
PHYSICAL REVIEW A 85, 033808 (2012)

Possibility of an Akhmediev breather decaying into solitons
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We consider the process by which a constant or wide-pulse solution of the nonlinear Schrödinger equation can
become converted into an ensemble of solitons by modulational instability. This process is generally believed
to be one important step in the generation of supercontinuum in optical fibers. Starting from the Akhmediev
breather solution we study the conversion by two methods: One is pulse shape-oriented and uses the soliton
relation between width and peak power. The other is eigenvalue-oriented and uses results from scattering theory.
It becomes clear that an evolution according to the unmodified nonlinear Schrödinger equation, even in the
presence of noise, will not lead to the transformation into solitons. If one takes the Raman effect into account,
however, a conversion to a soliton gas takes place.
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I. INTRODUCTION

Nonlinear propagation of light pulses in optical fibers is
governed by the nonlinear Schrödinger equation [1] which
is also relevant for nonlinear waves on liquid surfaces, in
plasmas, in Bose-Einstein condensates, and so on. Currently
the optics community is in intense discussion about the
formation of optical supercontinuum [2], and in particular
about rogue waves generated in the process [3]. All considered
mechanisms for these waves share one property: Whether
it is Raman shifting of the most intense solitons to the
spectral fringe, collisions between solitons, or collisions of
solitons with dispersive radiation. In any case, solitons must be
generated first from the launch condition. When femtosecond
pump pulses are used this is likely to happen through soliton
fission; in all other cases (picosecond pulses or even cw pump)
they supposedly arise from modulational instability [2]. A
discussion of the instability has been put on a firmer footing
since early reports about certain solutions of the nonlinear
Schrödinger equation, the “Akhmediev breather” [4], have now
found widespread attention.

The Generation of Trains of Soliton Pulses by Induced
Modulation Instability in Optical Fibers was the title of a
1984 paper [5] in which conditions for the generation of
a deeply modulated pulse train are discussed; however, the
solitonic character of the individual peaks in the train was not
discussed in any specific way. A few years later, the authors
of Ref. [6] spoke of soliton-like structures atop a continuous
background and the authors of Ref. [7] of a pulse train with a
dc component. The authors of Refs. [8,9] discussed a pedestal
which renders the pulse train unstable, thus preventing soliton
train formation. As characteristics of solitons have now been
well known for a long time, more precise statements can be
made on just how the modulation instability relates to solitons.
As there has been some confusion about this issue, we will
discuss here whether the periodically modulated structure of
modulational instability can be described in terms of solitons
(i.e., more or less independent pulses).

The question is this: If the Akhmediev breather, a stable
solution of the nonlinear Schrödinger equation, is the initial
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state and a set of fundamental solitons constitutes the final
state how is the transition between the two triggered? Does a
stochastic perturbation suffice? We will show that it does not.
The nonlinear Schrödinger equation without additional terms
cannot provide the conversion, but the Raman effect can.

II. PROPERTIES AND SYMMETRIES OF THE
AKHMEDIEV BREATHER

It has been fully appreciated only recently that modulation
instability can be described in the more general framework of
the Akhmediev breather, obtained as early as 1986 [4]. It takes
the form [10]

A(Z,T )

=
√

P0
(1 − 4a)cosh(bZ) + ib sinh(bZ) + √

2a cos(ωT )√
2a cos(ωT ) − cosh(bZ)

× exp(iZ), (1)

where normalized position Z = z/LNL, with distance z in
meters. T is time in a comoving frame of reference. Power P0 is
measured in watts so that (γP0)−1 is the “nonlinearity length”
LNL in meters. The nonlinearity parameter γ is measured in
W−1m−1, typically in photonic crystal fiber (PCF) some 10−2

such units. Parameter a is from the interval 0 < a < 1/2;
parameter b = √

8a − 16a2 depends on a only and describes
the gain. The modulation frequency is ω = ωc

√
1 − 2a, and

ωc = ±
√

4γP0

|β2| (2)

is the highest frequency at which gain can occur. The
dispersion parameter β2 is measured in s2m−1, typically a few
10−27 such units. Note that b tends to zero for both a → 0 and
a → 1/2. It peaks at (a = 1/4, b = 1) where the frequency
becomes

ωmax = ±
√

2γP0

|β2| = ωc√
2
, (3)

and the gain (perturbation growth rate) takes its maximum
value of

gmax = 2γP0. (4)
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The solution to Eq. (1) evolves from a continuous wave
with |A(Z,T )|2 = P0 at Z → −∞ through a compression and
returns to |A(Z,T )|2 = P0 for Z → +∞ for any allowed a and
all T . At finite Z the temporal modulation is periodic due to
the ωT terms; the period is Tmod = 2π/ω. The maximally
compressed case occurs at Z = 0. For later reference we
mention specific values for the case a = 1/4. In each period the
main peak has a power of (1 + √

2)2 P0 ≈ 5.83 P0; a secondary
peak of opposite field phase has peak power (

√
2 − 1)2 P0 ≈

0.17 P0. The zeros in between appear as “dimples” in the power
profile.

The Akhmediev breather quite generally has several sym-
metries. The periodicity with Tmod provides a time shift
symmetry: at any given Z all peaks have the same shape
and chirp. On account of the i sinh term there is an inversion
symmetry about Z = 0: the pair of solutions at ±Z has
identical power profiles and antisymmetric phase profiles. This
implies zero chirp at Z = 0.

The spectrum pertaining to Eq. (1) is provided in Ref. [11].
Disregarding common constant factors it takes the form

ÃC(Z) = 1 − ib sinh bZ + (2 − 4a) cosh bZ√
cosh2 bZ − 2a

(5)

for the carrier and

Ãn(Z) = ib sinh bZ + (2 − 4a) cosh bZ√
cosh2 bZ − 2a

×
[

cosh bZ −
√

cosh2 bZ − 2a√
2a

]|n|
(6)

for the nth sideband. Again there is an even real part and an
odd imaginary part for both carrier and all sidebands.

As the continuous wave solution of the nonlinear
Schrödinger equation is unstable, any perturbation (even if
infinitely small) will give rise to a modulation. The initial
cw field may be perturbed by quantum noise and by other,
technical noise contributions. Fourier components of the
perturbation that are close to the frequency of maximum
gain [Eq. (3)] will grow fastest [Eq. (4)]. A purely random
perturbation with white noise excites all frequencies equally;
then modulation at the frequency of maximum gain will win
out. Therefore the special case of a = 1/4, b = 1 has superior
importance. We will now focus on this case.

The carrier phase evolves from φC(Z = −∞) = −π/2
through φC(Z = 0) = 0 to φC(Z = +∞) = +π/2, whereas
all sidebands have phases φn = φC/2 everywhere. Thus the
phase difference φn − φC evolves from +π/4 through 0
to −π/4. Note that quite generally a difference of ±π/2
(sideband in quadrature with the carrier) pertains to pure phase
modulation whereas a phase difference of 0 pertains to pure
amplitude modulation. We see that in the Akhmediev breather
there is a mixed modulation, with the exception of Z = 0
where the phase modulation vanishes, and the amplitude
modulation takes its maximum expression.

We therefore arrive at the following intuitive way to under-
stand the buildup and decay of the Akhmediev breather: Ini-
tially a mild phase modulation occurs on the continuous wave
initial condition. In the temporal domain, tilted phases translate
to velocities by virtue of the fiber’s dispersion. Thus there are

FIG. 1. (Color online) Evolution of Akhmediev breather (a =
1/4). Marker lines indicate transverse velocities due to phase
dynamics. Color scale indicates P/P0.

periodically alternating regions in which a velocity to the right
and to the left exists. This causes power to be concentrated
(focused) in some regions, and deconcentrated (defocused) in
between. The concept is illustrated in Fig. 1 where the evolu-
tion from −3 � Z � −0.1 is shown for about two temporal
periods of the breather; superimposed is a field of marker lines
indicating the local phase slope (velocity). Intriguingly, the
phase angle ϕ(A(Z,0)) = arctan{Im[A(Z,0)]/Re[A(Z,0)]} =
arctan (

√
2 sinh(Z)) is very similar to and asymptotically the

same (at least for a = 1/4) as the Gouy phase shift of a beam
at a focus [12] for Z → ±∞, ϕ → ±π/2. The Akhmediev
breather can therefore be understood as a phenomenon of
self-focusing and subsequent defocusing of a cw, complete
with a resemblance of the Gouy phase shift.

We specifically consider a fiber into which light of average
power P0 is launched under conditions of anomalous disper-
sion. For Fig. 2 we launched the field given by Eq. (1) at Z =
−10. At this position the cw background power is modulated
almost sinusoidally, with extrema at P0 ± 13 × 10−5. This
is a weak periodic perturbation, but still much larger than
numerical noise. The corresponding approach has also been
taken in experiments: the cw launch condition was artificially
seeded with suitable coherent modulation in Ref. [5] and more

FIG. 2. (Color online) Evolution of Akhmediev breather started
at Z = −10. Shading of color (gray) indicates P/P0.

033808-2



POSSIBILITY OF AN AKHMEDIEV BREATHER DECAYING . . . PHYSICAL REVIEW A 85, 033808 (2012)

recently in Ref. [13]). Most prominent in Fig. 2 is the periodic
comb of peaks at Z = 0. Between them one discerns the weak
secondary peaks, and between the main and secondary peaks
there are the “dimples.”

III. SOLITON CONTENT ASSESSED FROM
PULSE SHAPES

Clearly, the structure of maximum contrast is the most likely
candidate for the generation of solitons. It was pointed out by
the authors of Ref. [14] that the peaks have a “soliton number”
close to unity. We rephrase this statement with better precision.

As is well known, soliton solutions of the nonlinear
Schrödinger equation obey the constraint

P̂ T 2
0 = |β2|

γ
, (7)

where P̂ is the peak power and the width T0 is taken from pulse
center to the point where the argument of the sech function is
unity. As the characteristic width of the Akhmediev breather
solution we suggest taking the time from peak center (T = 0)
to the point where the amplitude crosses the asymptotic value
P0. This is the most natural choice, as the Akhmediev breather
has this asymptotic value for all allowed values of a. The width
so defined is TAB = Tmod/8 so that for a = 1/4

TAB = π

4

√
|β2|

2γP0
. (8)

Remembering that P̂ = (1 + √
2)2P0, we obtain

P̂ T 2
AB = π2(1 + √

2)2

32

|β2|
γ

≈ 1.7976
|β2|
γ

. (9)

The numerical factor is, of course, strongly influenced by the
choice of the width, but it is fair to concur with the authors
of Ref. [14] that Eqs. (7) and (9) are quantitatively similar.
However, there are subtle differences between the Akhmediev
breather peak and solitons to be addressed. While at Z = 0 the
phases of the Akhmediev breather are flat across the pulse, the
smaller intermediate peaks have opposite phase. Phase jumps
do not match well to solitons with their flat phases.

We are looking for a process that converts the train of peaks
into individual solitons which can subsequently walk off like
nearly independent particles. The Akhmediev breather pulse
train, if harmonically seeded, is an entirely coherent structure.
Therefore we look for a mechanism that can lift, or destroy,
coherence. We therefore apply a random perturbation.

For Fig. 3 we combine the periodic perturbation described
for Fig. 2 with an added noise of power standard deviation
σini = √

2 × 10−4, somewhat larger than the periodic modu-
lation. The noise was taken from a random number generator
and transformed to give a Gaussian amplitude statistic with
identically distributed phases throughout 2π .

Several relevant observations can be made from these data.
(1) Some teeth of the comb reach their maximum slightly

sooner, others somewhat later than at Z = 0. The distribution
of the Z positions of the maxima follows a Gaussian statistics
centered on the deterministically expected value Z = 0.

FIG. 3. (Color online) Evolution of Akhmediev breather as in
Fig. 2, but here Gaussian noise with random phase was added at the
starting position.

(2) There is also some variation in the peak powers. We
checked that this distribution is centered on the deterministic
value and has approximately Gaussian shape. Nonetheless the
overall shape of the peaks remains closely similar to that of
the analytical Akhmediev breather solution peak; the same
conclusion was also drawn by the authors of Ref. [14]. We
checked that the width of the peak power distribution σpeak

was approximately given by

σpeak = σini exp(2γP0L),

that is, it is consistent with the exponential growth of Eq. (4)
over the relevant distance L, here ten units of Z.

(3) The phases at the maxima scatter about their determinis-
tic value of π . Again, the distribution appears to be Gaussian.

(4) The periodicity of the comb at Z = 0 is still basically
the same as in the noise-free case, but an enlargement of
the neighborhoods of maxima reveals that some evolve with
small transverse velocities (i.e., with a shift of their temporal
position). We therefore evaluated the phase slope and curvature
at the maxima; these also have a distribution approximately
centered about the deterministic value, but it would take more
data to confidently speak of a Gaussian distribution. The
phase slope, of course, corresponds to a frequency offset; this
together with the dispersion fully accounts for the observed
velocities. The curvature corresponds to the chirp.

(5) A conspicuous difference of Fig. 3 from Fig. 2 is that
beyond the compression a recurrence takes place at Z ≈ 15.
The reason is that the evolution of the Akhmediev breather
sweeps out a heteroclinic orbit, so that depending on the
fine detail of the initial starting condition the process may
either ultimately return to a cw similar to the initial one,
or repeat itself periodically. The latter situation has been
described as a case of Fermi-Pasta-Ulam recurrence [15,16].
By adding noise, we perturbed the Akhmediev breather away
from the heteroclinic orbit; the same was seen by others [10].
In mathematical terms, the Akhmediev breather solution is a
special case of a more general solution expressed in terms of
Jacobi elliptic functions [4,17]; an infinitesimal perturbation
suffices to move the system away from this special case.

The transformation from an Akhmediev breather to solitons
is also subject to an energy constraint. For reasons of energy
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FIG. 4. (Color online) Temporal profile of the Akhmediev
breather (dashed) and same-energy soliton (solid) in comparison.
Power is in units of P0, time in units of Tmod.

conservation the energy of an Akhmediev breather within
one oscillation period is the same at Z = 0 and at any other
position. Therefore the energy per period is

EAB = P0
2π

ω
= π

√
2|β2|P0

γ
. (10)

To estimate the energy of a soliton generated from the breather
we start with the oversimplifying assumption that this amount
of energy gets incorporated completely into the soliton. Its
energy would then be

Esol = 2P̂ T0 = π

√
2|β2|P0

γ
. (11)

By using Eq. (7) one obtains

P̂

P0
= π2

2
≈ 4.9348. (12)

This is the highest peak power of a soliton generated from
one period of the breather which is still consistent with energy
conservation (see Fig. 4). A soliton matching the peak power
of the breather, (1 + √

2)2P0, would be 18.1% higher and
therefore 8.7% narrower than this, requiring 8.7% more energy
(but the excess energy would have to come from somewhere).
During propagation there might be an energy exchange with
neighboring pulses, and in this sense energy conservation is
not a strict requirement for each pulse. Surely, while some
pulses may gain, others must lose.

Of course this upper bound is not realistic: While the
breather at Z = 0 is unchirped, its shape involves zeros and
sign reversals so that certainly there is dispersive radiation.
This diminishes the energy available for the soliton. The energy
contained in the main peak is

Epeak =
∫ +Tmod/4

−Tmod/4

∣∣∣∣ cos ωT

cos ωT − √
2

∣∣∣∣
2

dT = 0.95016 EAB.

Similarly, by integrating between Tmod/4 and 3Tmod/4 one
obtains the energy in the secondary maximum, Esec =
0.04984 EAB. One might argue, in a speculative manner, that
only the difference between these two values, Epeak − Esec =
0.90032 EAB, can get incorporated into a soliton because
to incorporate the opposite-phase contribution will invoke
destructive interference. Remarkably, it will turn out below

FIG. 5. (Color online) Diagrams of peak power P̂ vs. the inverse
square of temporal width T0 of pulses. This format places all nonlinear
Schrödinger equation solitons on the line labeled “solitons.” Also
shown are the trajectory traced out by the Akhmediev breather (the
position of the cumulation point is highlighted by crosshairs) and
the constant-energy contour at E = EAB. Initial conditions: Start at
Z = −10 with weak noise (σini = 10−6). Dots represent all identified
maxima at Z = 0 (top) and Z = 25 (bottom).

that a very similar numerical value also arises from an entirely
different argument.

We check the situation by numerical simulations. Data like
those in Fig. 3 show clearly that the fully coherent structure of
the Akhmediev breather breaks up soon after the position of
maximum contrast. We see the recurrence which was described
as “more complex” dynamics in Ref. [11]; it was pointed out
there that neither loss, third-order dispersion, nor the Raman
effect have an influence on its occurrence. We find that some
pulses partially retain the “dimples” in the power profile,
complete with phase jump, characteristic of the Akhmediev
breather while other peaks have smooth shapes. It is obvious
that the positions in both Z and T scatter considerably; not
even the number of pulses is conserved. However, the system
being nonlinear, there is a correlation between fluctuations of
peak power and width. This is best assessed by representing
a multitude of pulses in a P̂ -T −2

0 diagram as shown in Fig. 5.
For this figure we identified the position of all maxima in
the (Z, T ) plane at Z = 0 ± 2 (upper panel of Fig. 5) and at
Z = 25 ± 2 (lower panel of Fig. 5) The tolerance band was
necessary because in the noisy case the Z positions of the
peaks vary. For each identified maximum we then obtained P̂

and T0. While the former is straightforward, the latter requires
a comment: In simulation data measures like the width at a
certain percentage of the maximum often cannot be defined
due to the close proximity of the next peak. We thus decided
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to measure the curvature of each maximum, then calculate T0

from that by using the conversion valid for sech2 pulses.
Also shown in Fig. 5 is the trajectory of the Akhmediev

breather (labeled as “AB trajectory”). It starts at P̂ ≈ P0

and minimal modulation, then contracts and traces out this
trajectory in the process. The locus of the point of maximum
contraction at Z = 0 is highlighted by crosshairs. Beyond that
point the unperturbed breather traces out the same trajectory in
reverse. To make the width of the Akhmediev breather and of
solitons comparable for this figure, we again take the curvature
at the peak (which here can be done analytically) and convert it
to a pulse width in the same way as above. Finally, the constant
energy contour of EAB [Eq. (10)] is also shown for reference.

By virtue of Eq. (7), all unperturbed solitons of the nonlinear
Schrödinger equation in a given fiber are expected to be
represented by a point on the diagonal line with slope |β2|/γ
labeled as “soliton line.” Note that the reverse is not necessarily
true: Pulses might fall onto that line and yet have a nonzero
chirp, but then the pulse shape would keep evolving. It is
obvious that the numerically obtained data points cluster
near the Akhmediev breather culmination point initially, then
spread out and form a long but thin cloud near the soliton line
but not quite on it.

The intersection of the soliton line and the EAB contour
defines the maximum-energy soliton of Eq. (11). Clearly, a
few peaks have increased in energy beyond this value. As
mentioned above, that can happen by an exchange between
neighboring pulses, but one peak’s gain is its neighbor’s loss.

We also checked the phases at all peak centers. They scatter
over a 2π interval, but the distribution is not quite uniform. The
pulses typically have linear phase slopes accounting for their
velocities; with few exceptions they do not carry a large chirp.
This indicates that in some sense they begin to resemble free,
individual solitons. Will they eventually become completely
free?

As the energy exchange between pulses proceeds slowly,
no convergence to the soliton line is observed even when the
propagation is followed for an extended distance (Z = 80).
The core difficulty becomes apparent now.

The energy in the system is maintained. Analytically, the
breather in Eq. (1) stretches to infinite time on either side;
numerically we use periodic boundary conditions. Therefore
the Schrödinger line cannot act as an attractor: pulses cannot
converge toward it. Radiation shed by pulses remains in the
system and will likely be reabsorbed by another pulse later on.
Only an energy-losing mechanism would allow pure solitons to
be approached. We therefore cannot expect that pulses evolve
into clean solitons without some additional mechanism.

As a first test we modified the periodic boundary conditions
of our computations such that there was some dissipation at
the edges. This approximates realistic experimental situations.
While a certain tendency of data points to get closer to the
soliton line is observed, many data points still fail to join
this trend, and further propagation does not seem to change
this. It turns out that the recalcitrant cases tend to correspond
to strongly chirped pulses. It is indeed difficult to see how
dissipation could undo the chirp of a pulse. This makes it
doubtful whether the stochastic perturbation can induce the
transition to a set of solitons, but at this point a quite different
method is required to resolve the issue.

IV. SOLITONS CONTENT ASSESSED FROM
EIGENVALUES OF THE SCATTERING PROBLEM

To obtain information about the soliton content of some
structure, the principal tool is the inverse scattering technique
(IST) originally described for a different equation by Gardner
et al. [18], improved by Lax [19], and first applied to the non-
linear Schrödinger equation by Zakharov and Shabat [20]. In
its framework, solitons are described through certain discrete
eigenvalues; in general, linear radiation is also produced which
corresponds to the continuous part of the eigenvalue spectrum.
It is of central importance to point out that IST relies on the
integrability of the equation. We note in passing that for a more
general class of systems, including those with dissipation,
the recent technique of soliton-radiation beat analysis [21]
can deliver equivalent results, and is advantageous in some
circumstances.

In the present case we deal with a solution of an integrable
equation, and so we decided to use the numerical IST-based
technique introduced by the authors of Ref. [22] and known
as direct scattering transform. It is a complication that the
Akhmediev breather extends to infinity whereas the method
presupposes data which decay to zero for t → ±∞. We deal
with this by considering a windowed Akhmediev breather. We
multiply the expression in Eq. (1) with a window function
which enforces a decay to zero on either side at finite width.
Then we treat the window width as a variable, and attempt to
extrapolate from finite to infinite width.

As a window function we initially experimented with a
super-Gaussian, but it turns out that results are clearer when a
rectangular window (value of 1 within width w, zero outside)
is employed. We decided to center the window at T = Tmod/8,
at one of the zeros of the Akhmediev breather. The asymmetry
of this choice avoids that with increasing window width two
peaks enter the window at once. Using Eq. (1) at Z = 0 and
this window all eigenvalues come out purely imaginary. When
we refer to the eigenvalue below we mean the imaginary part
which is indicative of a soliton’s energy. Our results can be
wrapped up as follows (compare Fig. 6).

As the window width is increased, a new pair of eigenvalues
is born whenever the window’s edge slices sufficiently deeply
into a new peak; this occurs at half the peak’s energy. One
eigenvalue of each pair subsequently falls in value, the other

FIG. 6. (Color online) Position of eigenvalues as a function of
window width. Also shown are the midgap position Egap and the
cumulation point of the eigenvalues above Egap,Elimit (see text).
Window width is in units of the breather period.
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rises. The rates of rise and fall are not uniform; when the
window’s edge begins to admit the secondary maxima of the
Akhmediev breather’s power profile (the parts with opposite
phase), the trend is temporarily halted. This accounts for
the conspicuous stair-like behavior. Near the energy level
where eigenvalues are born there remains a gap between the
multitude of rising eigenvalues and the multitude of falling
eigenvalues.

The eigenvalues at each w fall into two groups. Above
the gap there are as many as the window width measures in
Akhmediev breather periods, except for edge effects. Below
there are fewer because more than half of them have decayed
to zero at any given width. The total number of eigenvalues
diverges with w → ∞, but normalization to the breather
period provides an eigenvalue density which is finite. It is
1 (i.e., one per period) above the gap, and about 0.413
below so that the grand total approaches (1.413 ± 0.013)w.
The numerical factor is compatible with

√
2 within our

computational precision, which may or may not be fortuitous.
The eigenvalues above the gap E � (0.636 ± 0.010)EAB

arrange themselves in a remarkable pattern, reminiscent of a
series of spectral lines near an accumulation point. The largest
value E1 is closest to the endpoint Elimit, and the others (En

with n = 2,3, . . . ,) have distances growing quadratically like
En = Elimit − n2	E. Therefore no two eigenvalues are ever
the same, nor do they ever cross. As the window width is
increased, new eigenvalues appear and arrange themselves into
this pattern. In the process 	E shrinks and must tend to zero
because a diverging number of eigenvalues is arranged within a
finite interval. By fitting to the parabolic-distance arrangement
we obtained the precise energy of the cumulation point as
Elimit ≈ (0.9003 ± 0.0020) EAB. No soliton has more energy
than this value. To within numerical uncertainty, this value
agrees with the heuristic value of Epeak − Esec above. It is
tempting to think of this remarkable agreement as more than
just fortuitous.

The extrapolation of the gap width to w → ∞ (aided by
plotting the same data on a 1/w inverse scale and extrapolation
to zero, not shown) indicates that the gap shrinks to a point.
Also, we find that Elimit/Egap = 1.416 ± 0.025 which is,
again, close to

√
2.

In addition to the solitonic energies, the radiative contri-
bution to the energy budget is calculated separately. When
normalized to the window width, the sum of all contributions
very closely (to within the numerical accuracy of 10−4)
approximates EAB. The only exceptions occur at those w

positions where new eigenvalues are born; apparently we do
not immediately assess their energy correctly. The radiative
part plays an ever smaller part as w → ∞; apparently the
radiation is an edge effect, not a volume effect.

A further characterization of this eigenvalue spectrum will
be given elsewhere. Suffice it here to say that the characteristic
feature in comparison to a similar spectrum obtained from a cw
condition is the existence of the energy gap which is obviously
linked to the periodicity of the potential.

As long as the propagation of the Akhmediev breather
is described by the nonlinear Schrödinger equation without
further terms the eigenvalues must be preserved. This fact
has been exploited (e.g., for the suggestion of eigenvalue

communication on grounds that eigenvalues are more robust
than pulse shapes [23]). We find in our numerical simulations
that both the real and imaginary parts of each eigenvalue
are blurred into a small “uncertainty ellipse” when we add
random noise. Similarly, numerical propagation introduces
slight deviations from the original value. All these deviations
can be attributed to numerical inaccuracies though. Certainly
the number of eigenvalues is preserved in all cases we have
seen.

The only possible conclusion from all this is the following.
All breather peaks are identical, all solitons are different (and
not even their total number matches). Obviously a one-to-one
correspondence between the peaks of the Akhmediev breather
and the solitons does not exist. The visible peaks must be
the result of some nonobvious nonlinear superposition of the
solitons described by the eigenvalues.

V. CONVERSION OF PULSE TRAIN TO
SOLITONS BY RAMAN EFFECT

To create a number of solitons consistent with the number
of peaks in the breather, it will therefore take a mechanism
that can modify the eigenvalue spectrum. Linear loss can
modify the number of eigenvalues through annihilation and
even creation [24]. A truncated (i.e., windowed) Akhmediev
breather, as one always has in real-world experiments, provides
loss because power can leave the window at the edges. It is
doubtful whether this is sufficient to generate free solitons
because the loss continues and eventually must destroy all
solitons.

A further possibility is the Raman effect, which, in practical
terms, is always present anyway. The Raman effect is a scat-
tering process that can transfer energy from some frequency
component to another one of lower frequency (Stokes shift).
The shape of the Raman gain spectrum in optical fibers was
first studied by the authors or Ref. [25], and was later analyzed
in more detail [26,27]. A consequence is that the energy of a
pulse propagating in a fiber can be redistributed toward lower
frequency [28]. The typical process is that pulses experience a
continuous downshift in frequency, on account of the particular
shape of the gain curve. This was discovered by the authors of
Ref. [29] and analyzed by the authors of Refs. [30,31].

It was argued by the authors of Ref. [9] that the Raman
effect acting on the pulse train generated by modulational
instability can “separate the peaks from a pedestal” so that
the pulses eventually behave like free particles. We tested this
proposition; it will turn out that it is basically correct. As
an initial condition we used Eq. (1) at Z = 0, then studied
its propagation in a split-step Fourier simulation based on a
nonlinear Schrödinger equation with an added Raman term.
For the latter we employ the widely used formulation from
Ref. [32].

In the presence of the Raman effect, all eigenvalues above
the gap acquire a real part indicative of a frequency shift toward
lower frequencies (a “red shift”). In contrast, all eigenvalues
below the gap experienced a shift in the opposite direction
(“blue shift”). This is shown in Fig. 7 where the evolution of the
eigenvalues of a truncated Akhmediev breather was followed
for the propagation from Z = 0 to Z = 1 (i.e., over one
nonlinear length). Somewhat counter to expectation, not the
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Δω ω

FIG. 7. (Color online) Eigenvalues shifting red and blue. Data
from propagation starting with the analytic AB solution at Z = 0,
calculated form a NLSE with added Raman term, and evaluated with
direct scattering transform.

most energetic eigenvalues undergo the strongest change, but
the ones closest to the gap. This is a further argument against
identifying the Akhmediev breather peaks with solitons. The
phenomenon of opposite-direction frequency shift is visible in
a very mild form in higher-order soliton fission [33], where
it appears like a recoil effect, but Fig. 7 seems to suggest a
dispersion curve at a gap resonance so that one may attribute
the shifts seen here to the periodicity of the structure.

The frequency shifts translate into velocities, and so both
subsets of eigenvalues lose their temporal overlap after some
propagation distance. The resulting structure is shown in Fig. 8.
The set of red-shifted eigenvalues corresponds to a group of
pulses with nonequal peak powers and widths, arrayed in a not
very regular pattern. The power and width of each peak closely
obey the soliton condition Eq. (7) (see Fig. 9). The pulse phases
are scattered almost uniformly through a 2π interval. Next-
neighbor phase differences do not seem to exhibit any partic-
ular correlations. The first derivative of the phase is indicative
of the velocity; the values found reflect the direction of the
trajectories in Fig. 8. The second derivative indicates the chirp;
all these pulses have very small chirp. Assessing these findings
together, one can interpret the situation in only one way: A set
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FIG. 8. (Color online) A truncated Akhmediev breather, subject
to Raman shift, splits into a red-shifting soliton gas and a set of
blue-shifting weaker solitonic pulses.
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FIG. 9. (Color online) Soliton relation Eq. (7) tested on the final
state after Raman shift. All data points are close to the soliton
condition; they also have minimal chirp (not shown).

of solitons has been created; within the limits set by their rather
close proximity, they behave as nearly independent entities.

The blue-shifted eigenvalues constitute a separate group of
pulses with much lower power, but they also closely fulfill
the soliton constraint Eq. (7) (see the leftmost data points in
Fig. 9). This group was interpreted as a pedestal by the authors
of Ref. [9]. They have much smaller velocities, but may have
a somewhat larger chirp than pulses from the other group. All
peaks from both groups are evaluated for their compliance
with the soliton constraint in Fig. 9, and it is obvious that they
now are in accord to within numerical accuracy.

To corroborate our interpretation that in the Raman-shifted
case each pulse may indeed be interpreted as a soliton,
we compare the numerically derived values of energy and
velocity for each peak with the locus of eigenvalues in the
complex plane, as shown in Fig. 10. The number of eigenvalues
corresponds to the number of peaks; each eigenvalue can be
uniquely attributed to one peak, and the numerical agreement is
satisfactory. In the energy balance, all solitonic energies from
the eigenvalues add up to about 0.99; if the radiative part is
also included, the balance exceeds unity by 2.7 × 10−3 which
we attribute to the cumulation of numerical round-off errors.

Δω ω

FIG. 10. (Color online) Interpretation of eigenvalues of the
Raman-shifted pulses in the complex plane scaled as to represent
energy and velocity units. Data correspond to Fig. 8 at Z =
100LNL. Crosses: Locus of eigenvalues obtained with direct scattering
transform. Circles: Energy and velocity values obtained directly from
the numerically calculated peaks. The close agreement shows that
each peak uniquely corresponds to one eigenvalue.
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All told, a truncated Akhmediev breather with n peaks
initially contains ≈1.41n solitons in a nonobvious way. By
the Raman shift eventually a group of n individual solitons is
formed, while the remaining solitons are initially blue-shifted.
The solitons in either subset do not sit on a regular grid.
The high-power solitons in particular move about nearly
independently of each other except when they come quite
close to a neighbor. Therefore it seems fitting to call this group
a soliton gas.

VI. CONCLUSION

We have discussed the similarities between the Akhmediev
breather and solitons, and have analyzed the breather’s
scattering eigenvalues. This involved finding eigenvalues of
an infinite system.

Several authors [5–7,34] have suggested schemes to exploit
modulational instability for the generation of trains of pulses,
also in the presence of the Raman effect [35]. Typically it was
not mentioned that the train of pulse will decay again, so the
fiber must be cut at the point of maximum expression. It has
sometimes been conjectured, and more often tacitly assumed,
that the train of peaks arising from modulational instability
breaks up easily into an ensemble of individual solitons. It
turns out that this is oversimplified; any conclusions based
thereupon about soliton robustness of the generated structures
would be flawed.

The conversion of a modulation instability-induced struc-
ture into a train of solitons cannot happen without factors

beyond the standard nonlinear Schrödinger equation. There
is no direct correspondence between the solitons as identified
through their eigenvalues and the peaks of the Akhmediev
breather structure. Noise weakens the coherence between
Akhmediev breather peaks, but by itself does not change the
number of eigenvalues. Therefore it cannot set the individual
pulses free to evolve into solitons.

Modifications of the pulse train generation from modula-
tional instability have been discussed, such as an incorporation
into a laser resonator [36,37]. In such a case the gain dynamics
may well provide the means to stabilize the pulse train.
The conclusion presented by the authors of Ref. [9] that a
conversion to solitons can happen through the Raman effect
now finds its justification and factual base in the behavior of
the scattering eigenvalues. With respect to the applications
of modulational instability alluded to in the Introduction,
namely structure generation in the context of supercontinuum
generation and possibly rogue wave studies, the Raman effect
is always present in any realistic setting. Therefore we expect
that in that context indeed a group of individual solitons will
be generated, and with the present contribution we clarify the
mechanism.
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