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Improved resolution in fluorescence microscopy using quantum correlations
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Breaking the diffraction limit in microscopy by utilizing the quantum properties of light has been the goal
of intense research in recent years. We propose a super-resolution technique based on nonclassical emission
statistics of fluorescent markers, routinely used as contrast labels for bioimaging. The technique can be readily
implemented with current technology.
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I. INTRODUCTION

Increasing the imaging resolution in optical microscopy
can potentially benefit many fields of research, including the
life sciences. In classical linear optics, diffraction imposes a
limit on the resolution of far-field microscopy. In the last two
decades, a number of techniques have been developed that
break this limit by making use of nonlinear optical processes
[1–3] or by utilizing fluorescent labels exhibiting strong
variations in brightness either induced by photoactivation
[4–6] or intrinsic [7,8].

Quantum optics offers another promising pathway to super-
resolution imaging. Quantum optical methods have been
shown to dramatically increase the resolution in interfero-
metric measurements [9] and allow for imaging-sensitivity
enhancement beyond shot noise [10]. At the same time, super-
resolution via quantum imaging has not yet been demonstrated
experimentally. The theoretical research aiming at achieving
subdiffraction-limited quantum imaging has mainly focused
on the scenario wherein an absorptive object is illuminated
with a nonclassical light beam. Super-resolution is then
attained via two main routes. One requires an object stained
with a multiphoton absorbing material. In this scheme, the
diffraction limit is overcome by utilizing the high-spatial-
frequency quantum interference patterns, similar to quantum
super-resolution lithography [11]. Although multiphoton in-
terference patterns of high order have been observed exper-
imentally using coincidence detection [12–14], the lack of
a low-light-level multiphoton absorber makes this approach
not currently feasible. The other pathway to achieving subd-
iffraction resolution is probing an object with a beam of light
exhibiting position (or momentum) entanglement. The high-
resolution images can then be obtained simply by coincidence
detection [15,16]. Although momentum-entangled light can
be produced by spontaneous parametric down-conversion
[17,18], the resolution in this case is limited by the
diffraction limit at the pumping wavelength. Increasing the
resolution further requires a bright, highly entangled light
source, which has yet to be developed.

The above super-resolution schemes exploit quantum prop-
erties of the illuminating light and thus require nonclassical
light sources. Alternatively, one can image emitters naturally
producing nonclassical light, e.g., correlated photon pairs
[19,20]. However, due to the lack of a suitable emitter, this
approach has not been tested experimentally. It was also shown
theoretically [21] that resonant fluorescence can produce
multiphoton interference patterns which can be used for super-

resolved imaging of the emitters. While this approach can be
feasible for imaging trapped ions, its reliance on fragile quan-
tum effects makes it impractical for bioimaging conditions.

In this paper, we consider a generic property of fluorescence
emitters: photon antibunching [22], arising from the tendency
of fluorophores to emit photons one by one rather than in bursts.
Antibunching is a distinctively quantum phenomenon, imply-
ing reduced quantum fluctuations (squeezing) of light [23] and
sub-Poissonian photon statistics [24]. On the other hand, it is
a very robust effect, exhibited by various fluorophores at room
temperature [25–27]. Antibunching has become a standard
tool for determining the number of fluorescent emitters [28];
however, it has not been utilized for resolution enhancement.
We study the nonclassical photon statistics of fluorescence in
connection to fluorescence microscopy and show that it can be
used for super-resolved microscopic imaging under realistic
conditions.

II. RESULTS

For simplicity, we focus on the case of pulsed excitation
with the pulse duration much shorter and the interval between
pulses much longer than the fluorescence lifetime. Upon
excitation, a single fluorophore emits at most one photon with
a probability p. In other words, the number N of photons
emitted following a single excitation pulse follows a Bernoulli
distribution with parameter p. Such behavior is profoundly
different from the Poissonian statistics of classical light. In
particular, the variance of the number of fluorescent photons
emitted following a single excitation pulse is V = p(1 − p)
while the mean photon number is 〈N〉 = p. A classical light
source with the same photon flux would yield a variance
Vp = 〈N〉. The variance of the fluorescent-photon number is
thus reduced by a factor of (1 − p) with respect to the classical
shot noise, corresponding to a negative value of the Mandel
parameter Q = −p [29].

The nonclassical statistics of fluorescent light can be
used to produce super-resolved images of fluorophores.
Consider a fluorescent emitter, imaged by a microscopic
imaging system onto a pixelated (or scanning) detector
with photon-number-resolving capability. At every detector
position x, the probability P (x) to detect a photon emitted by
the fluorophore is given by

P (x) = pGSh(x − x0), (1)

where G is the quantum efficiency of the detector, S denotes the
optical collection efficiency, h is the point spread function of
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the imaging system, and x0 describes the coordinates of the flu-
orophore image. The photon-number variance becomes a func-
tion of the detector position V (x) = P (x) [1 − P (x)]. For a set
of several fluorophores, since the emission events in different
fluorophores are uncorrelated, the variance of the total photon
number is given by the sum of variances for every emitter:

V (x) =
∑

α

Pα(x) [1 − Pα(x)] , (2)

where Pα is the photon-detection probability of the
fluorophore α.

The difference between Eq. (2) and the classical shot
noise variance at the same mean flux quantifies the degree of
antibunching of fluorescent light and can therefore be called
the antibunching signal

A(x) ≡ V (x) − 〈N (x)〉 = −G2S2
∑

α

p2
αh2(x − xα). (3)

The antibunching signal (3) can also be expressed as

A(x) = [
g(2)(0) − 1

] 〈N (x)〉2 = Q(x) 〈N (x)〉 , (4)

where g(2)(τ ) = 〈a†(0)a†(τ )a(τ )a(0)〉/〈a†a〉2 is the second-
order intensity-correlation function [29] and Q(x) is the
Mandel parameter observed at a given detector location.
The signal A(x), defined here in terms of the number of
fluorescence photons detected after a single excitation pulse,
can be accumulated over an arbitrary number of excitation
cycles. This signal corresponds to an effective point spread
function hA(x) = h2(x). In the Fourier domain, hA spans an
interval of spatial frequencies twice as large as that of h.
The antibunching microscopy thus enables imaging with up
to double resolution, similar to the resolution improvement
(relative to the wavelength) attainable with two-photon mi-
croscopy [30].

The mechanism of the antibunching microscopy is illus-
trated in Fig. 1 for the case of two identical emitters. The
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FIG. 1. (Color online) Image plane signal distribution for anti-
bunching imaging of two fluorescent emitters. The units are arbitrary
in both axes. The vertical lines denote the locations of the emitters.
The solid blue line (top curve) is the regular fluorescent signal as
a function of the image plane coordinate x, the dotted green line
represents the variance given by Eq. (2), the dashed black line is the
antibunching signal (3). The solid red line (bottom curve) shows the
probability F2(x) = P1(x)P2(x) of a two-photon coincidence event
with a sharp peak in the center. The dash-dotted red line shows the
two-photon probability for two classical emitters F c

2 (x) = (P1(x) +
P2(x))2/2, featuring a wider peak. The plots are calculated for
P1(x − 1) = P2(x + 1) = 0.4 exp(−x2/2.25).

emitters are not resolved in the fluorescent signal while two
separate peaks are visible in the antibunching signal. It is
instructive to consider photon statistics in the limit of small
photon flux. Let F1(x) and F2(x) be the probabilities of
detecting exactly one and two photons, respectively, at a
given detector position. We assume here F2 � F1 � 1 and
neglect the probability of detecting more than two photons.
In terms of these probabilities, the average photon number
and the variance become 〈N〉 = [F1(x) + 2F2(x)] and V (x) �
(F1 + 4F2 − F 2

1 ), respectively. The antibunching signal (3)
then takes the form of A(x) � [2F2(x) − F 2

1 (x)]. Since this
expression vanishes for Poissonian statistics, the antibunching
signal can be regarded as a measure of the lack of two-photon
coincidence events with respect to classical light.

This observation elucidates the mechanism of the resolution
increase shown in Fig. 1. In this example, a coincidence
event involves the detection of one photon from each of the
fluorophores. The probability of a coincidence event therefore
has a sharp maximum positioned between the two emitters.
This is in contrast to the case of two classical emitters for
which a pair of photons could as well originate from a single
emitter, making the maximum less sharp.

The antibunching signal (3) is determined by the optical-
signal autocorrelation at a given detector position. Fluores-
cence antibunching is also manifest in the cross correlation
between the photon numbers N (x1) and N (x2) detected
in a pair of proximate detectors. Similar to variance, the
covariance of the two signals V ×(x1,x2) = 〈N (x1)N (x2)〉 −
〈N (x1)〉 〈N (x2)〉 is a sum of individual fluorophore con-
tributions. For classical light, the signals observed in the
detectors are uncorrelated, and therefore, covariance vanishes.
In contrast, an individual fluorophore produces only one
photon at a time, which can be detected in only one of
the detectors, leading to N (x1)N (x2) = 0. The covariance
antibunching signal can thus be defined as

A×(x1,x2) =
∑

α

V ×
α (x1,x2) = −

∑
α

Pα(x1)Pα(x2), (5)

where x1 and x2 are the detector positions and P (1)
α and P (2)

α

are the detection probabilities for a given fluorophore at the
two detectors. The antibunching signal (5) contains a product
of two optical point spread functions. As we show below, it
can be used to produce higher-resolution images along with
the autocorrelation antibunching signal of Eq. (3).

We numerically tested the resolution improvement in
antibunching microscopy by performing a Monte Carlo simu-
lation of the antibunching-imaging process using a pixelated
detector array. For efficient signal utilization, we used both
the autocorrelation antibunching signal of Eq. (3) and the
cross-correlation data of Eq. (5) to form the image. The
autocorrelation antibunching signal at a given pixel, numbered
by a two-dimensional index j , is given by

Aj =
∑

α

Pα(j )2 = Vj − 〈Nj 〉, (6)

where 〈Nj 〉 is the mean number of photons and Vj is the
variance of the photon number. The cross-correlation contri-
bution to the second-order antibunching signal was calculated
as a weighted sum of the cross correlations of the pairs of
pixels j ± δ, centered at the pixel j . The simulation was
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carried out as follows. A stack of 105 frames was generated,
each representing a fluorescence image obtained following
a single excitation pulse. One photon from every fluorophore
was placed randomly with a probability density corresponding
to a Gaussian point spread function with a total probability to
emit of 0.5. The resulting stack of single-exposure images
was used to compute the second-order antibunching signal
according to the following formula:

Aj =
∑

δ

W (δ)(〈Nj+δNj−δ〉 − 〈Nj+δ〉〈Nj−δ〉) − 〈Nj 〉, (7)

where Nj is the number of photons detected in the pixel j ; δ is
a summation index labeling the pixel pairs, running from −6
to 6 in both dimensions; W (δ) = exp[−0.033δ2] is the weight
assigned to the pixel pairs; and the angular brackets denote
averaging over the set of frames.

The above analysis does not fully utilize the cross-
correlation information. Indeed, only a half of all pixel pairs
are centered in a certain pixel. A pair of, for example, two
adjacent pixels has its center between the two pixels. It
is therefore possible to compute the antibunching signal in
“virtual pixels” in between adjacent pixels, i.e., with at least
one of the two components of j being a half-integer [31]. The
effective number of pixels in each direction is thus doubled,
increasing the total amount of pixels by a factor of four. The
signal in the virtual pixels was calculated using Eq. (7) with
the last term omitted and with one or both components of
the summation index δ assuming half-integer values (so that
i ± δ are integers). The results of the simulation shown in
Fig. 2 demonstrate a significant improvement of resolution.
The individual emitters, which cannot be discerned by regular
imaging, are clearly resolved in the antibunching image.

The antibunching signal, defined above in terms of second-
order momenta, serves as a measure of the lack of two-photon
coincidence events. Hence, it can be called the second-order
antibunching signal. The nth order antibunching signal An(x),
quantifying the lack of n-photon events, can be defined in
terms of the irreducible parts of the nth-order momenta known
as cumulants [32]

Cn =
[(

∂

∂t

)n

ln 〈exp(Nt)〉
]

t=0

. (8)

The defining property of cumulants is that they are additive
for independent random variables, allowing one to express the

x

y

(c)

0 0.5 1
0

0.5

1

0

1

2

x 10
−3

x

y

(b)

0 0.5 1
0

0.5

1

0

0.01

0.02

0 0.5 1
0

0.5

1

x

y

(a)

FIG. 2. (Color online) A simulation of the second-order anti-
bunching imaging. (a) Three emitters are positioned in the vertices
of an equilateral triangle. The units are arbitrary, and the scale bar
shows the full width at half maximum of the optical-point-spread
function. (b) The regular fluorescence image does not resolve the
emitters. (c) The second-order antibunching image. The emitters are
clearly discerned. Both images were formed from 105 frames, each
corresponding to a single excitation cycle.

cumulants of the observed signal as a sum of the individual flu-
orophore contributions. For a single fluorophore, the nth-order
cumulant is given by Cn = P (1 − P ) · · · [1 − (n − 1)P ]. The
cumulants Cn(x) of the total signal are therefore given by

Cn(x) =
∑

α

Pα(x) [1 − Pα(x)] · · · [1 − (n − 1)Pα(x)] . (9)

The antibunching signal of order n can then be defined as

An(x) =
∑

α

P n
α (x), (10)

which can be expressed via cumulants of order k � n using
Eq. (9):

An(x) =
∑

k

(R̂n)1kCk(x), (11)

where (R̂n)1k is the first row of the nth power of a matrix R̂,
all elements of which are zero except

Rkk = −Rk−1k = 1/k. (12)

The signals An(x) vanish in the classical limit and are therefore
a valid local measure of the degree of antibunching. For n =
2, the above expressions yield the second-order antibunching
signal described above. Substituting Eq. (1) into the definition
(10), one obtains

An(x) = GnSn
∑

α

pn
α [h(x − xi)]

n . (13)

Effectively, the nth-order antibunching signal corresponds to a
point-spread function hm(x) = [h(x)]m. Similar to the second
order, this enables imaging with resolution up to n times better
than that of diffraction-limited imaging in three dimensions
[3,30].

III. DISCUSSION

Quantum-fluorescence imaging requires fluorophores with
as high quantum yields as possible. Fortunately, many of the
fluorescent markers widely used in bioimaging, such as organic
dyes, have quantum yields approaching unity. Very high
quantum yields have also been demonstrated with colloidal
semiconductor quantum dots [33].

Many fluorescent single-photon emitters exhibit random
variations of brightness known as blinking. Blinking increases
the observed photon-number fluctuations and could be ex-
pected to change the photon statistics to super-Poissonian. It
turns out, however, not to be the case. Indeed, for a single
emitter, the photon number follows a Bernoulli distribution
even in the presence of blinking, the only consequence of
which is an effective reduction of the emission probability. As
long as the blinking of individual fluorophores is uncorrelated,
the antibunching properties of emission statistics persist for an
arbitrary number of emitters.

The photon-number distributions required for computing
the cumulants in Eq. (11) can be determined with a scanning
number resolving detector [34,35]. Another option is using
a regular or an electron-multiplying charged coupled device
(ccd) [16]. An electron-multiplying ccd in the photon-counting
regime can be used as a pixelated number resolving detector,
provided that the number of pixels is sufficiently large so that
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the probability of detecting more than one photon in a pixel is
small. Both the scanning number resolving detectors and ccds
can achieve quantum yields in excess of 90% [34,36].

The acquisition times necessary to obtain sufficient photon
statistics can potentially be very short. Since most fluorophores
have relaxation times in the nanosecond range, the antibunched
photons can be collected at a rate of at least a few tens
of millions of excitation pulses per second. The speed of
data acquisition, however, is currently limited by the detector
throughput. The future progress of detector technology may
eliminate this bottleneck through the development of faster
electron-multiplying cameras [37] or larger single-photon-
detector arrays [38]. With a sufficiently fast detector, anti-
bunching microscopy can enable super-resolved imaging at
millisecond time scales.

Antibunching microscopy can be regarded as a quantum
version of super-resolution optical-fluctuation imaging (SOFI)
[8]. In this technique, the nth-order signal is given by the nth
cumulant without the lower-order “correction” terms appear-
ing in Eq. (11). Interestingly, the antibunching signal vanishes
in the classical limit instead of turning into the corresponding
SOFI expression. This is the case because the two schemes
exploit different sources of non-Poissonian statistics. While

SOFI quantifies the super-Poissonian brightness fluctuations
of essentially classical sources, in the present scheme the
signal is due to the reduction of the quantum fluctuations with
respect to the classical shot noise. The antibunching signal
is thus generated by steadily emitting fluorophores, enabling
continuous super-resolved monitoring of the samples stained
with fluorescent markers.

In conclusion, we propose a fluorescence-microscopy-
imaging modality that allows for subdiffraction-limited imag-
ing by virtue of quantum properties of fluorescence emission.
Despite being ostensibly quantum, the technique does not
require a nonclassical light source and does not depend on
fragile quantum-interference effects. The proposed method
can be implemented with current technology or indeed with a
regular fluorescence microscope.
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