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Intrapulse quantum spectral correlation of photon numbers of a femtosecond optical pulse, which propagates
a 5-m-long optical fiber, is presented in a matrix format for quantum noise study by numerical calculation.
The calculation includes the higher-order optical effects such as intrapulse-stimulated Raman scattering and
self-steepening effects, as well as self-phase modulation and group velocity dispersion. The quantum correlations
between spectral components (spectral resolution of 0.7 nm) which evolve with the pulse energy are provided
in a matrix format at soliton orders including the low orders, N = 0.1 to 1.0 (a 0.1 step), to give the detailed
properties of spectral correlation evolutions in the matrix format. It is shown that the photon-number correlations
between spectral components near the pulse spectrum center form strong correlations of a square shape in the
matrix, at a soliton order N (�0.4), and then are redistributed into those between spectral components near the
spectrum wings such that the cross-shaped correlation pattern in the matrix begin to be visible at N = 0.5 before
their further redistribution as N → 1.0. In addition, significant anticorrelations can be increasingly extended to
be found between spectral components near the spectrum center as N → 1.0, leading to the expectation that
the degree of photon-number squeezing by spectral filtering for subsolitons can be lower than that for solitons.
Intrapulse-stimulated Raman scattering that starts to become visible at around N = 0.6 produces an asymmetric
correlation structure with respect to the spectrum center in the correlation matrices while the relevant pulse
self-frequency shift becomes visible at N � 0.8. The calculation presented indicates that the measurement of
nonlinear effects which are not detectable distinctly at the classical level is possible at the quantum level.
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I. INTRODUCTION

Quantum spectral correlations of light propagating in a
nonlinear media have been studied for the internal structure
of light quantum noise [1–8]. In particular, the spectral
correlations of photon numbers of an optical soliton have been
observed experimentally at a soliton energy level [8], pro-
ducing the quantum spectral correlation matrix where strong
correlations were found between spectral components near
the pulse spectrum wings. The intrapulse-stimulated Raman
scattering has also been studied for quantum correlation of
a fiber optical soliton [9,10] and those of light propagating
microstructure fibers [11,12]. This correlation information can
help us to understand quantum noise spectral structures of
ultrafast optical pulses at the soliton energy level, and it helps
to enhance photon-number squeezing by spectral filtering
of ultrafast optical solitons where spectral correlations are
redistributed by nonlinear optical effects such as self-phase
modulation (SPM) and Raman scattering [3,5,7].

This paper presents, by numerical calculation, the spectral
correlations of photon numbers of a 130-fs optical pulse
propagating an optical fiber of 5 m in length, to show
the evolution of an intrapulse quantum spectral structure
with a pulse energy at soliton orders including low orders,
that is, N = 0.1 to 1.0 (a 0.1 step). A beam propagation
method with a linearization approximation is utilized for the
calculation of quantum noise propagation [13,14] to present
the intrapulse quantum spectral correlation matrices, with a
spectral resolution of 0.7 nm. This can be expected to give more
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detailed properties about quantum correlation between spectral
components than the case of investigating the photon-number
variance (squeezing degree) under a spectrally integrated
passband filter [5,6], for soliton orders from 0.1 to 1.0.
The higher-order nonlinear optical effects such as intrapulse-
stimulated Raman scattering and pulse self-steepening effects
are included in the calculation.

It is shown that the intrapulse quantum spectral correlation
properties evolve with increasing an incident pulse energy
owing to nonlinear effects such as SPM and Raman scattering.
However, for all soliton orders used in the calculation, the
pulse self-steepening effects have a negligible impact on the
quantum spectral correlation structure.

At N � 0.4, major correlations are visible between spectral
components at around the pulse spectrum center, leading to
the square-shaped correlation patterns in the matrices when
the pulse energies are low enough to yield little spectrum
changes at the fiber output. The evolution of quantum spectral
correlations in the matrices with the pulse energy is visible due
to the nonlinear effects which, however, yield small spectrum
changes at N � 0.3.

As N increases from 0.5 to 0.8, the cross-shaped cor-
relations in the matrices begin to grow, indicating that the
phase transition of internal quantum noise structure occurs
at around N = 0.5, as similarly found in Refs. [5,6]. With
increasing the pulse energy toward the fundamental soliton
threshold, significant anticorrelations are, however, found
between spectral components near the pulse spectrum center,
with the redistribution of correlations into those between the
spectral components near the spectrum wings. This indicates
that nonlinear spectral filtering produces the photon-number
squeezing degrees for the fundamental soliton, which are
higher than those for the subsoliton cases [15].
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The significant asymmetric features with respect to the
pulse spectrum center in the correlation matrix begin to be
found at a soliton order of about N = 0.7, despite the fact
that the substantial pulse spectrum asymmetry appears to be
visible at N � 0.9. This is attributed to intrapulse-stimulated
Raman scattering and implies that the higher-order nonlinear
effects, which are difficult to observe at the classical level,
can be detected at the quantum level [4]. This indicates that
the evolution of quantum spectral correlation with the pulse
energy leads to the possibility that nonlinear effects can be
measured at the quantum level, even though their classical
level detection is indistinct.

II. QUANTUM NOISE CALCULATION

A 130-fs sech2 optical pulse of a spectrum center of 1.5 μm
is assumed to propagate along a single mode optical fiber of
5 m in length for calculation. The modeling of the propagation
of a femtosecond pulse envelop and quantum noise includes
higher-order nonlinear effects, such as intrapulse-stimulated
Raman scattering, which are non-negligible in the subpicosec-
ond regime. Thus, we use the extended quantum nonlinear
Schrödinger equation for the pulse envelop operator Â with a
carrier frequency ω0 in the co-moving frame [16], as given by

∂Â(z,t)

∂z
= − i

2
β2

∂2

∂t2
Â + i

6
β3

∂3

∂t3
Â + iγ Â†ÂÂ

− γ

ω0

∂

∂t
[Â†ÂÂ] − iγ TRÂ

∂

∂t
[Â†Â], (1)

where β2 and β3 are the parameters for the second- and the
third-order group velocity dispersion (GVD), respectively.
Here the third term on the right-hand side of Eq. (1) represents
the SPM effects with γ being the SPM coefficient while the
fourth term describes the self-steepening effects which are
caused by the intensity dependence of the group velocity [17].
The last term represents the intrapulse-stimulated Raman
scattering with TR being the relevant parameter. Among all
the terms on the right-hand side of Eq. (1), the first term (the
second-order GVD) and the third term (SPM) are dominant,
while the other terms have non-negligible effects on the
propagation.

To obtain the equations for propagation of a classical pulse
envelop and its counterpart quantum noise, let us employ a
linearization approximation [13,14], i.e.,

Â(z,t) = A(z,t) + δ̂(z,t), (2)

where A(z,t) is the classical pulse envelop while δ̂(z,t) is
the quantum noise operator. Substituting Eq. (2) into Eq. (1)
leads to

∂δ̂

∂z
= i

2
β2F

−1[(�ω)2F (δ̂)] + i

6
β3F

−1[(�ω)3F (δ̂)]

+ iγ [2|A|2δ̂ + A2δ̂†] − γ TRAF−1

× [(�ω)F (A∗δ̂ + δ̂†A)] − γ TRδ̂F−1[(�ω)F (|A|2)]

+ i
γ

ω0
F−1[(�ω)F (2|A|2δ̂ + A2δ̂†)], (3)

where F and F−1 denote the Fourier and the inverse Fourier
transformations, respectively. For calculation, the temporal
pulse profile should be divided into a sufficient number of time
bins, while the whole temporal window of calculation, which is
much longer than the pulse period, must be ensured to be broad
enough to minimize the computation error for calculating
terms including (�ω)k , where k = 1 and 2, in the femtosecond
regime. Note that the other terms, except the SPM term (the
third term), on the right-hand side of Eq. (3) induce couplings
between the different time bins. Consequently, the quantum
noise operator can be expanded by a linear combination of
annihilation and creation operators â and â† of an input vacuum
field [13,14], as given by

δ̂p(n) =
∑

q

μpq(n)â + νpq(n)â†, (4)

where p and q are the time indices while n is the distance
index. The coefficient matrices μpq and νpq are obtained
by substituting Eq. (4) into Eq. (3). After some algebra
with the commutation relation between â and â†, the equa-
tions for propagation of coefficient matrices are given as
follows:

μpq(n + 1) = μpq(n) + i

2
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6
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ω0
F−1

D [�ωFD(2|A(n)|2νsq(n) + A2(n)μ∗
sq(n))]p�z. (6)

Here FD and F−1
D denote the discrete Fourier and inverse Fourier transformations, respectively. The coefficient matrices obtained

by Eqs. (5) and (6) are two-dimensional Fourier-transformed into the spectral domain to calculate the photon-number covariance
between the ith and the j th spectral components of the optical pulse, which is defined by

(� ˆ̃n)2
ij ≡ 〈 ˆ̃ni

ˆ̃nj 〉 − 〈 ˆ̃ni〉〈 ˆ̃nj 〉. (7)
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Here ˆ̃ni is the photon-number operator for the ith spectral
component and is defined by

ˆ̃ni ≡ ˆ̃A†
i

ˆ̃Ai, (8)

where ˆ̃Ai is the amplitude operator for the spectral
component i.

For checking the calculation validity, the equations above
are used to calculate the correlation matrix for a fundamental
soliton (pulse energy of 54 pJ) propagating an optical fiber
of 2.7 m in length using the optical parameters found in
Refs. [7,8], which is compared with that experimentally
obtained [8]. The similar pattern of the strong correlations
between long-wavelength spectrum components, which con-
tributes to the asymmetry of the matrix structure with respect to
the matrix center, is produced while the similar anticorrelations
between spectral components just shorter than the central
wavelength and long-wavelength components are obtained,
showing a qualitative agreement with the measurement.

Meanwhile, the optical parameters used in the calculation
of the spectral correlation matrices presented below are β2 ≈
−10.5 ps2/km [5,15], β3 ≈ 0.1 ps3/km [15], and n2 ≈ 3
[5,15], where γ ≡ ωn2/(cAeff) (Aeff is an effective cross-
sectional area for the third-order optical effects), and TR ≈
11 fs [15].

III. RESULT AND DISCUSSION

Figures 1(a)–1(j) show the pulse intensity profiles at the
fiber output in the spectral domain for the soliton orders
N = 0.1 to 1.0 (a 0.1 step), where the respective quantum
spectral correlations are calculated. At the soliton orders
N = 0.1 to 0.4, little change of the output pulse spectra from
the input pulse spectrum (dashed lines) is shown, meaning
implicitly the broadening of the pulse temporal length by
dominance of GVD over SPM. However, The pulse spectrum
narrowing starts to be seen approximately at around N = 0.5
and becomes significant at the soliton order of about N = 0.8,
due to the increasing SPM effects that interplay with the GVD
effects. The spectrum gets rebroadened at N = 0.9 and its
width becomes close to the input pulse spectrum at N = 1.0
(pulse energy of about 54 pJ) with the self-frequency shift of
the pulse spectrum center to about 1508 nm, which is induced
by the intrapulse-stimulated Raman scattering [16].

Given the pulse spectrum evolution with the pulse energies,
let us focus on the evolution of quantum spectral correlations
which are normalized by

C(i,j ) ≡ (� ˆ̃n)2
ij√

(� ˆ̃n)2
ii(� ˆ̃n)2

jj

. (9)

Figures 2(a)–2(j) show the normalized correlation matrices
at the soliton orders ranging from N = 0.1 to 1.0 with the
incremental step of 0.1. In the case of N = 0.1 where the
nonlinear effects such as SPM impose the little changes on
the pulse spectrum, strong correlations are found between
spectral components near the spectrum center, as shown in
Fig. 2(a). They form a square around a center in the correlation
matrix, which corresponds to the pulse spectral regions of
significant intensity. As illustrated in Figs. 2(b)–2(d), raising

FIG. 1. Normalized output spectra (solid line) at the fiber output
with the input pulse spectrum (dashed line) for soliton orders from
N = 0.1 to 1.0.

the soliton order up to 0.4 does not substantially change the
square pattern around the matrix center, while the contrast
between correlations of the square and anticorrelations around
it becomes low as N → 0.4, indicating the redistribution
of correlation induced by nonlinear effects, subject to the
conservation of photon-number noise (variance) of the whole
pulse spectrum. Despite little spectrum changes, the corre-
lation changes induced by nonlinear effects such as SPM
are shown to be visible as N increases from 0.1 to 0.3.
However, the square-shaped correlations are maintained as
major correlations in the matrices as N � 0.4, implying that
no significant phase transition in the quantum spectral structure
occurs for these low soliton orders.

Figures 2(e)–2(g) show that the X-shaped cross-diagonal
strong correlation pattern grows gradually as N increases from
0.5 to 0.8, indicating that the start of the phase transition of the
internal structure of the quantum correlation becomes visible
at around N = 0.5, as similarly found in Refs. [5,6] where
spectrally integrated photon-number variance is investigated
under a spectral passband filter. The contrast between the black
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FIG. 2. Normalized quantum spectral correlation matrices (lower half of each figure) with the corresponding output pulse spectra (upper
half of each figure) for soliton orders from N = 0.1 to N = 1.0.

and the white at N = 0.5, 0.6, and 0.7 is lower than that at
N < 0.4, implying the further redistribution of correlations
in the matrices. As depicted in Fig. 2(h), at N = 0.8, the
X-shaped strong correlations become distinct while the strong
anticorrelations are found around the X-shaped correlations

and the relevant contrast becomes distinct in the matrix,
compared to the cases of N = 0.5–0.7.

The center of the square-shaped correlation which is
positioned at the pulse spectrum center at N � 0.5 shifts
toward the shorter wavelength at N = 0.6–0.8, producing
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FIG. 3. Normalized quantum
spectral correlation matrices (lower
half of each figure) with the
corresponding output pulse spectra
(upper half of each figure) for
soliton orders, N = 0.6, 0.7, and
1.0, based on the calculation with
no terms related to the Raman
scattering but all the other terms
remaining.

the asymmetry of the pattern. With the spectrum narrowing,
the shifted correlation square gets smaller at N = 0.8 than
in the cases of N � 0.4. The asymmetric features of the
quantum correlation matrices, which are accounted for by
higher-order nonlinear effects such as intrapulse-stimulated
Raman scattering, begin to be visible at N = 0.6 and become
significant at N � 0.7, while the self-frequency shift of the
pulse spectrum (classical evolution) becomes significant at
N � 0.9. This implies that nonlinear effects such as intrapulse-
stimulated Raman scattering, which are not detectable dis-
tinctly at the classical level, can be measured at the quantum
level.

At N = 0.9, the anticorrelations in the matrix are extended
toward the matrix centers, indicating the presence of strong
anticorrelations between the spectrum wings and the center, as
depicted in Fig. 2(i). At the soliton energy level [Fig. 2(j)], an-
ticorrelations are further extended across the matrix while the
strong correlations (diagonal shape) associated with the spec-
trum wings remain. The asymmetric pattern of the correlation
matrix around the spectrum center becomes significant with
N approaching 1.0. At N = 1.0, the correlations associated
with short- and long-wavelength spectrum wings (see arrows)
are found in the asymmetric way, in addition to the outlying
spectrum-wing-related strong correlations along the diagonal
direction in the asymmetric way. This leads to the expectation
that the removal of outlying spectral components produces
photon-number squeezing, and short-wavelength pass filtering
gives a higher degree of photon-number squeezing than
can be obtained by long-wavelength pass filtering. This is
qualitatively in agreement with the asymmetric squeezing
degree for solitons [5,7].

For subsolitons near N = 1.0, asymmetry of the squeezing
degree between a short-wavelength and a long-wavelength
pass filtering can be expected from the asymmetric structure of
the correlation matrices presented in Figs. 2(f)–2(i), being in
qualitative agreement with the experimental results for subsoli-
tons [15]. Anticorrelations that are found to extend toward the
spectrum center in the correlation matrix as N → 1.0 benefit
the enhancement of photon-number squeezing by spectral
filtering of outlying spectrum components with N → 1.0.
This is also qualitatively in agreement with the properties of

photon-number squeezing obtained experimentally by spectral
filtering of subsolitons, which also show degrees lower than
those of soliton cases in an optical fiber [7,15].

For soliton orders from 0.1 to 1.0, quantum noise calcula-
tion is also performed with and without pulse-self-steepening-
effects-related terms to check their exclusive effects on the
quantum spectral correlation, and it is seen that the pulse-
self-steepening effects are negligible compared to the other
nonlinear effects discussed above.

Figures 3(a)–3(c) show the quantum spectral correlation
matrices at N = 0.6, 0.7, and 1.0, which are calculated with
no terms relevant to intrapulse-stimulated Raman scattering
but with all the other terms remaining. Asymmetric properties
disappear compared to the cases in Figs. 2(f), 2(g), and 2(j),
as expected. It is also noted that, at N = 1.0, the intrapulse-
stimulated Raman scattering redistributes quantum spectral
correlations such that correlations of chessboardlike patterns
in the matrix as shown in Fig. 3(c) are smeared into those as
shown in Fig. 2(j).

Spontaneous Raman noise effects can influence quantum
fluctuations [18,19]. However, their inclusion in the calculation
is beyond the scope of our calculation framework which does
not use a stochastic approach but only supports the calculation
of quantum (vacuum) noise propagation along a fiber with the
input condition of vacuum noise (unit matrix of μpq and zero
matrix νpq).

IV. CONCLUSION

Intrapulse quantum spectral correlations of the femtosecond
(130 fs) sech2 pulsed light of a soliton order N � 1.0 in an
optical fiber is examined by calculating the quantum noise
propagation. The calculation that includes SPM, GVD, and
higher-order nonlinear effects, such as pulse self-steepening
and intrapulse-stimulated Raman scattering, produces quan-
tum spectral correlation matrices at soliton orders, including
low orders, N = 0.1 to 1.0 (a 0.1 step), with a spectral
resolution of 0.7 nm. This can be expected to give more detailed
information on the quantum spectral correlations than the case
of investigating the photon-number squeezing (variance) under
a spectrally integrated passband filter [5,6]. The correlation
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matrix evolves with the pulse energy (soliton order) under
the nonlinear effects that are responsible for redistribution of
correlation properties.

For all soliton orders used in the calculation, the pulse
self-steepening effects turn out to be negligible compared to
the other effects involved in the calculation. For low soliton
orders, i.e., N � 0.4, major correlations are found between
spectral components near the spectrum center, resulting in
the square-shaped region of correlation in the matrix. At
N = 0.5, the cross-shaped correlations in the matrix begin
to be distinct, indicating that the phase transition of internal
quantum noise structure occurs at around N = 0.5, as similarly
found in Refs. [5,6]. It is also seen that asymmetric features
in the correlation matrices begin to be visible at N = 0.6
while the self-frequency shift of the pulse spectrum (classical
counterpart) becomes visible at N = 0.8. Under the increasing
nonlinear effects as N → 1.0, anticorrelations are, however,
increasingly extended to be seen toward the spectrum center in
the correlation matrices with the redistribution of correlations,
subject to the conservation of total photon-number noise
(variance) of the whole pulse spectrum. This leads to the
expectation that the degree of photon-number squeezing by

spectral filtering for the subsolitons will be lower than that for
the fundamental soliton.

Intrapulse-stimulated Raman scattering is responsible for
the asymmetric feature of the correlation matrices that results
in the asymmetry of photon-number squeezing between a
short-wavelength and a long-wavelength pass filtering of an
optical pulse of a soliton order N � 1.0. In particular, the com-
parison made between correlation matrices calculated without
and with the intrapulse-Raman-scattering-related terms at
N = 1.0 shows that the Raman scattering redistributes the
chessboardlike correlations in the matrix into the smeared
pattern.

The evolution of correlation matrices with the pulse energy
implies that nonlinear effects such as SPM and intrapulse-
stimulated Raman scattering, which are not detectable dis-
tinctly at the classical level, can be detectable at the quantum
level.
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