
results. (b) The calculated results for the pure-two-photon, mixed,
and one-photon contributions.

A. The pure-one-photon-resonance effect (α1 p)

This contribution can be obtained from α by ignoring the
optical coherences between the ground and the excited states.
When the density-matrix equations are established, we set
the optical coherences between the ground state (5P1/2) and
the excited state (5D5/2) to zero. Then, we can obtain the
pure-one-photon-resonance term (α1p) as follows:

α1p = α with σ
F ′′=3,m′′
F=2,m = 0.

Note that in this case, αcoh vanishes. Unlike the simple
three-level atom, there exist many matrix elements for real
atoms. It should be noted that the matrix elements are strongly
dependent on the choice of polarization configuration.

B. The pure-two-photon-resonance effect (α2 p)

As described in Ref. [24], the pure-two-photon-resonance
effect can be calculated from the coherence term (αcoh) in
Eq. (3) by setting the population in each magnetic sublevel
of the ground state to 1/8 whereas the populations in the

intermediate and excited states are 0. In sum, we have

α2p = αcoh with P m
2 = 1/8 and other populations = 0.

We note that the Zeeman coherences in the ground or the
intermediate states must vanish.

C. The mixed term (αmix)

This contribution is given by subtracting the pure-one-
photon-resonance term and the pure-two-photon-resonance
term from the total absorption coefficient (α) as follows:

αmix = α − α1p − α2p.

III. RESULTS

The results for the π ‖ π -polarization configuration are
shown in Fig. 2. In Fig. 2(a), the upper trace shows the calcu-
lated total signal, and the lower trace presents the experimental
result reported in Ref. [27]. In the experimental results, the
intensities of the probe and the coupling beams are 15 μW and
8.2 mW, respectively. The diameters of the lasers are 2.0 mm.
Figure 2(b) shows the decomposition of the calculated signal;
the pure-two-photon, the mixed, and the one-photon contri-
butions are presented. From Fig. 2(a), we can see there is
a good agreement between the calculated and experimental
results. It should be noted that the sharp dip in the signal
seen in the calculated results, originating from the wavelength
mismatch between the probe and the coupling lasers [18], is
not seen in the experimental results. This results from the
relatively large linewidths of the probe and coupling lasers,
which are respectively ∼1 MHz. In Fig. 2(b), we can see
that pure-two-photon signals for F ′′ = 2 and F ′′ = 3 are very
weak. As such, we can conclude the signals for F ′′ = 2 and
F ′′ = 3 mainly come from α1p and αmix. This is because of the
weak relative strengths between the states 5P3/2(F ′ = 3) and
5D5/2(F ′′ = 2,3). In contrast, the pure-two-photon signal for
F ′′ = 4 is very strong. Although the transitions between the
states 5P3/2(F ′ = 3) and 5D5/2(F ′′ = 4) are not completely
cycling and because the transition strength is strong and
the branching ratio (η2a = 0.74) is quite large, the signal is
composed of all three contributions simultaneously. We can
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FIG. 3. (Color online) The results for six polarization configurations: (a) the experimental results; (b) calculated results; and (c) one-photon
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coefficients are correct only for π ‖ π while the scales for other configurations are displaced for clear display.

033817-3



HEUNG-RYOUL NOH AND HAN SEB MOON PHYSICAL REVIEW A 85, 033817 (2012)

see that a narrow signal results from the pure-two-photon
contribution while the broad signal results are mainly due to
the mixed term.

The results for each of the six polarization configurations
are shown in Fig. 3. The experimental and calculated results
are presented in Figs. 3(a) and 3(b), respectively. The one-
photon, pure-two-photon, and mixed contributions of the
calculated results are shown in Figs. 3(c), 3(d), and 3(e),
respectively. In each figure, we show the results for the
polarization configurations π ‖ π , π ⊥ π , π − σ+, σ+ − σ+,
σ+ − σ−, and σ+ − π in that order from the top of the figure.
Comparing the spectra shown in Figs. 3(a) and 3(b), we
see that the calculated results are in good agreement with
the experimental results. Note that the sharp two-photon-
resonance signals become broadened due to the finite linewidth
of the lasers. It is interesting that the signal for F ′′ = 2,
when the polarization configuration is σ+ − σ+, is almost
invisible. This is because when m � 2, the populations at the
states 5S1/2(F = 2,m − 1) and 5P3/2(F ′ = 3,m) become very
small due to optical pumping. In addition, all states except
for 5S1/2(F = 2,m = 2) are not coupled to the excited state
in this polarization configuration. Therefore, the signal for
the transitions 5S1/2(F = 2) − 5P3/2(F ′ = 3) − 5D5/2(F ′′ =
2) becomes very weak.

From the decomposition of the calculated results presented
in Figs. 3(c), 3(d), and 3(e), we find that the narrow and broad
signals result mainly from the pure-two-photon and mixed
contributions, respectively. As can be seen in Fig. 2, the pure-
two-photon signals for F ′′ = 2,3 are very weak, but the signal
for F ′′ = 4 is strong. When the polarization configuration is
σ+ − σ−, however, we can see that the pure-two-photon-
resonance signal for F ′′ = 4 is very weak. This can be
attributed to the effective two-photon-transition strengths.
The ratios of the transition strengths for the configurations
σ+ − σ−, σ+ − σ+, and π ‖ π are approximately 1, 6, and

4, respectively. Due to this weak effective transition strength,
the two-photon-resonance contribution is very small for the
σ+ − σ−-polarization configuration.

IV. CONCLUSIONS

In summary, we presented a theoretical study on the
accurate calculation of line shapes in EIT for the 5S1/2 −
5P3/2 − 5D5/2 transitions of 87Rb atoms. All possible tran-
sitions were considered in the calculation. As the time-
dependent density-matrix equations were solved numerically,
no phenomenological constant was used. In addition, we were
able to discriminate the effects of one-photon and two-photon
resonances in the EIT spectra. In the case of signals with
weaker transition strengths, such as those from the states of
|F ′′ = 2〉 or |F ′′ = 3〉, the signals are mainly composed of the
mixed term. In contrast, the signals from the states with strong
transition strengths are composed of both the pure-two-photon-
resonance term and the mixed term although these transitions
are not completely cycling. From the calculations for different
polarization configurations, we can account for the observed
experimental results. The method of calculation described
in this paper is applicable generally to other systems with
different energy levels or other atomic species and could even
be used with � or V schemes. Experimental and theoretical
work on other transition lines of 87Rb and 85Rb atoms is
currently in progress.
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