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Creation of two vortex-entangled beams in a vortex-beam collision with a plane wave
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The physics of photons and electrons carrying orbital angular momentum (OAM) is an exciting field of
research in quantum optics and electron microscopy. Usually, one considers propagation of these vortex beams
in a medium or an external field and their absorption or scattering on fixed targets. Here we consider instead a
beam-beam collision. We show that elastic scattering of a Bessel vortex beam with a counterpropagating plane
wave naturally leads to two vortex-entangled outgoing beams. The vortex entanglement implies that the two final
particles are entangled not only in their orbital helicities but also in the opening angles of their momentum cones.
Our results are driven by kinematics of vortex-beam scattering and apply to particle pairs of any nature: eγ ,
e+e−, ep, etc. This collisional vortex entanglement can be used to create pairs of OAM-entangled particles of
different nature and to transfer a phase vortex, for example, from low-energy electrons to high-energy protons.
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I. INTRODUCTION

Laser beams carrying nonzero orbital angular momentum
(OAM) are well known and routinely used in optics, [1,2].
Wave fronts of such a beam are not planes but helices, and
each photon in this light field (a twisted photon) carries a well-
defined OAM quantized in units of h̄. Applications of twisted
photons range from microscopy to astrophysics, [3]. They are
also interesting for quantum information science because of the
high dimensionality of the OAM state space and the possibility
of creating OAM-entangled pairs of photons [4,5].

Wave fronts with phase vortices can exist for electrons and
other particles as well. Recently, following the suggestion
in [6], electron beams carrying OAM were experimentally
demonstrated, first using phase plates [7] and then with fork
diffraction holograms [8]. Such electrons carried a kinetic
energy as high as 300 keV and an orbital quantum number up to
m ∼ 100. An exact solution of the Dirac equation representing
a relativistic electron vortex was recently derived in [9].

Experimental realization of vortex beams opens up the
possibility of studying head-on beam-beam scattering, with
one or both colliding beams carrying OAM. Using sufficiently
energetic twisted electrons and photons in eγ , ee, e+e−,
ep, or electron-nucleus collisions, one can probe quantum
electrodynamics and perhaps hadronic processes in a novel
way [10]. In addition, the Compton backscattering of optical
twisted photons from an ultrarelativistic electron beam was
suggested in [11] to generate twisted photons in the giga-
electron-volt energy range.

All such processes share certain universal features, which
are driven by kinematics of free-space beam-beam collision
and are not sensitive to its microscopic nature. Some of them
were studied in [10] and [12]. One particular finding was
the necessity for the use of orbital helicity, with the OAM
projection on the average propagation direction (which is
different for each particle) rather than on a fixed common axis.
This notion becomes especially important for high-energy and
for high-angle (strongly noncollinear) scattering, as it removes
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strong “instrumental OAM” effects caused by an unfortunate
choice of the reference axis and leaves us with the “intrinsic
OAM” of the twisted state. Use of the orbital helicity (without
calling it this) was also advocated in [13]. In the present
paper whenever we refer to OAM we actually mean the orbital
helicity.

In this paper we explore another universal feature of
vortex-beam collisions. We study whether the outgoing wave
fronts contain vortices and what are the corresponding orbital
helicities m1 and m2. This issue has never been addressed
in a generic setup; in previous calculations of vortex-beam
scattering, at least one of the final particles was assumed to
be a plane wave. We find that the final particles are vortex
entangled: that is, they are entangled both in the (m1,m2) space
and in the space of opening angles. Since for noncollinear
scattering there is no total orbital helicity conservation law,
selecting one specific m1 does not lead to a unique m2.
However, by using the other degree of freedom, the opening
angle, one can collapse the second particle to a more or less
definite m2, with important practical implications.

Note that similar issues arise in the context of OAM-
entangled photon pair production by spontaneous parametric
down-conversion (SPDC) in a nonlinear medium (see, e.g.,
[13] and [14]). In particle language, such a medium induces
decay of the pump photon into two photons of lower energy.
Although a convenient source of OAM-entangled photon pairs,
this process is specific to photons and its dynamics is defined
(and limited) by the exact properties of the crystal slab,
including its thickness. In contrast to that, the entanglement
discussed in this paper is universal (not specific to particle
species), it spontaneously occurs in a free-space collision (and
not induced by a medium), and it allows one to study its
behavior in the entire available kinematical range.

II. DESCRIBING TWISTED STATES

To simplify the calculations, we describe the twisted states
as paraxial Bessel beams. We consider the scalar case only
(polarization degrees of freedom can be straightforwardly
incorporated in the paraxial approximation) and use the con-
ventions of [11]. All transverse vectors are given in boldface,
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while 3-vectors are indicated by an arrow. A Bessel twisted
state is a non-plane-wave solution of the free-wave equation
with a definite frequency ω, longitudinal momentum kz, mod-
ulus of the transverse momentum |k| = κ, and z projection
of orbital angular momentum m. When written in cylindric
coordinates r,ϕr ,z, it has form |κ,m〉 = e−iωt+ikzzψκm(r), with
ψκm(r) = eimϕr Jm(κr)

√
κ/2π , where Jm(x) is the Bessel

function. A twisted state can be represented as a superposition
of plane waves,

|κ,m〉 = e−iωt+ikzz

∫
d2k

(2π )2
aκm(k)eikr, (1)

where

aκm(k) = (−i)meimϕk

√
2π

δ(|k| − κ)√
κ

. (2)

Thus, the allowed momenta lie on the edge of a cone with the
opening angle arctan(κ/kz). More properties of twisted states,
including their normalization and phase-space density, can be
found in [10] and [11]. Here we only note that Eq. (1) in fact
describes the passage from plane waves to twisted particles in
the description of a scattering process.

A Bessel state |κ,m〉 with fixed κ is non-normalizable in the
transverse plane. A much better approximation to physically
realizable states such as Bessel-Gaussian or aperture-limited
beams is given by a fixed-m superposition of Bessel states,

|κ0,σ ; m〉 =
∫

dκ f (κ)|κ,m〉 , (3)

with a properly normalized weight function f (κ) peaked at κ0

and having width σ . This state is normalizable (and localized)
in the transverse plane and is assumed to be monochromatic
(kz is supposed to vary with κ so that the energy is constant).
Properties of such states and their important role in resolving
the nonforward-to-forward paradox in Bessel beam scattering
was discussed in [12].

III. VORTEX-BEAM SCATTERING

To describe scattering of the Bessel state |κ,m〉 and a plane
wave, we start with a generic elastic two-particle scattering in
the usual plane-wave basis. The initial particle 4-momenta are
denoted as k and p, the final 4-momenta are k1 and k2. The
scattering matrix element of this process is represented as

SPW = i(2π )4δ(4)(k + p − k1 − k2)M, (4)

where the amplitude M is calculated according to the standard
Feynman rules. Then we pass from the plane wave to twisted
scattering by convoluting (4) with the weight function aκimi

,
(2), for each initial Bessel-beam twisted state and with a∗

κf mf

for each final twisted state. For example, if only one initial
particle is twisted, the scattering matrix element is Stw =∫

d2kaκm(k)SPW/(2π )2. Owing to the δ function inside aκm,
this representation contains only one integration with respect
to the azimuthal angle ϕ of the transverse momentum k.
This integration is eliminated by the transverse momentum
δ function in SPW, (4). If we assume, for simplicity, that

�p = (0,0,pz) and introduce the well-defined transverse vector
k12 ≡ k1 + k2 with modulus k12 and azimuthal angle ϕ12, then

Stw ∝
∫

d2k
(2π )2

aκm(k)δ(2)(k − k1 − k2)M(k)

= (−i)m

(2π )3/2
eimϕ12

δ(κ − k12)√
κ

M(k12). (5)

Note that the scattering amplitude M itself is not integrated
but is just taken at a specific value of the initial momentum.

Do the wave fronts of the two outgoing particles contain
phase vortices? Equation (5) provides the answer to this
question. Let us first suppose that the final momentum k2

with modulus |k2| and azimuthal angle ϕ2 is fixed (the
second particle is projected on a plane wave). Then the final
momentum of the first particle k1 is not uniquely defined
but belongs to a circle of radius κ around the point −k2. Its
modulus changes in the interval

∣∣|k2| − κ

∣∣ � |k1| � |k2| + κ,
and for a given |k1|, its azimuthal angle ϕ1 takes two values:

ϕ1 = ϕ2 ± arccos( κ
2−k2

1−k2
2

2|k1||k2| ). The azimuthal angle ϕ12, which
parametrizes the points on the circle, also takes two values,

ϕ12 = ϕ2 ± arccos( κ
2+k2

2−k2
1

2κ|k2| ), and the plus-minus signs in
these two expressions are correlated. When |k1| spans the
allowed interval, the angle ϕ12 covers the entire circle,
although the intensity of the scattering is modulated by the
amplitude M.

Note that the scattering amplitude for k1 = −k2 is exactly
0 for any value of κ. Passing to the three-dimensional
vectors, one can define the axis �n1‖〈�k〉 + �p − �k2, where
〈�k〉 ≡ 〈κ,m|�k|κ,m〉, and claim that scattering exactly in this
direction in the absence of even the initial twisted state is
represented by a transversely localized state, (3). Therefore,
�n1 represents the direction of the phase vortex (the line of
zero intensity and undefined phase). It is, therefore, natural
to expect that at fixed �k2 the final state of the first particle
can be approximated by the twisted state |κ1,m1〉 defined
with respect to this direction, with κ1 ≈ κ and with orbital
helicity m1 ≈ m. For the specific kinematics of the Compton
backscattering, this expectation was confirmed in [12].

It is clear that if one fixed the final momentum �k1 of the
first particle, one would rederive similar conclusions for �k2:
the outgoing wave of the second final particle would contain
a phase vortex in the direction of �n2‖〈�k〉 + �p − �k1. Therefore,
there can be no unambiguous assignment of which of the final
particles is twisted and which is not.

IV. TRIPLE-TWISTED SCATTERING

The “plane-wave–twisted-state” entanglement derived
above rests on the assumption that one of the final particles is
a plane wave. Below we show that, in general, the final state
in this elastic collision can be represented by an entangled
state of two vortex beams. The final twisted particles are
entangled not only through m’s, but also through κ’s, and
the previously found plane-wave–twisted-state entanglement
is just a particular case of this general result.

Let us again consider the elastic collision of a Bessel state
|κ,m〉 with a plane wave with momentum �p and represent
the two final particles as Bessel states |κ1,m1〉 and |κ2,m2〉.
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FIG. 1. (Color online) Kinematics of the triple-twisted scattering
in the c.m.

Kinematical conventions are shown in Fig. 1. In order to
simplify the calculations, we consider this process in the
c.m. frame, where 〈�k〉 + �p = 0, and choose the common
quantization axis z′, characterized by the polar angle θ , for
both final particles. The two axes, z and z′, define the scattering
plane; working in this plane, we choose axis x as the one
orthogonal to z, and axis x ′ as orthogonal to z′. Without
loss of generality, we assume that the azimuthal angle ϕ

for the initial twisted state is measured from axis x, while
the azimuthal angles ϕ1 and ϕ2 of the final twisted states
(which lie in the plane orthogonal to z′) are measured from
the axis x ′. The average values of the final momenta 〈�k1〉
and 〈�k2〉 are parallel to z′; we denote their difference as
q ≡ |〈�k1〉| − |〈�k2〉| = k1z′ + k2z′ .

The scattering matrix element for such a triple-twisted
scattering, S3tw, is equal to∫

d2k
(2π )2

d2k1

(2π )2

d2k2

(2π )2
aκm(k)a∗

κ1m1
(k1)a∗

κ2m2
(k2)SPW. (6)

The three-dimensional δ function δ(3)(�k + �p − �k1 − �k2) inside
SPW eliminates all three integrals over the azimuthal angles ϕ,
ϕ1, and ϕ2, setting them to certain values. The amplitude M
does not affect the integral and is just taken at the momenta �k,
�k1, and �k2, corresponding to these azimuthal angles. In order
to show the key features of the results, we now assume that the
amplitude M is a slowly varying function, and in the paraxial
approximation we take M(�ki) ≈ M(〈�ki〉) ≡ M0 out of the
integral. Then the integral can be computed exactly, and the
triple-twisted scattering matrix element equals

S3tw = i
δ(Ef − Ei)√

2π
im1+m2−m 2

�

√
κ1κ2

κ

× cos[mϕ∗ − (m1 − m2)ϕ̃∗] cos[m1δ1 + m2δ2]√
sin2 θ − sin2 ξ

M0.

(7)

Here we introduced parameter ξ via sin ξ = q/κ, |ξ | < θ , and
the following angles:

ϕ∗ = arccos

(
sin ξ

sin θ

)
, ϕ̃∗ = arccos

(
tan ξ

tan θ

)
. (8)

Besides, � is the area of the triangle with sides κ1, κ2,
and κ̃ ≡ κ cos ξ , and δ1 and δ2 are two of its inner angles:
cos δ1,2 = (κ̃2 + κ

2
1,2 − κ

2
2,1)/2κ̃κ1,2. The results in [12] for

the case where one of the final particles is a plane wave can
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FIG. 2. Relative intensity of scattering in the (m1,m2) plot
integrated over q for κ0 = κ01 = 2κ02, σi = κi/5, m = 5, and
scattering angle θ = 0.2.

be found in (7) in the case of m2 = 0 and κ2 → 0, using the
following relations [10]: |PW(k2)〉 = limκ2→0

√
2π/κ2|κ2,0〉

and limκ2→0 �−1 = 4πδ(κ̃2 − κ
2
1).

Our main result, (7), allows us to characterize the entangle-
ment of the two final particles. They are entangled not only in
the (m1,m2) space, but also in the (κ1,κ2) space. The existence
of a triangle with sides κ1, κ2, and κ̃ means that the allowed
values of (κ1,κ2) lie inside the stripe defined by

|κ1 − κ2| � κ̃ � κ1 + κ2. (9)

As for the m1 and m2 distributions, they are infinitely wide for
pure Bessel states. However, if the initial and final twisted
states are taken as transversely localized states, (3), with
peak positions κ0i and widths σi , then the orbital helicity
distributions become rather narrow, with a typical width
of O(κ0i/σi). Their shapes also depend on the location of
the central point (κ01,κ02) in the stripe of allowed values,
(9). For illustration, we show in Fig. 2 a typical (m1,m2)
distribution of the scattering intensity as a proportional box
plot at θ = 0.2 ≈ 11◦ for m = 5 and for an asymmetric
choice of κ’s: κ0 = κ01 = 2κ02 (the overall scale is arbitrary),
σi = κ0i/5. This scattering intensity is obtained by squaring
the fi-weighted S-matrix element, (7), and integrating the
result over the allowed region of q. The (m1,m2) correlations
shown in Fig. 2 arise due to the orbital helicity entanglement
of the two vortex beams.

The plot also illustrates the absence of the strict total orbital
helicity conservation rule, although it possesses a sizable
“ridge” near m1 − m2 = m. Another feature which is visible
in the plot is that the final particle with a larger κ tends to carry
a larger orbital helicity. This property follows from behavior of
cosines in (7). If κ2 � κ1 ≈ κ, then δ1 � 1, while δ2 can be
large. Therefore, m1 can be large, while any nonzero m2 will be
suppressed by the second cosine after integration over certain
κi domains. In the limit of vanishing κ2 or κ1, one recovers
the plane-wave–twisted-state entanglement discussed above.
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V. DISCUSSION

Our results bear several implications. First, we showed
that elastic scattering of a vortex beam with a plane wave
spontaneously leads to two vortex-entangled beams. This can
be used to create OAM-entangled pairs of particles of different
nature (electrophoton, electron-proton, etc.), including those
for which vortex beams are not yet available. So far, only
photon pairs entangled through OAM were created, [4,5].
Experimental study of this entanglement is feasible with
today’s technology, for example, by colliding electrons from
two electron microscopes in the common focal spot and
detecting the orbital helicity of scattered electrons. Current
discussion about OAM conservation during SPDC [14] might
also benefit from these experiments.

Second, by colliding a vortex electron beam with a high-
energy proton beam with sufficient transverse coherence and
by filtering only scattered electrons with small κ, one can
create energetic twisted protons. This would be a unique
possibility to generate high-energy particles carrying OAM,
because fork diffraction grating or phase plates are of no use
for high-energy (giga-electron-volt-range) particles. Due to the
strong momentum imbalance, the kinematics of this process in
the laboratory frame differs from the c.m. example considered
here. However, for small proton scattering angles, integral (6)
can also be calculated analytically, and the OAM-entanglement
pattern can be studied.

Third, if a vortex electron beam experiences multiple scat-
tering off stray atoms or other particles during its propagation,

its twisted state can deteriorate. From the calculational point of
view, this process is different from the propagation of twisted
light through a turbulent medium or from the motion of twisted
electrons through chaotic electromagnetic fields. In contrast
to scattering in an external potential, the scattering matrix
element for a two-plane-wave collision contains the three-
dimensional δ function describing momentum conservation,
(4). Therefore, projecting the initial and final particles on
twisted states will lead to different results in these two cases.

In summary, we have found that generic elastic scattering of
a vortex beam with a plane wave leads to two vortex-entangled
outgoing beams. This feature was ignored in all previous
calculations of vortex-beam scattering [10–12]. The final
particles are naturally entangled both through their orbital
helicities mi and through κi . These results are driven by the
kinematics of vortex-beam scattering and apply to particles of
any nature (eγ , e+e−, ep, etc). They can be used to create
pairs of OAM-entangled particles of different natures, and
to transfer a phase vortex to high-energy particles (e.g., pro-
tons), and are important for manipulating the electron vortex
beams.
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