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Interaction of a single-photon wave packet with an excited atom
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The interaction of a single-photon wave packet with an initially excited two-level atom in free space is studied
in semiclassical and quantum approaches. It is shown that the final state of the field does not contain doubly
occupied modes. The process of the atom’s transition to the ground state may be accelerated, decelerated, or
even reversed by the incoming photon, depending on parameters. The spectrum of emitted radiation is close to
the sum of the spectrum of the incoming single-photon wave packet and the natural line shape, with small and
complicated deviations.
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I. INTRODUCTION

The main purpose of this paper is a calculation of the
kinetics of population of atomic levels and of the spectrum of
light emitted as the result of the interaction of a single-photon
wave packet with an excited atom. The problem concerns an
elementary process of interaction of light with matter that
plays an important role in laser theory. The experiments with
one-atom, one-photon setup can be traced back as far as
1985 [1]; with the techniques of today it seems possible to
study the process in the experiment directly.

In Sec. II the simple classical model of the packet is
introduced and used along with the quantum model of the
atom to obtain the estimate of the difference of population
induced by the photon. This difference comes to be very small
(in typical situations) and can change its sign. In Sec. III the
equations of a fully quantum model are derived. They are
solved in the approximation that starts with the assumption
of the negligibility of the photons’ influence on the atomic
evolution. The solutions, which are obtained in the form
of quadratures, describe the kinetics of probabilities of the
atomic states and the spectrum of the emitted radiation. In
Sec. IV these data are visualized with the detailed study
of a one-dimensional numerical example. The discussion
of discrepancies between the semiclassical solution and the
simplest approximation of the quantum approach is also given
in this section. The established properties of the interaction of
a single-photon wave packet with an initially excited two-level
atom in free space are discussed in Sec. V in the context of the
ongoing discussions of the nature of the stimulated emission.
Section VI gives a summary of the obtained results.

II. SEMICLASSICAL APPROACH

The classical model that represents a photon (more pre-
cisely, a single-photon wave packet) as a limited in space pulse
of the quasimonochromatic classical radiation is well known
[2,3]. The studies of the spatial distribution of the energy of the
electromagnetic field of a photon in the framework of quantum
theory started long ago [4] and have been carried out actively
in recent years [5–7].

*pvelyutin@mtu-net.ru

From the energy density considerations one can equate the
total energy of the field of the pulse to the energy of the photon
h̄ω, where h̄ is the Planck’s constant and ω is the photon
frequency [4,5]:

1

8π

∫
[E(r,t)2 + H(r,t)2]dr = h̄ω. (1)

Here E (r,t) and H (r,t) are the vectors of the electric and
magnetic fields, respectively.

In this section we treat the linearly polarized pulse of the
Gaussian shape, propagating in the positive direction of the
OX axis:

E (r,t) = eE0 exp

[
− (x − ct)2

4l2

]
cos [k (x − �) − ωt] , (2)

where e is the polarization vector, E0 is the pulse amplitude
(maximal value of the field), l is the length of the pulse, �

is the initial displacement of the packet’s center, and c is the
speed of light. We assume that the field is restricted in the
transverse directions to some domain with a section area S;
the exact form of the transverse structure will not be needed.

From Eq. (1) we have

E0 = (32π )1/4

√
h̄ω

lS
. (3)

We study the action of this packet on a two-level atom,
located at the origin of the coordinate system. The atom is
represented by a two-level system with the transition frequency
ω0 and the dipole transition matrix element d along the field
direction. The evolution of this system under the influence
of the harmonic external field with the carrier frequency ω

and the envelope E (t) [E0 = max E (t)] can be described by
the equations for the components of the Bloch vector [in the
rotating wave approximation (RWA) and in the rotating frame
of reference], which have in general the following form [8]:

u̇ + �2u = −�v, (4)

v̇ + �2v = �u + �w, (5)

ẇ + �1(w − w0) = −�v. (6)

Here u and v are the transverse components and the population
difference w is the longitudinal component of the Bloch vector,
w0 is the population difference at equilibrium, �2 and �1

are the rates of the transverse and longitudinal relaxations,
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correspondingly, � = ω − ω0 is the frequency detuning, and
the Rabi frequency is

� (t) = dE (t)

h̄
. (7)

We limit ourselves to the resonant case � = 0. In this case the
system reduces to two last equations, which for our problem
should be written as

v̇ + γ v = � (t) w, (8)

ẇ + 2γ (w + 1) = −� (t) v. (9)

We have taken into account that for the spontaneous
emission 2�2 = �1 = 2γ , and the equilibrium corresponds
to the system being in a ground state (no thermal noise). The
time-dependent Rabi frequency follows the pulse envelope
Eq. (2), and its form can be written as a Gaussian,

� (t) = �0 exp

[
− (t − T )2

4τ 2

]
, (10)

where �0 = max � (t), τ = lc is the pulse duration, and T =
−�c is the arrival time of the pulse peak to the point of
location of the atom. The spectrum of this pulse has the width
δ = (2τ )−1. The initial conditions for Eqs. (8) and (9) are
v (0) = 0 and w (0) = 1, that is, at the initial moment the atom
is in the excited state.

To find the proper approximation we turn to the numerical
estimates for a typical situation. For the atomic parameters
we choose the transition frequency ω0 = 3.54 × 1015 s−1 and
the atomic unit of the dipole moment d = ea0 = 2.42 ×
10−18 CGS units. For these parameters the rate of the spon-
taneous emission is

�1 = 2γ = 4d2ω3
0

3h̄c3
= 1.34 × 107 s−1. (11)

We take as the duration of the pulse τ = 1 ns and as the
area of the transverse section of the pulse S = 5 × 10−3 cm2.
Then for the maximal amplitude of the field we have E0 =
1.58 × 10−5 G, and for the maximal Rabi frequency we have
�0 = dE0/h̄ = 3.62 × 104 s−1 = 2.70 × 10−3�1. The Rabi
frequency is small in comparison with the relaxation rate, and
the system is overdamped.

Since the influence of the pulse on the atom is small
(�0 � γ ), does not last long (γ τ � 1), and commences
around the arrival moment T , we replace in the right-hand
side of Eq. (8) the function w (t) by its value at the arrival time
w (T ). Then for the change of the population difference under
the influence of the pulse we have

�w = −w (T )

2

(∫ ∞

0
� (t) dt

)2

. (12)

The absence of γ in the right-hand side of Eq. (12) along with
the presence of � may seem surprising, since we are dealing
with the case γ � �. However the longitudinal component
w ∼ 1 has no time to change its value during the pulse owing
to relaxation, since γ τ � 1. On the other side, before the
pulse the transverse component v = 0, and during the pulse it
increases its value up to v ∼ �wτ . Thus the relaxation term
in the left-hand side of Eq. (8) remains much smaller than that
in the right-hand side, γ v � �w, due to the same inequality
γ τ � 1.

Since the arrival time T considerably exceeds the pulse
duration τ , we can shift the lower limit in the integral in
Eq. (12) to −∞. Then we find that during a short interval
around the arrival time the incoming pulse changes the rate
of the transition of the atom from the excited to the ground
state, and this rapid change results in an induced shift of the
probability of the excited state by �P+ = �w/2, or

�P+ = −π

(
dE0l

h̄c

)2

w (T ) . (13)

This quantity can serve as a measure of influence of the
irradiation by one photon on the process of spontaneous
emission.

By using Eqs. (3) and (11), Eq. (13) could be cast into the
form

�P+ = −
√

π

2

(
σ0

S

)(
γ

δ

)
w(T ), (14)

where

σ0 = 3

2π
λ2

0 (15)

is the maximal cross section of the resonant fluorescence of
the two-level atom (λ0 = 2πc/ω0 is the wavelength of the
resonant radiation).

Equation (14) shows that the change in the populations of
a two-level atom under the influence of a pulse of the classical
electromagnetic field that is equivalent to a single-photon wave
packet is proportional to the fraction of the transverse section
of the pulse that is covered by the cross section of the resonance
fluorescence and to the fraction of the spectral density of the
incoming radiation that gets into the band of the resonant
interaction, that is, the natural linewidth. This result intuitively
seems obvious.

With the parameters chosen above we have σ0 = 1.35 ×
10−9 cm2, S = 5 × 10−3 cm2, γ = 6.70 × 106 s−1, δ = 5 ×
108 s−1, and max |�P+| = 4.53 × 10−9, a very small quantity.

III. QUANTUM APPROACH

Now we turn to study the interaction of the atom with the
one-photon packet of the quantized electromagnetic field. For
the atom we use the same two-level model with the excited
state |+〉 and the ground state |−〉, which are connected by
the electrical dipole transition with the matrix element of the
dipole moment d, and the atomic transition frequency ω0.
The electromagnetic field is described by the modes of the
quantization cube, an imaginary cube with the edge length
L with conditions of periodicity imposed on the field on its
faces [9]. The mode μ is characterized by its wave vector
kμ and its polarization vector eμ, which obey the condition
kμeμ = 0, and the mode frequency is ωμ = c

∣∣kμ

∣∣.
The Hamiltonian of the system we take in the form

Ĥ = h̄ω0

2
σ̂z +

∑
μ

h̄ωμâ†
μâμ + ih̄

∑
μ

gμ(σ̂+âμ − â†
μσ̂−),

(16)

where σ̂i are the Pauli matrices, σ̂± = (
σ̂x ± iσ̂y

)/
2, and

â†
μ and âμ are the operators of creation and annihilation of
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photons in the mode μ. Three terms in Eq. (16) represent the
Hamiltonian of the atom Ĥa , the Hamiltonian of the field Ĥf ,
and the interaction term V̂ , correspondingly. The interaction
parameter

gμ = −
√

2πωμ

h̄V deμ, (17)

where V = L3 is the volume of the quantization cube. The
structure of the interaction term assumes the RWA.

The state vector of the system can be expanded as

|(t)〉 =
∑

μ

aμ|+〉|1μ〉 +
∑

μ

bμ|−〉|2μ〉

+1

2

∑
μ,ν

cμν |−〉|1μ〉|1ν〉, (18)

where |Nμ〉 is the N -photon Fock state of the mode μ. The
indices in the last sum must not take the equal values. The
vector |〉 is normalized by the condition

‖‖2 =
∑

μ

|aμ|2 +
∑

μ

|bμ|2 + 1

2

∑
μ,ν

|cμν |2 = 1. (19)

The vectors of the basis are taken in the in-
teraction picture: |+(t)〉 = |+(0)〉 exp −i(ω0t/2), |−(t)〉 =
|−(0)〉 exp i(ω0t/2), |1μ(t)〉 = |1μ(0)〉 exp −iωμt , etc. After
the substitution of the expansion Eq. (18) in the Schrodinger
equation and projection on the basis of the initial vectors
(〈+(0)|〈1μ(0)|, etc.), we obtain the system of equations for
the probability amplitudes

daμ

dt
= −

√
2gμbμei�μt −

∑
ν

gνcμνe
i�ν t , (20)

dbμ

dt
=

√
2gμaμe−i�μt , (21)

dcμν

dt
= gμaνe

−i�μt + gνaμe−i�ν t . (22)

Here the frequency detuning is the difference between the
transition frequency and the mode frequency, �α = ω0 − ωα .

We take the initial state of the field in the form of the
normalized single-photon wave packet

|�(0)〉 =
∑

μ

φμ|1μ〉. (23)

Then the initial conditions for the system Eqs. (20)–(22)
are

aμ(0) = φμ, bμ(0) = 0, cμν(0) = 0. (24)

From the results of the previous section we can conclude
that for the typical values of parameters the influence of the
incoming photon on the process of the spontaneous emission
will be very small and the process will mainly evolve in the
same way as in the unperturbed atom. Then, following the
approach of Weisskopf and Wigner [10], we can assume that
all amplitudes of the one-photon states decrease with time
by the same exponential law with the rate γ = �/2, which
is one-half of the rate of the spontaneous decay given by
Eq. (11):

aμ(t) = φμ exp(−γ t). (25)

By substitution of the ansatz Eq. (25) in Eq. (21) and the
integration with the initial conditions Eq. (24) we have

bμ(t) =
√

2gμφμ

1 − e−γ t−i�μt

γ + i�μ

. (26)

Analogously, from Eq. (22) we have

cμν(t) = gμφν

1 − e−γ t−i�μt

γ + i�μ

+ gνφμ

1 − e−γ t−i�ν t

γ + i�ν

. (27)

In the following we refer to Eqs. (25), (26), and (27) as the
basic approximation.

The values of the initial amplitudes depend on the
quantization volume. This dependence can be seen from
the normalization condition Eq. (19). For simplification we
temporarily ignore the polarization and consider that the value
of kμ defines completely the mode μ. Let the initial state of
the packet be given by the probability amplitude in the k space
ψ(k) that is normalized by the condition∫

|ψ(k)|2dk = 1. (28)

For large enough volume V the summation over μ could be
replaced by the integration over k:

∑
μ

|φμ|2 =
∑

μ

|φ(kμ)|2 =
∫

|φ(k)|2ρ(k)dk, (29)

where ρ(k) is the density of permissible discrete values of the
vector kμ in the k space,

ρ(k) = V
(2π )3

. (30)

Thus from comparison of Eqs. (28) and (29) the discrete
amplitudes will have the form

φμ =
√

8π3

V ψ(kμ). (31)

The summary probability of the doubly occupied field
modes,

P2 =
∑

μ

|bμ|2 ∝ g2φ2ρ ∝ V−1, (32)

in the limit V → ∞ turns to zero. Thus the probability
of creation of the doubly occupied state in the process of
interaction of a single-photon wave packet with the excited
atom in the free space is zero. This result is quite general: it
is not limited by the applicability of the ansatz Eq. (25), since
one can substitute Eqs. (26) and (27) into Eq. (20), find a new
approximation for aμ, and continue the iterations, and on every
step the scaling relation Eq. (32) will hold.

The summary probability of pairs of singly occupied states,

P11 =
∑
μ,ν

|cμ,ν |2 ∝ g2φ2ρ2 ∝ V0, (33)

does not depend on the volume of quantization and thus gives
a finite value for the process in a free space.

IV. NUMERICAL EXAMPLE

In principle the expressions Eqs. (26) and (27) along with
the conversion rule Eq. (31) present the approximate answer to
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the problem of evolution of the system in quadratures. However
the numerical integration over two copies of the k space
in the three-dimensional case happens to be too demanding
on the computer resources. To demonstrate the properties of
the solution we limit ourselves by a one-dimensional case that
still has some direct physical interest.

Let’s assume that the field is located on the interval from
−L/2 to L/2 with periodic boundary conditions. In the
following we use the system of units in which the average
wave number of the incoming packet K = 1; we also take
h̄ = 1 and c = 1. We replace the interaction parameters gμ

by the constant value g; that is relatively unimportant since
only components around the transition frequency take active
part in the interaction. We also limit ourselves to a single
polarization. The connection between the interaction constant
g and the decay rate γ follows from the Fermi golden rule:
γ = g2L.

We take the packet of the Gaussian form

φμ = φ(kμ) = (2π )14

√
κL

exp

[
− (kμ − 1)2

4κ2
− ikμ�

]
. (34)

From Eqs. (27) and (34), using the one-dimensional analogs
of Eqs. (30) and (31), we obtain the expression for the time-
dependent probability density of photons in the k space:

C(k1,k2; t) = 1√
8π3

γ

κ
|ξ (k1)χ (k2,t) + ξ (k2)χ (k1,t)|2,

(35)

where

ξ (z) = exp

[
− (z − 1)2

4κ2
− iz�

]
, (36)

χ (z,t) = 1 − exp[−γ t − i(1 − |z|)t]
γ + i(1 − |z|) . (37)

The total probability of finding the atom in the ground state
and two photons in the field is given by the twofold integral,

P−(t) = 1

2

∫ ∫
C(k1,k2; t)dk1dk2, (38)

where the integration is carried out over all values of k1 and
k2. In the basic approximation we used the estimate P+(t) =
1 − P−(t).

For the numerical calculations we choose the values of
parameters γ = 0.0125 and κ = 0.25. This value of the
wave-number distribution width corresponds to the single-
photon packet with the spatial length l = κ−1 = 4 and the
spectral width δ = cκ = 20γ . For the dependence P+(t) with
a given value of T we define formally the induced probability
shift �P+(T ) as the value of the function f (t) = P+(t) −
exp(−2γ t) taken at the point where |f (t)| has the absolute
maximum. This function behaves discontinuously, but the
rupture is purely formal: the acceleration of the transition
smoothly turns into deceleration. If 0 < w(T ) � 1, then the
first part of the photon accelerates the decay, whereas the
second decelerates it.

The numerically found dependence of P−(t) is shown in
Fig. 1. For the negative displacement � = −20 around the
arrival time T = 20, the growth of the probability P− accel-
erates for a short time in accordance with the semiclassical

FIG. 1. The dependence of the probability P− of finding the atom
in the ground state on time t [in units of (Kc)−1] for values of the initial
displacement (in units of K−1) � = −20 (solid line) and � = 20
(dash-dotted line).

description given in Sec. II. For comparison the results for the
positive displacement � = 20 are shown. In the latter case the
packet passed the atom before it became excited and never hit
it. Naturally, the dependence shows the behavior appropriate
to the spontaneous emission of the unperturbed atom. The
vertical distance between the curves in the right part of the
graph in Fig. 1 represents the induced probability shift; its
calculated value is �P+(20) = −�P−(20) = −0.076.

The time-dependent rate of the downward transition can be
defined as

�(t) = − 1

P+

dP+
dt

, (39)

where P+(t) is the probability of finding the atom in the excited
state. The behavior of �(t) is shown in Fig. 2. The maximum
of the decay rate is reached at t = 21.6, which is somewhat
later than the arrival time T = 20. The maximal value of �

exceeds the rate of transition due to the spontaneous emission
by the factor 1.94.

If we apply the semiclassical approximation presented in
Sec. I, then for the one-dimensional case [cf. Eq. (12)] we
obtain for the induced shift of the probability

�P+ = −
√

2π
γ

δ
w(T ). (40)

In our numerical example this formula yields �P+(20) =
−0.027, which is about one-third of the value given by the
quantum calculation. What is more important is that Eq. (40)
predicts the change of sign of the induced probability shift
for T � (ln 2/2)γ −1, that is, slowing down of the process of
spontaneous radiation. The quantum calculation shows that the
incoming photon always accelerates the downward transition
irrespectively of the sign of the population difference w(T );
instead of Eq. (40) it yields

�P+ = −
√

2π
γ

δ
P+(T ). (41)

The reason for the proportionality of the quantum value of
�P+ to the population of the upper state at the time of the
arrival P+(T ) is clear: with the ansatz Eq. (25) the behavior
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FIG. 2. The dependence of the temporal rate of the downward
transition � (in units of Kc), defined by Eq. (39), on time t [in
units of (Kc)−1] for the initial displacement (in units K−1) � = −20
(solid line). The dashed line shows the value of � = 2γ = 0.025 for
the unperturbed atom.

of the amplitudes aμ(t) does not depend on the parameters of
the wave packet at all. The choice of positive T just uniformly
decreases the values of all amplitudes by multiplying them by
the factor exp(−γ T ).

At this point we have to admit the superiority of the
semiclassical theory over the simplest approximate solution
of the quantum model. Let’s consider the case 2γ T � 1, in
which the packet arrives at the atom, when it is almost exactly
in the ground state. In this case the action of the photon on the
atom will not depend on T . The incoming photon will excite
the atom with some probability �P+(∞) (just because there
is no other way of evolution from the state with w = −1), then
the process of spontaneous emission will be renewed from the
initial value �P+(∞). This qualitative picture is in agreement
with the semiclassical result Eq. (40).

The quantity �P+(∞) can be calculated from a purely
quantum model. Taking the expansion of the state vector in
the form

|(t)〉 = A|+〉|vac〉 +
∑

μ

Bμ|−〉|1μ〉 (42)

and its substitution in the Schrodinger equation with the
Hamiltonian Eq. (16) leads to the system of equations for
the probability amplitudes

dA

dt
= −g

∑
μ

Bμei�μt ,
dBμ

dt
= gAe−i�μt . (43)

The numerical solution of this system with the chosen values
of κ and γ has been carried out for the length of the interval
of quantization L = 251.32 with the account of N = 159
modes with minimal |kμ|. When tested, this approximation
has produced the value of the spontaneous decay rate that
differed from the theoretical value by less than 1%. The
calculated dependence of P+(t) = |A(t)|2 is shown in Fig. 3.
This calculation is direct and does not depend on the ansatz
Eq. (25).

FIG. 3. The dependence of the probability of the excited state P+
on time t [in units of (Kc)−1] for the case of the one-photon packet Eq.
(34) with the initial displacement (in units of K−1) � = −20 scattered
on the atom in the ground state. Solid line: Quantum model, numerical
integration of the system Eq. (43). Dashed line: Semiclassical model,
numerical integration of Eqs. (8) and (9).

The numerically found quantum value �P+(∞) = 0.105
is quite close to the semiclassical value �P+(∞) = 0.125
that follows from Eq. (40). The numerical integration of the
Bloch Eqs. (8) and (9) gives even a better agreement with the
quantum theory: then �P+(∞) = 0.100. The functions P+(t)
calculated in semiclassical and quantum models are compared
in Fig. 3.

The constancy of the negative sign of �P+(T ) that follows
from the simplest approximate quantum solution can be
improved by the iteration process. By substitution of the
solution Eq. (27) in Eq. (20) [the first term can be neglected
in accordance with Eq. (32)], we obtain the formula for the
amplitudes in the approximation of the first order,

a(kμ,t) = φ(kμ) − γ

2π

∫ kμ

−∞
F (kμ,kν ; t) dkν, (44)

where φ(z) is given by Eq. (34), and

F (x,y; t)

= φ(x)

γ + i(1 − |x|) {G[i(1 − |y|)] − G[−γ + i(|x| − |y|)]}

+ φ(y)

γ + i(1 − |y|) {G[i(1 − |y|)] − G[−γ ]}, (45)

G(z) = ez − 1

z
. (46)

These expressions permit one to calculate directly the kinetics
of the probability of the excited state:

P+(t) = L

2π

∫ ∞

−∞
|a(k,t)|2dk. (47)

In the first approximation �P+(20) = −0.059, which is closer
to the semiclassical value than the result of the zeroth
approximation. The value of the �P+ calculated from the
expression Eq. (47) for large T becomes positive [e.g.,
�P+(130) = 3 × 10−3], although it remains much smaller
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FIG. 4. The logarithm of the spectral density as a function of
frequency ω (in units of Kc). The solid line shows the calculated
numerically values of S for the initial displacement (in units of K−1)
� = −20. The dots shows the summary spectrum S0.

than the numerically found limiting value �P+(∞) = 0.105.
One may hope that the higher approximations will improve
the agreement.

Now we discuss the spectral properties of the photons in
the final state. The spectral density of the final photons S(ω)
can be expressed through the limiting value of the double
k-space density given by Eq. (35), Cf (x,y) = C(x,y; ∞). The
expression has the form

S(ω) =
∫ ∞

0
[Cf (ω,ω′) + Cf (−ω,ω′) + Cf (ω, − ω′)

+Cf (−ω, − ω′)]dω′. (48)

Since the interaction of the photon with the atom is weak, it
is natural to assume that the spectrum is close to the sum of
two relevant spectra, for δ � γ —the wide Gaussian form of
the incoming packet and the narrow Lorentzian form of the
spontaneous radiation of the isolated atom,

S0(ω) = 1√
2πδ

exp

[
− (ω − 1)2

2δ2

]
+ 1

π

γ

γ 2 + (1 − ω)2
. (49)

We call this expression the summary spectrum. The numerical
calculations show that the final spectrum of photons is very
close to this form indeed (see Fig. 4).

It is difficult from this picture to see the deviations of the
real spectrum from the summary one that are created by the
interaction of the single-photon wave packet with the excited
atom. The ratio of spectral densities that is shown in Fig. 5 is
more instructive.

The interaction somewhere increases the spectral density
and somewhere decreases it. We define the spectral with �ω

as a minimal interval that contains half of the total spectral
density. With this definition we find that the net effect of the
interaction produces small, 11%, broadening of the spectrum.

FIG. 5. The logarithm of the ratio of the real spectral density
[found numerically for the initial displacement (in units of K−1) ] to
the summary one, R = S/S0, as a function of frequency ω (in units
of Kc).

V. DISCUSSION

Einstein in his groundbreaking papers of 1916 and 1917
[11–13] treated both radiation induced processes—that of ab-
sorption and that of acceleration of the downward transition—
on equal footing. He named them “Zustandsänderungen durch
Einstrahlung,” changes of state due to irradiation. The specific
term for the downward process, “negative Einstrahlung,”
negative irradiation, came in use by 1923 [14]. In 1924
Tolman [15] introduced the term “negative absorption,” and in
the same year van Vleck launched the parallel term “induced
emission” [16]. Finally, the predominant at the present time
term “stimulated emission” was brought in by Dirac [17]. This
chain of renamings has shifted the focus of attention from
the evolution of the atomic (molecular) system to that of the
radiation. Nevertheless, it is the acceleration of the downward
transition in the atomic system induced by irradiation that
remains the determinative indicator of the stimulated emission.

Dirac established the theory of interaction of atoms with
the quantized electromagnetic field and derived Einstein’s
phenomenological equations from this theory [17]. In the
course of the derivation it became clear, that the specific
property of the operator of creation of photons,

â†|N〉 = √
N + 1|N + 1〉, (50)

is responsible for the acceleration. Dirac used the approxima-
tion that is known now as the Fermi golden rule: the rate of
the atomic transition is proportional to the square of modulus
of the matrix elements summed over different modes. On the
other hand, Eq. (50) can be interpreted as a statement that the
stimulated photons are radiated to the same mode (definitely
with the same frequency ωμ, and if the modes are taken in
the form of traveling plane waves—then with the same wave
vector kμ and the polarization eμ), making the exact copies of
the initial, stimulating photon(s).

In Dirac’s approximation the acceleration of the transition,
that is, the stimulated emission, is due to the process of emitting
photons into the occupied modes, which can be interpreted as a
process of radiation of exact copies of the initial photons. In the
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course of history the fine print was frequently neglected, and
the previous (correct) statement has been sometimes reduced
to assertion that “stimulated emission is a process of radiation
of exact copies of the initial photons.” This statement may be
still correct, if we make it a definition and apply the term “stim-
ulated emission” only to vectors of multiply occupied modes.
Some authors do that [18,19]. But one must remember that
this definition is different from the historically developed one.

Acceleration of the transition can occur without copying
of photons. Drobny, Havukainen, and Buzek [7] studied the
scattering of a single-photon wave packet on an atom in the
ground state. In this situation all radiation is emitted into vacant
modes, since in the RWA, which was used by the authors, with
the given initial conditions the creation of the doubly occupied
mode is strictly forbidden. However, the temporal rate of the
transition from the upper state [see Eq. (39)] in their studies
reached values about an order of magnitude larger than that
of the spontaneous emission of the unperturbed excited atom.
In the problem studied in the present paper, that of scattering
of a single-photon wave packet on an atom in the excited
state, the situation is similar: the acceleration may be present
(see Fig. 2), whereas the copying is absent [see Eq. (32)], albeit
not due to the limitations of the RWA.

The idea of the universal identity of the acceleration of the
atomic transition by the radiation field and the emission of
photons in the occupied modes is so widespread and deeply
rooted that the relation Eq. (32) is sometimes considered as a
threat to the operability of lasers. Therefore some additional
explanations are due.

The decrease of the energy of the system under the influence
of the radiation is possible even in classical models. This fact
served as a guiding analogy to Einstein in his construction of
the kinetic equations for quantum systems, and it is properly
noted in his papers [11–13]. The classical theory of the
stimulated emission has been developed for a long time (see,
e.g., Refs. [20–22]).

There are several semiclassical theories of lasers and masers
that describe the radiating atoms by quantum models with the
discrete energy spectrum and use the classical description of
the electromagnetic field. The examples are the perturbation-
theory-based approach used by Gordon, Zeiger, and Townes
[23], the rate equations derived by Statz and deMars [24], and
Lamb’s theory of an optical maser [25]. These theories do not
use either the model of the quantized electromagnetic field or
Dirac’s theory. Consequently, they are completely independent
from the presence or absence of the multiply occupied modes
of the electromagnetic field—but still they are theories of
maser and laser operation that have proven themselves to be
viable and useful.

Our results have no direct influence on the theory of lasers,
even those without the resonators [26]. The model of the
ensemble of separate noninteracting atoms at rest (the distance
between the atoms must be much larger than the wavelength
of the resonant radiation λ0) that are interacting with the
sparse ensemble of nonoverlapping photons (for the numerical
values chosen in Sec. II the intensity must be much less
than 10−7 W cm−2), this model, to which the results of the
calculations given in previous sections could be applied more
or less straightforwardly, does not seem to be adequate for a
real laser.

However, the results presented above could be verified
experimentally. A single atom in a trap could be excited by
a short π pulse right before the arrival of a single-photon wave
packet. The most favorable conditions for spectral studies
correspond to the case in which the spectral width of the
packet δ is somewhat larger than the natural linewidth γ ,
but not too much (for instance, δ = 20γ as in the numerical
example of Sec. IV). Then the accuracy of measurement of
the spectral density of about 1% will be enough to observe
the deviations from the summary spectrum shown in Fig. 4.
Furthermore, at present the methods of experimental study of
multiple occupancy of modes are known [27], and the absence
of the multiply occupied modes could be confirmed directly.

The problem solved in this paper may be of some interest
for studies of the cloning of photons [18,28], especially of their
nonpolarizational degrees of freedom.

Finally we mention the problem of the radiation of two
adjacent atoms separated by a distance that is much smaller
than (or comparable to) the radiation wavelength. The situation
in which both atoms are initially excited is somewhat similar
to the problem studied in this paper: the radiation of an atom
occurs under the influence of the electromagnetic field created
by its neighbor, akin to a photon coupled to its source. The
influence of the adjacent atom on the kinetics of radiation
is strong: the energy decay rate of the system, defined by
the logarithmic derivative analogously to Eq. (39), tends to
zero for t → 0 and for t → ∞ tends to 2�1, the double
rate of the single atom radiation decay (see, e.g., Ref. [29]).
The nature of this radiation was described in different ways.
In the pioneering paper by Dicke [30] it was defined as a
“spontaneous coherent radiation.” Ernst and Stehle [31] have
found that the properties of this radiation “cannot be explained
in conventional terms of spontaneous or stimulated emission
of radiation.” Lehmberg [29] concluded that the acceleration of
the decay “can be regarded, at least in part, as due to stimulated
emission.” The kinetic definition of the stimulated emission,
which we gave at the beginning of this section, makes the last
point of view preferable.

Despite the active studies of many aspects of the problem of
two adjacent radiating atoms carried out for several decades,
the question about the weight P2 of the doubly occupied modes
in the final state of the radiation field nonetheless lacks a
definite answer. Still the opinion that for a small number of
neighboring radiating atoms the contribution of the doubly
occupied modes is negligible can be found in the literature [32].
The calculation of P2 remains as an interesting problem for
further studies.

VI. CONCLUSION

The main results of this paper describe the kinetics of
probabilities of the excited atom in the free space under the
influence of the incoming photon and the power spectrum of
the final state of the radiation field. The photon is represented
by a single-photon wave packet with a finite spectral width δ

and a variable time of arrival of the center of the packet to the
atom T .

The atom is described by the model of the two-level
system, which at the initial moment is turned into the excited
state. For the description of the photon two models are used.
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The first is a classical one in which the packet is described
by the quasimonochromatic pulse of the radiation with the
carrier frequency equal to that of the atomic transition ω0,
and the total energy of the pulse equals that of the photon
[see Eq. (1)]. The second approach is based on Dirac’s
theory of interaction of the atomic system with the quantized
electromagnetic field, where the packet is described by the
initial set of probability amplitudes in the space of wave
vectors.

Both approaches agree in their results, which shows that the
photon with the bandwidth δ much larger than the half-rate of
the spontaneous emission γ (δ � γ ) influences the kinetics of
the atomic transition only in a short interval of time with the
duration τ ∼ δ−1 around the arrival time T , and the amount
of this influence, measured by the change of the probability
of the excited state P+ during the pulse duration, is small,
�P+ ∝ γ /δ. If at the arrival time the atom is in the initial
stage of the spontaneous emission (γ T � 1), then the photon
accelerates its transition to the ground state (see Figs. 1 and 2),
�P+ < 0. In the opposite case, when the spontaneous decay is
nearly completed by the time of arrival (γ T � 1), the photon
for a short time reverses the direction of the evolution of the
P+ (�P+ > 0), then the spontaneous emission starts anew (see
Fig. 3).

Since the influence of the photon on the atomic evolution
is small, the spectral distribution of the photons in the final
state is close to the sum of the spectrum of the initial single-
photon wave packet and the Lorentzian natural line shape
of the spontaneous emission [see Eq. (49) and Fig. 4]. The

deviations of the spectral distribution, which are due to the
interaction of the incoming photon with the atom, from this
summary spectrum have a complicated form (see Fig. 5); they
are relatively small but could be observed if the parameter γ δ

is not too small.
Finally, in the frame of the quantum model it is shown that

the final state of the radiation field consists of the vectors of
pairs of singly occupied modes, |f 〉 = ∑

cμν |1μ〉|1ν〉, and
the contribution of the doubly occupied modes,

∑
bμ|2μ〉 to

the final state of the radiation field of the excited atom in the
free space under the influence of a single-photon wave packet
is zero. This result demonstrates that the acceleration of the
atomic transition is not necessarily due to the emission of
photons into the occupied modes. This fact was established
earlier in a different physical situation [7]. It does not threaten
the operability of masers and lasers, since several semiclassical
theories of these devices, which reflect the influence of the
radiation field on the rate of the transition, but make no notion
on the multiple occupancy of modes of the quantized field, are
known as successful.
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[13] A. Einstein, Phys. Z. 18, 121 (1917).
[14] A. Einstein and P. Ehrenfest, Z. Phys. 19, 301

(1923).
[15] R. C. Tolman, Phys. Rev. 23, 693 (1924).
[16] J. H. van Vleck, Phys. Rev. 24, 330 (1924).

[17] P. A. M. Dirac, Proc. R. Soc. London A 114, 243 (1927).
[18] W. K. Wootters and W. H. Zurek, Nature (London) 299, 802

(1982).
[19] F. W. Sun, B. H. Liu, Y. X. Gong, Y. F. Huang, Z. Y. Ou, and

G. C. Guo, Phys. Rev. Lett. 99, 043601 (2007).
[20] I. V. Tyutin and I. I. Sobel’man, Sov. Phys. Usp. 6, 267 (1963).
[21] W. J. Cocke, Phys. Rev. A 17, 1713 (1978).
[22] B. Fain and P. W. Milonni, J. Opt. Soc. Am. B 4, 78 (1987).
[23] J. P. Gordon, H. J. Zeiger, and C. H. Townes, Phys. Rev. 99,

1264 (1955).
[24] H. Statz and G. deMars, in Quantum Electronics, edited by

C. H. Townes (New York, Columbia University Press, New York,
1960), pp. 530–537.

[25] W. E. Lamb Jr., Phys. Rev. 134, A1429 (1964).
[26] L. Allen and G. I. Peters, Phys. Rev. A 8, 2031 (1973).
[27] R. H. Hadfield, Nat. Photonics 3, 696 (2009).
[28] V. Scarani, S. Iblisdir, N. Gisin, and A. Acin, Rev. Mod. Phys.

77, 1225 (2005).
[29] R. H. Lehmberg, Phys. Rev. A 2, 889 (1970).
[30] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[31] V. Ernst and P. Stehle, Phys. Rev. 176, 1456 (1968).
[32] I. E. Protsenko, J. Exp. Theor. Phys. 103, 167 (2006).

033816-8

http://dx.doi.org/10.1103/PhysRevLett.54.551
http://dx.doi.org/10.1103/PhysRevLett.54.551
http://dx.doi.org/10.1007/BF01339793
http://dx.doi.org/10.1103/PhysRevA.52.1875
http://dx.doi.org/10.1007/BF01336768
http://dx.doi.org/10.1007/BF01327565
http://dx.doi.org/10.1007/BF01327565
http://dx.doi.org/10.1103/PhysRev.23.693
http://dx.doi.org/10.1103/PhysRev.24.330
http://dx.doi.org/10.1098/rspa.1927.0039
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1103/PhysRevLett.99.043601
http://dx.doi.org/10.1070/PU1963v006n02ABEH003509
http://dx.doi.org/10.1103/PhysRevA.17.1713
http://dx.doi.org/10.1364/JOSAB.4.000078
http://dx.doi.org/10.1103/PhysRev.99.1264
http://dx.doi.org/10.1103/PhysRev.99.1264
http://dx.doi.org/10.1103/PhysRev.134.A1429
http://dx.doi.org/10.1103/PhysRevA.8.2031
http://dx.doi.org/10.1038/nphoton.2009.230
http://dx.doi.org/10.1103/RevModPhys.77.1225
http://dx.doi.org/10.1103/RevModPhys.77.1225
http://dx.doi.org/10.1103/PhysRevA.2.889
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.176.1456
http://dx.doi.org/10.1134/S1063776106080012

