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Counterflow instability and turbulence in a spin-1 spinor Bose-Einstein condensate
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We theoretically study counterflow instability and turbulence in a spin-1 spinor Bose-Einstein condensate by the
Gross-Pitaevskii equation and the Bogoliubov-de Gennes equation. Our study considers (i) the dynamics induced
by the counterflow of two components with different magnetic quantum numbers, which leads to turbulence
with spin degrees of freedom, and (ii) the properties of the turbulence. For (i), the behavior of the condensate
induced by the counterflow strongly depends on whether the spin-dependent interaction is ferromagnetic or
antiferromagnetic, leading to different behaviors for the dispersion relation and the spin density vector, etc.
For (ii), we numerically calculate the spectrum of the spin-dependent interaction energy, which also depends
on the spin-dependent interaction. The spectrum of the spin-dependent interaction energy in the ferromagnetic
case clearly exhibits a −7/3 power law, which can be explained by scaling analysis. The spectrum in the
antiferromagnetic case seems to show some power law too, but the power exponent cannot be estimated as
definitely as the ferromagnetic case.
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I. INTRODUCTION

Turbulence is one of the most important topics in modern
physics. Turbulence in classical fluids has been studied for
a long time [1], but turbulence is also observed in diverse
fields such as low-temperature physics, plasma physics, and
astronomy. Kolmogorov studied turbulence in classical fluids
[2] and significantly advanced the study of turbulence. He
found that the kinetic energy spectrum obeyed a −5/3 power
law, which became known as the Kolmogorov −5/3 power
law.

Several methods have been used for generating turbulence
in classical fluids. Reynolds performed a famous experiment
in which he created turbulence by using flow through a circular
pipe. Another method uses hydrodynamic instabilities, which
have been investigated for a long time. There are many kinds
of instabilities such as Kelvin-Helmholtz (KH) and Rayleigh-
Taylor (RT) instabilities [3], which can lead to turbulence.

Hydrodynamic instability has recently been studied in
atomic Bose-Einstein condensates (BECs). Atomic BECs
exhibit different dynamics from classical fluids because they
are quantum fluids. Quantized vortices occur in BECs; these
vortices are nucleated through the hydrodynamic instability.
KH and RT instabilities have been studied in two-component
atomic BECs. For KH instability, quantized vortices nucleate
at the boundary layer between the two components [4],
whereas RT instability generates the shape of mushroom in the
condensate winded by the quantized vortex ring [5]. Moreover,
counterflow instability in two-component atomic BECs results
in vortices that nucleate by the collapse of solitons [6,7]. Thus,
hydrodynamic instability has been extensively investigated in
two-component atomic BECs.

Unlike two-component atomic BECs, spinor BECs have
spin degrees of freedom and exhibit phenomena character-
istic of spin. Collisions of spin-1 spinor BECs have been
investigated numerically and show different results from one-
and two-component BECs [8]. The hydrodynamic equation
for spinor BECs has recently been studied [9–11]. However,

hydrodynamic instability in spinor BECs has been investigated
less than in two-component BECs. We expect that hydrody-
namic instability in spinor BECs will exhibit unique behavior
due to their spin degrees of freedom and form turbulent states
in which the spin density vector has different directions.

Quantum turbulence has been investigated for a long time
in superfluid 4He and 3He [12], being currently studied in
atomic BECs too [13–16]. Numerical studies predict that the
Kolmogorov −5/3 power law, which was first observed in
classical fluids, also holds in atomic BECs [15]. Turbulence in
two-component BECs has been investigated [6,7]. We expect
that the turbulent state in a spin-1 spinor BEC will exhibit
properties characteristic of the spin degrees of freedom, which
one- and two-component BECs do not show. This is one of the
major themes of this paper.

In this paper, we focus on counterflow instability in spin-1
spinor BECs in a homogeneous two-dimensional system.
There are three reasons for studying the instability in this
system. The first reason is that the dynamics of spin-1 spinor
BECs induced by counterflow exhibit characteristic behav-
iors. Dynamics peculiar to counterflow have been observed
in two-component BECs [6,7]. However, there are distinct
differences between two-component BECs and spinor BECs.
The number of particles of each component is conserved in
a two-component BEC without Rabi coupling. On the other
hand, it is not conserved in a spinor BEC because of the
spin-dependent interaction. Therefore, we expect that a spin-1
spinor BEC will exhibit dynamics characteristic of not only the
counterflow but also the spin degrees of freedom. The second
reason for studying counterflow instability in spin-1 spinor
BECs is that counterflow instability can generate turbulence
in spin-1 spinor BECs. As stated above, one aim of this study is
to investigate the behavior of turbulence in spin-1 spinor BECs.
The third reason is that counterflow in two-component BECs
has been experimentally investigated [17,18]. We expect that it
may be possible to experimentally study counterflow of spin-1
spinor BECs. Hence, we study the counterflow instability of
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spin-1 spinor BECs using the Gross-Pitaevskii (GP) equation
and the Bogoliubov-de Gennes (BdG) equation. We consider
counterflow between the m = 1 and m = −1 components,
where m is the magnetic quantum number.

Our main purposes are to investigate phenomena character-
istic of the spin degrees of freedom induced by the counterflow
instability and the properties of a turbulent state in spin-1
spinor BECs. For the instability, we investigate the pattern of
the particle number density and the time dependence of the
magnitude of the spin density vector, etc. For the turbulence
of a spin-1 spinor BEC, we focus on statistical quantities such
as the probability density function (PDF) of the magnitude of
the spin density vector and the spectrum of the spin-dependent
interaction energy.

The results obtained reveal that the behaviors of the
instability and the turbulent state induced by the counterflow
depend greatly on the sign of the spin-dependent interaction.
We calculate the dispersion relation obtained from the BdG
equation, the PDF of the magnitude of the spin density
vector and the spectrum of the spin-dependent interaction
energy; these quantities exhibit different behaviors depending
on whether the spin-dependent interaction is ferromagnetic or
antiferromagnetic. As for the spectrum of the spin-dependent
interaction energy, the −7/3 power law is clearly found in the
ferromagnetic case. The −7/3 power law can be understood
by the scaling analysis of the time-development equation of
the spin density vector. On the other hand, the spectrum in the
antiferromagnetic case seems to show some power law too,
but the power exponent cannot be estimated as definitely as
the ferromagnetic case.

This paper is organized as follows. Section II describes the
formulation. In Sec. III, we analytically calculate the BdG
equation. Section IV presents the numerical results related
to the dynamical instability induced by counterflow. The
turbulent state in a spin-1 spinor BEC is treated in Sec. V.
In Sec. VI, we discuss some problems of our study. Finally,
we summarize the findings in Sec. VII.

II. FORMULATION

A. Gross-Pitaevskii equation

We consider a spin-1 spinor BEC in a homogeneous
two-dimensional system at zero temperature because this
system is easy to study theoretically and is well described
by macroscopic wave functions ψm (m = 1,0, − 1). For
simplicity, we do not treat a magnetic field or the dipole-dipole
interaction. The wave functions ψm then obey the GP equation
[19,20]

ih̄
∂

∂t
ψm = − h̄2

2M
∇2ψm + c0nψm + c1

1∑
n=−1

s · Smnψn, (1)

where M is the mass of a particle. The total density n and the
spin density vector s are respectively given by

n =
1∑

m=−1

|ψm|2, (2)

si =
1∑

m,n=−1

ψ∗
m(Si)mnψn, (3)

where (Si)mn are the spin-1 matrices

Sx = 1√
2

⎛
⎜⎝

0 1 0

1 0 1

0 1 0

⎞
⎟⎠ , (4)

Sy = i√
2

⎛
⎜⎝

0 −1 0

1 0 −1

0 1 0

⎞
⎟⎠ , (5)

Sz =

⎛
⎜⎝

1 0 0

0 0 0

0 0 −1

⎞
⎟⎠ . (6)

The parameters c0 and c1 are the coefficients of the
spin-independent and spin-dependent interactions for two-
dimensional system.

The total energy E is given by

E =
∫ 1∑

m=−1

[
ψ∗

m

(
− h̄2

2M
∇2

)
ψm

]
d r

+ c0

2

∫
n2d r + c1

2

∫
s2d r. (7)

The spin-dependent interaction energy is the last term with the
coefficient c1 on the right-hand side of Eq. (7). The ground
state in a homogeneous system without a magnetic field is
ferromagnetic for c1 < 0 and polar for c1 > 0.

The total particle number and the spin in the z direction are
conserved in the GP model without a magnetic field and the
dipole-dipole interaction, namely

d

dt
(N1 + N0 + N−1) = 0, (8)

d

dt
(N1 − N−1) = 0, (9)

with Nm = ∫ |ψm|2d r (m = 1,0, − 1). Equations (8) and (9)
show that N1 has the same time evolution as N−1 and that the
change of N0 is related to that of N1 and N−1; this is important
for understanding the instability induced by the counterflow
(see Sec. IV).

B. Initial state

We consider the counterflow between the m = 1 and
m = −1 components with a relative velocity V R = VR êx in
a homogeneous two-dimensional system, where êx is a unit
vector along the x direction. The initial state is expressed by

⎛
⎜⎜⎝

ψ
(0)
1

ψ
(0)
0

ψ
(0)
−1

⎞
⎟⎟⎠ =

√
n0

2

⎛
⎜⎜⎝

exp
[
i
(

M
2h̄ V R · r − μ1

h̄ t
)]

0

exp
[ − i

(
M
2h̄ V R · r + μ−1

h̄
t
)]

⎞
⎟⎟⎠ , (10)

where n0 is the total density and μ1 and μ−1 are the chemical
potentials and are equal to c0n0 + MV 2

R/8. We use this initial
state to investigate the counterflow instability and the turbulent
state in a spin-1 spinor BEC.

033642-2



COUNTERFLOW INSTABILITY AND TURBULENCE IN A . . . PHYSICAL REVIEW A 85, 033642 (2012)

C. Numerical method

We use the Crank-Nicholson method to numerically cal-
culate the GP equation starting from the initial state of
Eq. (10). The coordinate is normalized by the coherence length
ξ = h̄/

√
2Mc0n0 and the box size is 128 × 128. Space in

the x and y directions is discretized into 512 × 512 bins.
The time is normalized by τ = h̄/c0n0. We add some small
white noise to the initial state of Eq. (10); without this noise, the
instability cannot be generated. In our calculations, the noise
forms the particles of the m = 0 component, which accounts
for 0.1 ∼ 0.3% of the total particle number. This is consistent
with experimental results [21].

III. BOGOLIUBOV-DE GENNES EQUATION
AND DISPERSION RELATION

In this section, we consider a small deviation δψm from
the initial state of Eq. (10), whose dispersion relation can be
obtained by linear analysis.

We can write the wave functions as

ψm = ψ (0)
m + δψm. (11)

Our system is homogeneous so that we can express the small
deviation δψm by plane waves as

δψm = (
umei(k·r−ωt) − v∗

me−i(k·r−ωt)
)
e−iAm, (12)

⎛
⎜⎝

A1

A0

A−1

⎞
⎟⎠ =

⎛
⎜⎜⎝

μ1

h̄
t − M

2h̄ VR · r
μ0

h̄
t

μ−1

h̄
t + M

2h̄ VR · r

⎞
⎟⎟⎠ , (13)

where μ0 is (μ1 + μ−1)/2. Substituting Eqs. (11)–(13) into
Eq. (1) and neglecting the quadratic terms of the small
deviation, we obtain the following equations:

M0

(
u0

v0

)
= h̄ω

(
u0

v0

)
, (14)

M1,−1

⎛
⎜⎜⎜⎝

u1

v1

u−1

v−1

⎞
⎟⎟⎟⎠ = h̄ω

⎛
⎜⎜⎜⎝

u1

v1

u−1

v−1

⎞
⎟⎟⎟⎠ , (15)

where

M0 =
⎛
⎝ εk + c1n0 − MV 2

R

8 −c1n0

c1n0 −εk − c1n0 + MV 2
R

8

⎞
⎠ , (16)

M1,−1 =

⎛
⎜⎜⎜⎜⎝

h+ − n0(c0+c1)
2

n0(c0−c1)
2 − n0(c0−c1)

2
n0(c0+c1)

2 −h− n0(c0−c1)
2 − n0(c0−c1)

2
n0(c0−c1)

2 − n0(c0−c1)
2 h− − n0(c0+c1)

2
n0(c0−c1)

2 − n0(c0−c1)
2

n0(c0+c1)
2 −h+

⎞
⎟⎟⎟⎟⎠ , (17)

with εk = h̄2k2/2M and h± = εk + n0(c0 + c1)/2 ± h̄V R ·
k/2.

It follows that the small deviations of the m = ±1 com-
ponents couple with each other, but that the small deviation
of the m = 0 component develops independently of the small

deviation of the m = ±1 components. This is because the
initial state of Eq. (10) does not have any m = 0 component.
Since Eqs. (14) and (15) are eigenvalue problems, we can
obtain the dispersion relations

(h̄ω0)2 = (
εk + c1n0 − 1

8MV 2
R

)2 − c2
1n

2
0 (18)

(h̄ω1,−1)2

= ε2
k + (c0 + c1)n0εk + 1

4 (V R · h̄k)2

±
√

(V R · h̄k)2εk(εk + c0n0 + c1n0) + n2
0(c0 − c1)2ε2

k ,

(19)

where ω0 and ω1,−1 are the eigenfrequencies of Eqs. (14) and
(15), respectively.

The dispersion relations of Eqs. (18) and (19) have dynam-
ically unstable regions where the imaginary parts of ω1,−1 and
ω0 become finite. Figures 1 and 2 show the imaginary parts of
the dispersion relations for the antiferromagnetic (c0/c1 = 20,

c0 > 0) and ferromagnetic cases (c0/c1 = −20,c0 > 0), re-
spectively. Here, the wave number and the velocity are
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FIG. 1. (Color online) Imaginary part of the dispersion relation
for the antiferromagnetic case with c0/c1 = 20 and c0 > 0. The upper
and lower graphs are, respectively, the imaginary parts of ω1,−1 and
ω0. The vertical and horizontal axes are, respectively, the relative
velocity and wave number in the x direction, which is normalized
by the sound velocity cs = √

c0n0/2M and the coherence length
ξ = h̄/

√
2Mc0n0. The imaginary part of ω0 has finite values for any

finite relative velocity VR , while that of ω1,−1 has finite values only
for a relative velocity larger than the critical value Vc.
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FIG. 2. (Color online) Imaginary part of the dispersion relation
for the ferromagnetic case with c0/c1 = −20 and c0 > 0. The upper
and lower graphs are, respectively, the imaginary parts of ω1,−1 and
ω0. The vertical and horizontal axes are the same as that of Fig. 1.
The imaginary parts of ω1,−1 and ω0 have finite values for any relative
velocity VR . Therefore, the initial state is unstable even for VR = 0.
This is in contrast to Fig. 1, which shows the antiferromagnetic case.

normalized by the coherence length ξ = h̄/
√

2Mc0n0 and the
sound velocity cs = √

c0n0/2M . Experiments typically use
23Na and 87Rb atoms. The interaction parameters for 23Na
atoms satisfy c0/c1 ∼ 20 and c0 > 0, and those for 87Rb atoms
satisfy c0/c1 ∼ −200 and c0 > 0. If we had used c0/c1 ∼
−200 and c0 > 0, it would take much longer for the instability
to occur. In this study, to extract the dynamics characteristic of
the ferromagnetic interaction, we use c0/c1 = −20 and c0 > 0.

In the following, we explain the character of the dispersion
relations and show the kinds of dynamics that they are expected
to give, which can be confirmed by numerical calculations
based on the GP equation (see Sec. IV).

In the antiferromagnetic case, the imaginary part of ω0

has finite values for all relative velocities VR except VR = 0,
whereas the imaginary part of ω1,−1 has finite values only
for relative velocities larger than some critical value Vc. The
critical velocity Vc/cs of ω1,−1 in Fig. 1 (i.e., the lowest relative
velocity for which the imaginary part of ω1,−1 is finite) is
2
√

2c1/c0 ∼ 0.63. For 0 < VR < Vc, only ω0 has an imaginary
part. This means that the density is modulated only for the
m = 0 component. However, we expect that the density will
be modulated for the m = ±1 components too. The instability
occurs for the m = ±1 components even though the imaginary

part of ω1,−1 in Fig. 1 vanishes because Eqs. (8) and (9) show
that increasing the particle number of the m = 0 component
reduces the particle number of the m = ±1 components.
Consequently, the instability of the m = ±1 components can
occur. When the relative velocity VR exceeds Vc, the amplitude
of the imaginary part of ω1,−1 is larger than that of ω0. Thus,
the instability of the m = ±1 components occurs faster than
that of the m = 0 component.

In the ferromagnetic case, the dispersion relations for ω1,−1

and ω0 have finite imaginary parts at any arbitrary relative
velocity VR . This is in contrast to the antiferromagnetic case
and it implies that the initial state of Eq. (10) is unstable even
without a counterflow. In the case VR ∼ 0, the instability of
all components occurs nearly at the same time because the
amplitude of the imaginary parts of ω1,−1 is almost same as
that of ω0. On the other hand, in the case VR > 0, the instability
of the m = ±1 components grows faster than that of the m = 0
component, which reflects the amplitude of the imaginary part
of ω1,−1 and ω0.

Finally, we discuss the isotropy and anisotropy of the
dispersion relation about the direction of the relative velocity.
Equation (18) shows that ω0 depends not on the direction
of the relative velocity but on its amplitude. On the other
hand, ω1,−1 depends on the direction of the relative velocity
as well as its amplitude. Thus, the dynamics obtained by the
GP equation exhibits different behaviors depending on which
eigenfrequencies give larger imaginary parts. If ω0 (ω1,−1) is
dominant, the early dynamics will be isotropic (anisotropic).

These results obtained from the dispersion relation are
consistent with numerical calculations based on the GP
equation (see Sec. IV).

IV. COUNTERFLOW INSTABILITY

We investigate the dynamics of a spin-1 spinor BEC induced
by counterflow by performing numerical calculations based on
the GP equation. The dynamics is mainly classified according
to whether the spin-dependent interaction is antiferromagnetic
or ferromagnetic. In this section, we present the detailed
dynamics for both cases.

A. Antiferromagnetic interaction case

The dynamics strongly depends on whether 0 < VR < Vc

or Vc < VR . As shown in Sec. III, in the former case,
the instabilities for all three components are expected to
grow simultaneously, whereas the instability for the m = ±1
components is expected to grow faster than that for the m = 0
component in the latter case.

First, we present the dynamics for the case 0 < VR < Vc.
Figure 3 shows the density profiles of all components obtained
by numerical calculations with VR/cs = 0.39. In this case,
the critical velocity Vc/cs is about 0.63. Figure 3(a) shows
the initial state in which the m = ±1 components have a
velocity V R relative to the counterflow. Figure 3(b) shows
the density profiles at t/τ = 315, where instabilities occur
in all components. The instability in Fig. 3(b) appears as an
isotropic density modulation independent of the direction of
the relative velocity V R: the observed density modulation is
circular. These results can be understood by considering the
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FIG. 3. (Color online) Density profiles of the m = 1,0, −1
components for the antiferromagnetic case at t/τ = (a) 0, (b) 315, and
(c) 1500. (d) and (e) profiles of the spin density vector corresponding
to (b) and (c), respectively. The field of view of each image is
128ξ × 128ξ . The shading of the arrows in (d) and (e) denote the
magnitude of the spin density vector. These results are for numerical
calculations with c0/c1 = 20, c0 > 0, and VR/cs = 0.39.

imaginary part of the dispersion relation of Eqs. (18) and (19).
For 0 < VR < Vc, the instability is induced by the imaginary
part of the dispersion relation of the m = 0 component, which
is independent of the direction of the relative velocity VR .
In addition, as pointed out in Sec. III, the instability of
the m = 0 component causes the instability of the m = ±1
components through Eq. (8). Thus, the instability of the m =
±1 components is caused by isotropic density modulation
of the m = 0 component and thus it also exhibits isotropic
modulation, as shown in Fig. 3(b). Hence, all components
exhibit circular density modulation. After a certain time,
the density modulation of all components becomes very
complicated, as shown in Fig. 3(c). After Fig. 3(b), the circular
modulation expands in every component. This results in a
narrow path in the low-density region. Thus, in the transition
from Figs. 3(b) to 3(c), density modulation with various wave
numbers grows with increasing time. As a result, the circular
density modulation in Fig. 3(b) disappears.

The behavior of the spin density vector is shown in
Figs. 3(d) and 3(e), which correspond to the density profile
in Figs. 3(b) and 3(c), respectively [22]. The spin density
vector in Fig. 3(d) almost lies in the x-y plane. In the early
stages of the instability at t/τ = 315, the density modulation
of the m = 1 component almost overlaps that of the m = −1
component. Thus, the z component of the spin density vector
is very small. As time progresses, the modulation of high wave
numbers increases, and the m = ±1 components become less
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FIG. 4. (Color online) Time dependence of the quantities 〈S2
i 〉

(i = t,x,y,z) and the particle number Ni (i = t,x,y,z) for the
antiferromagnetic case. S2

i (i = t,x,y,z) is defined by Eqs. (20)
and (21). Nt = N1 + N0 + N−1 is the total number particle. These
results are for numerical calculations with c0/c1 = 20, c0 > 0, and
VR/cs = 0.39.

overlapped. Therefore, the z component grows as shown in
Fig. 3(e).

To understand the time dependence of the magnitude of the
spin density vector, we numerically calculate the following
quantities:

〈
S2

i

〉 = 1

n2
0A

∫
si(r)2d r (i = x,y,z), (20)

〈
S2

t

〉 =
∑

i=x,y,z

〈
S2

i

〉
, (21)

where A is the area of the system. Their time dependence is
shown in Fig. 4(a). The result of 〈S2

i 〉 means that the instability
of all components occurs at t/τ ∼ 300 because growth of 〈S2

x〉
and 〈S2

y〉 requires the instability of m = 0 component and that
of 〈S2

z 〉 requires the instability of the m = ±1 components.
Figure 4(b) shows that the particle number of the m = 0
component increases rapidly at t/τ ∼ 300, which corresponds
to the occurrence of density modulation in Fig. 3(b). Hence
the instability induced by the counterflow starts to exchange
the particle number among the three components and causes
the spin density vector to increase.

Next, we present the dynamics for Vc < VR . Figure 5 shows
the density profile for VR/cs = 1.57. Figure 5(a) shows that the
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FIG. 5. (Color online) Density profiles of the m = 1,0, −1
components for the antiferromagnetic case at (a) t/τ = (a) 70 and
(b) 1000. (c) and (d) profiles of the spin density vector corresponding
to (a) and (b), respectively. The field of view of each image is
128ξ × 128ξ . The shading of the arrows in (c) and (d) denotes the
magnitude of the spin density vector. These results for numerical
calculations with c0/c1 = 20, c0 > 0, and VR/cs = 1.57.

density modulation of the m = ±1 components is much greater
than that of the m = 0 component because Im[ω1,−1] is larger
than Im[ω0] in Fig. 1. This density profile differs from that
for 0 < VR < Vc because the density modulation in Fig. 5(a)
is anisotropic. This is understood by the dispersion relation
for ω1,−1 in Eq. (19), which depends on the direction of the
relative velocity V R . The low-density region of the m = ±1
components in Fig. 5(a) is nucleated due to the growth of
the density stripe perpendicular to the relative velocity V R .
The interval of the stripe is consistent with the most unstable
wave number obtained for Im[ω1,−1] in Fig. 1. Through
this stripe in the low-density region in Fig. 5(a), the phase
of each wave function rapidly changes by about π , whose
structure is similar to solitons in one-component BECs. This
solitonlike structure soon collapses and the density modulation
of the m = ±1 components become complicated, as shown
in Fig. 5(b). Through this collapse, the density modulation of
the m = ±1 components becomes isotropic. Similar dynamics
to that shown in Figs. 5(a) and 5(b) has been reported in
two-component BECs [6,7,17,18]. Even after a long time,
the density modulation of the m = 0 component does not
increase. However, this result depends on the initial noise
(see Sec. IV C).

The spin density vector behaves very differently from the
case when 0 < VR < Vc, as shown in Figs. 5(c) and 5(d). In
Fig. 5(c), density modulation occurs only in the m = ±1 com-
ponents [Fig. 5(a)], so that the spin density vector is oriented in
only ±z directions. In addition, the vector in Fig. 5(c) exhibits
the stripe structure as that shown in the density profiles in
Fig. 5(a). As time passes, the structure in Fig. 5(c) collapses
because the density profiles lose the stripe structure as shown
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FIG. 6. (Color online) Time dependence of quantities 〈S2
i 〉

(i = t,x,y,z) and particle number Ni (i = t,x,y,z) for the anti-
ferromagnetic case. S2

i (i = t,x,y,z) is defined by Eqs. (20) and
(21). Nt = N1 + N0 + N−1 is the total number particle. These
results for numerical calculations with c0/c1 = 20, c0 > 0, and
VR/cs = 1.57.

in Fig. 5(b). Then, as the density modulation of the m = 0
component does not increase, the spin density vector cannot
lean in the x-y plane [Fig. 5(d)]. Therefore, domains in which
the spin density vector points in the +z or −z direction are
formed through the instability and they move around.

The behaviors of the magnitude of the spin density vector
and the particle number of each component for Vc < VR differ
greatly from those for 0 < VR < Vc too. Figure 6 shows the
time dependence of 〈S2

i 〉 (i = t,x,y,z) and the particle number
of each component. 〈S2

z 〉 grows rapidly at t/τ = 70, but the
particle number of each component remains almost the same
as that of the initial state. This means that the instability of the
m = ±1 components occurs, but that of the m = 0 does not,
which is consistent with the density profiles in Figs. 5(a) and
5(b). This dynamics is almost the same as the behavior of the
two-component BEC [6,7,17,18].

B. Ferromagnetic interaction case

This subsection presents the dynamics with the ferromag-
netic interaction induced by the counterflow instability. In this
case, the imaginary parts of ω1,−1 and ω0 in Fig. 2 do not exhibit
a critical velocity, unlike the case for the antiferromagnetic
interaction. Hence, the dynamics greatly depends on whether
the relative velocity is VR ∼ 0 or 0 < VR . As shown in Sec. III,
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FIG. 7. (Color online) Density profiles of the m = 1,0, −1
components in the ferromagnetic case at t/τ = (a) 175 and (b) 1000.
(c) and (d) profiles of the spin density vector corresponding to (a) and
(b), respectively. The field of view of each image is 128ξ × 128ξ .
The shading of the arrows in (c) and (d) indicates the magnitude of
the spin density vector. These results are for numerical calculation
with c0/c1 = −20, c0 > 0, and VR/cs = 0.

in the former case, the instability of all components grows,
whereas in the latter case the instability of the m = ±1
components grows faster than that of the m = 0 component.

We present the dynamics for the case VR = 0. In this case,
there is no counterflow, but instability occurs because the initial
state is unstable even for VR = 0. Figure 7 shows the density
profiles of each component obtained by numerical calculations
with VR = 0. As expected, the density profiles do not exhibit
anisotropy [Fig. 7(a)] since the initial state with VR = 0 is
isotropic. Isotropic density modulation occurs; it corresponds
to the most unstable wave number in Fig. 2. The instability
grows considerably, as shown in Fig. 7(b).

The spin density vector corresponding to the density
profiles in Figs. 7(a) and 7(b) are shown in Figs. 7(c) and
7(d), respectively. When the instability occurs at t/τ ∼ 175,
the density modulation of the m = 1 component overlaps with
that of the m = −1 component. Thus, the spin density vector
almost lies in the x-y plane, as shown in Fig. 7(c). With
increasing time, the overlap decreases, so that the vector points
in various directions, as shown in Fig. 7(d). This behavior of the
spin density vector is similar to that for the antiferromagnetic
case with 0 < VR < Vc [see Figs. 3(d) and 3(e)]. Note that the
magnitude of the vector in the ferromagnetic case is larger than
that in the antiferromagnetic case (indicated by the shading of
the arrows in the vector plots); this is discussed later.

Figure 8 shows the time dependencies of 〈S2
i 〉 (i = t,x,y,z)

and the particle number. These results show that the insta-
bilities for all components occur almost simultaneously. The
density profile for each component in Fig. 7 is consistent with
these results.

We present the dynamics for the case 0 < VR . Figures 9
and 10 show numerical results for VR/cs = 1.96. Figure 9(a)

0 250 500 750 1000
0.0

0.9

t/τ

0.6

0.3<
S

2 i
>

0.7

0.5

0.2

0.8

◆

:

:

:

:

< S2
t >

< S2
x >

< S2
y >

< S2
z >

0.4

0.1

(a)

0 250 500 750 1000
0.0

1.2

◆

t/τ

:

:

:

:

0.2

1.0

0.4

0.6

0.8

N
i/

N
t

Nt

N1

N0

N−1

(b)

FIG. 8. (Color online) Time dependence of quantities S2
i (i =

t,x,y,z) and the particle number Ni (i = t,x,y,z) for the ferro-
magnetic case. 〈S2

i 〉 (i = t,x,y,z) is defined by Eqs. (20) and (21).
Nt = N1 + N0 + N−1 is the total number particle. These results are
for numerical calculation with c0/c1 = −20, c0 > 0, and VR/cs = 0.

shows the instability of the m = ±1 components; density
modulation of the m = 0 component does not occur because
Im[ω1,−1] > Im[ω0]. The low-density regions of the m = ±1
components in Fig. 9(a) are the solitonlike structure, which
collapse [Fig. 9(b)]. As time progresses, the instability of the
m = 0 component develops, as shown in Fig. 9(c). The spin
density vector for this case is shown in Figs. 9(d) and 9(e),
which correspond to Figs. 9(a) and 9(c), respectively. In the
early stages of the instability, density modulation occurs only
in the m = ±1 components, so that the spin density vector
points in the ±z directions, which is similar to Fig. 5(c). As
time increases, the m = 0 component grows. Thus, the x and
y components of the spin density vector become large so that
the spin density vector points in various directions, as shown
in Fig. 9(e). These behaviors of the vector are consistent with
the time dependencies of the 〈S2

i 〉 and the particle number of
each component shown in Fig. 10.

These results reveal that there are obvious differences in
the behaviors of the magnitude of the spin density vector for
the antiferromagnetic and ferromagnetic cases. Figures 4, 6,
8, and 10 show that in the antiferromagnetic case 〈S2

t 〉 tends
to decrease, whereas it tends to increase in the ferromagnetic
case. This gives rise to the different behaviors of the PDF of the
magnitude of the spin density vector, which is very important
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FIG. 9. (Color online) Density profiles of the m = 1,0, −1
components for the ferromagnetic case at t/τ = (a) 40, (b) 125, and
(c) 500. (d) and (e) profiles of the spin density vector corresponding
to (a) and (c), respectively. The field of view of each image is
128ξ × 128ξ . The shaping of the arrows in (d) and (e) indicates the
magnitude of the spin density vector. These results are for numerical
calculations with c0/c1 = −20, c0 > 0, and VR/cs = 1.96.

for the turbulence of a spin-1 spinor BEC. The details are
described in Sec. V.

C. Dependence of the dynamics on the initial noise

We discuss the dependence of the dynamics on the initial
noise. In our numerical calculations, small white noise is
added to the initial state. Different samples of the white
noise are available, although the magnitude is fixed. Our
numerical results can be classified into four categories:
(I) antiferromagnetic case with a small relative velocity
(Fig. 3); (II) antiferromagnetic case with a large relative
velocity (Fig. 5); (III) ferromagnetic case with a small relative
velocity (Fig. 7); (IV) ferromagnetic case with a large relative
velocity (Fig. 9). We performed some numerical calculations
and we empirically observed a strong dependence on the noise
sample only for (II). This strong dependence is related to the
growth of the m = 0 component. In this case, the instability
of the m = ±1 components occurs first (Figs. 5 and 6), which
is independent of the noise. However, numerical calculations
reveal that as time increases, the m = 0 component may
grow depending on the noise sample used. We cannot control
whether growth occurs or not. In this paper, we consider the
results that do not depend on the initial noise; thus, Figs. 5 and
6 show only the results obtained before the m = 0 component
grows.
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FIG. 10. (Color online) Time dependencies of the quantities
〈S2

i 〉 (i = t,x,y,z) and the particle number Ni (i = t,x,y,z) for
the ferromagnetic case. S2

i (i = t,x,y,z) is defined by Eqs. (20)
and (21). Nt = N1 + N0 + N−1 is the total number particle. These
results are for numerical calculations with c0/c1 = −20, c0 > 0, and
VR/cs = 1.96.

For cases (I), (III), and (IV), the dynamics is qualitatively
unchanged even when the initial noise sample is varied.

V. TURBULENCE IN A SPIN-1 SPINOR BEC

We find that, in the ferromagnetic case, the spectrum of the
spin-dependent interaction energy in the turbulent state obeys
the −7/3 power law. This result was obtained by numerical
calculations and it can be understood in terms of scaling
analysis. Also in the antiferromagnetic case, some power
law seems to appear in the spectrum of the spin-dependent
interaction energy, but the power exponent cannot be estimated
by such a scaling analysis. This section mainly considers the
spectrum of the spin-dependent interaction energy and its time
dependence.

The methodology usually used for analyzing classical
turbulence is applied to a spin-1 spinor BECs in this study.
Here, we briefly review turbulence in classical fluids [1,2].
Many studies focus on statistical quantities and laws because
they reflect properties characteristic of the complicated motion
in turbulence. One quantity often investigated is the kinetic
energy spectrum. Kolmogorov proposed that the kinetic energy
spectrum of incompressible fluid obeys a −5/3 power law in
fully developed homogeneous isotropic turbulence; this can be
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demonstrated by making several assumptions. One assumption
is that the kinetic energy flux is independent of the wave
number. This means that the kinetic energy is transported
to a high wave number with a constant energy flux in the
wave number region that obeys the −5/3 power law. This
result has been confirmed by many numerical calculations and
experiments. The inertial term in the Navier-Stokes equation
was found to play a dominant role in energy transfer. These
results show the self-similarity of the velocity field in wave
number space. On the other hand, in real space, a Richardson
cascade is believed to occur in which large vortices become
smaller through reconnections of vortices. However, this has
not been confirmed yet.

We focus on the spectrum of the spin-dependent interaction
energy in the turbulence of a spin-1 spinor BEC. In analogy
with classical turbulence, the flux of the spin-dependent
interaction energy is expected to be independent of the wave
number, which gives rise to the spectrum characteristics of this
system.

We derive an expression for the spectrum of the spin-
dependent interaction energy. The spin-dependent interaction
energy Es per unit area is given by

Es = c1

2A

∫
s(r)2d r. (22)

We expand the spin density vector s(r) with plane waves

s(r) =
∑

k

s̃(k)eik·r . (23)

The spin-dependent interaction energy Es is represented by
s̃(k) as

Es = c1

2

∑
k

|s̃(k)|2. (24)

Therefore, the energy spectrum of spin-dependent interaction
energy is given by

Es(k) = c1

2
k

∑
k<|k1|<k+
k

|s̃(k1)|2, (25)

where 
k is 2π/L for a system size L.

A. Ferromagnetic interaction case

Our numerical results reveal that the spectrum of the
spin-dependent interaction energy in the ferromagnetic case
obeys the power law shown in Fig. 11(a). This spectrum is
numerically calculated at t/τ = 5000, which is a sufficiently
long time after the occurrence of the instability. This is
found by the time dependence of 〈S2

i 〉 (i = t,x,y,z) shown
in Fig. 11(b). The spectrum in Fig. 11(a) has two regions that
are separated by the wave number 2π/ξs , which corresponds
to the spin coherence length ξs = h̄/

√
2M|c1|n0, (i.e., the

characteristic scale of spin structures such as domain walls
and polar core vortex [23]). In the low wave number region
(k < 2π/ξs), the spectrum obeys the power law, whereas it
does not in the high wave number region (2π/ξs < k). The
origin of this power law in the low wave number region is
discussed below.

We will obtain the power exponent of the spectrum of the
spin-dependent interaction energy in the low wave number
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FIG. 11. (Color online) Spectrum of the spin-dependent interac-
tion energy Es(k) (upper) and time dependencies of the quantities 〈S2

i 〉
(i = t,x,y,z) (lower) for the ferromagnetic case at t/τ = 5000. In the
graph of the spectrum, the red squares and blue solid and black dashed
lines show the numerical results for the spectrum, a line proportional
to k−7/3, and the boundary of the wave number corresponding to
the spin coherent length, respectively. This spectrum is obtained by
numerical calculations with c0/c1 = −20, c0 > 0, VR/cs = 0.78.

region (k < 2π/ξs) using the GP equation. The calculation
used to obtain Fig. 11(a) was for the ferromagnetic case, where
the magnitude of the spin density vector is expected to have
some large value in their PDF. To confirm this, we calculated
the PDF of the magnitude of the spin density vector. The PDF
in Fig. 12 has a sharp peak, indicating that the magnitude of the
spin density vector tends to be n0 in the turbulent state. This
observation allows us to write the macroscopic wave function
in the turbulent state with the ferromagnetic interaction as

⎛
⎜⎝

ψ1

ψ0

ψ−1

⎞
⎟⎠ ∼ √

n0ei(φ−γ )

⎛
⎜⎜⎝

e−iα cos2 β

2

1√
2

sin β

eiα sin2 β

2

⎞
⎟⎟⎠ , (26)

where α, β, and γ are the Euler angles in spin space and n0 is
the total density of the initial state. This wave function leads to

s = n0(sin β cos α, sin β sin α, cos β). (27)

In addition, the total density is assumed to be time independent
because c0 � c1. In this condition, the spin-independent
interaction energy is larger than the kinetic and spin-dependent
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FIG. 12. (Color online) Probability density function of the mag-
nitude of the spin density vector for the ferromagnetic case at
t/τ = 5000. This was obtained by performing numerical calculations
with the following parameters: c0/c1 = −20, c0 > 0, VR/cs = 0.78.

interaction energies, so that the total density n has a weak
time dependence. We can obtain the time evolution equation
of ŝ = s/n0 from Eqs. (1) and (26)

∂

∂t
ŝ + (v · ∇)ŝ = h̄

2M
ŝ × [∇2 ŝ + (a · ∇)ŝ], (28)

v = h̄

2Mn0i

1∑
m=−1

(ψ∗
m∇ψm − ψm∇ψ∗

m) (29)

with a = (∇n0)/n0 [9–11]. In our case, the total density is
approximately n0 in the initial state of Eq. (10), so that a
vanishes. Therefore, the following equation can be used to
calculate the power exponent of the spectrum:

∂

∂t
′ ŝ +

(
v

cs

· ∇′
)

ŝ = ŝ × ∇′2 ŝ, (30)

where space and time are respectively normalized by ξ and
τ (t

′ = t/τ , ∇′ = ξ∇). In the early stages of the instability,
the wave function has vortices and a solitonlike structure. The
velocity v can be large in their neighborhoods. This is similar
to the vicinity of vortices in one-component BECs, where the
velocity is larger than the sound velocity in the vortex core
region whose size is equal to the coherence length. However,
the number of such defects tends to decrease with time.
Therefore, the velocity v is lower than the sound velocity
cs almost everywhere after a sufficiently long time after the
instability occurs. We confirm that the PDF of the magnitude
of the velocity has a peak at about 1/10 of the sound velocity.
We thus expect that the term on the right-hand side of
Eq. (30) is important for transporting the spin-dependent
interaction energy to a higher wave number. This is different
from classical turbulence for which the inertial term in the
Navier-Stokes equation is dominant for energy transfer.

To understand the behavior of the spectrum in Fig. 11, we
consider spin density vector in wave number space. We can
express Eq. (30) by neglecting the second term on the left-hand
side by using ˆ̃s = s̃/n0

∂

∂t
ˆ̃s(k) = − h̄

2M

∑
k1,k2

k2
2
ˆ̃s(k1) × ˆ̃s(k2)δk,k1+k2 . (31)

In the following, we apply Kolmogorov-type dimensional
analysis to Eq. (31) [24,25] under two assumptions: Equa-
tion (31) is invariant under the scale transformation and the
flux of the spin-dependent interaction energy is independent
of the wave number. We perform the scale transformation
k → ζ k, t → ηt in Eq. (31). Then, if ˆ̃s is transformed to
ζ−2η−1 ˆ̃s, Eq. (31) will be invariant. We can then write the
dependence ˆ̃s on k and t as

ˆ̃s ∼ k−2t−1. (32)

We assume that the flux of the spin-dependent interaction
energy is independent of the wave number, which is equivalent
to assuming the existence of a region in which the energy is
constantly transported. This result can be expressed by

ε ∼
ˆ̃s

2

ts
∼ k−4t−3

s , (33)

where ε and ts are respectively the energy flux and the
characteristic time. Using Eqs. (25), (32), and (33), we obtain
the −7/3 power exponent

Es(k) ∼ k−1
(
k−2t−1

s

)2 ∼ ε−2/3k−7/3. (34)

This result agrees with the numerical result in Fig. 11, where
the blue line denotes k−7/3. The same assumption has been
used for classical turbulence; the wave number region that
obeys the −5/3 power law is known as the inertial range
since it originates from the inertial term in the Navier-Stokes
equation [1]. However, in our system, the inertial term is
not important for energy transfer, so that the region obeying
the power law in Fig. 11 cannot be termed the inertial
range.

The power law in the spectrum of the spin-dependent
interaction energy originates from the fact that the energy flux
induced by the first term of the right-hand side of Eq. (28) is
independent of the wave number. This nonlinear term contains
the second derivative and it differs from the first-derivative
inertial term in the Navier-Stokes equation. The different
nonlinear terms in the two equations are responsible for the
different exponents of the energy spectrum. Therefore, the
−7/3 power law of the spectrum is peculiar to turbulence of a
spin-1 spinor BEC.

Figure 13 shows how the −7/3 power spectrum develops.
In the early stages of the instability, the spectrum has a
peak corresponding to the most unstable wave number of the
dispersion relation given by Eqs. (18) and (19), as shown in
Fig. 13(a). This is confirmed by Fig. 2, from which it follows
that the most unstable wave numbers kξ is approximately equal
to 0.3 ∼ 0.4. Actually, the density modulation at t/τ = 125
has a stripe structure that resembles those in Figs. 5(a)
and 9(a), and the unstable wave number corresponds to the
wave number of the stripe. After the instability occurs, the
spectrum changes to that in Fig. 13(b). The density then no
longer sustains the stripe structure and excites modulation
of various wave numbers. As time increases, the spectrum
starts to obey the −7/3 power law, as shown in Fig. 13(c).
After that, the spectrum continues to obey this power law.
This is confirmed by Fig. 13(d) showing the spectrum
at t/τ = 5000.
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FIG. 13. (Color online) Time dependence of spectrum of spin-dependent interaction energy Es(k) for the ferromagnetic case at t/τ = (a)
125, (b) 600, (c) 3000, and (d) 5000. In the spectrum, the red squares, blue solids, and black dashed lines indicate the numerical results for the
spectrum, the line proportional to k−7/3, and the boundary of the wave number corresponding to the spin coherent length, respectively. This
was obtained by performing numerical calculations with c0/c1 = −20, c0 > 0, VR/cs = 0.78.

We calculate the time dependence of the power exponent
by the least-squares method [26,27]. The deviation σ from
the straight line obtained by the method is also calculated. The
results with VR/cs = 0.39, 0.78, and 1.96 are shown in Fig. 14,
which exhibits that the power exponent is approximately
−7/3 over a long time. Note that since our system is not
stationary, the power exponent asymptotically approaches
−7/3 in Fig. 14. Also, Fig. 14(a) shows how the time
development of the power exponent depends on the relative
velocity VR . When the relative velocity is small, it takes long
time for the value of n to approach −7/3. This is confirmed
by comparing the cases VR/cs = 0.39 and 0.78. On the other
hand, the spectrum behaves differently when VR/cs = 1.96.
In this case, the value of n approaches −7/3 from above
[Fig. 14(a)]. This can be understood from the imaginary part of
the dispersion relation in Fig. 2, which shows that the unstable
region of ω1,−1 is broad for a large relative velocity. This means
that, unlike the case for a small velocity, the instability contains
various wave numbers. Thus, in this case, the spectrum in
the low wave number region 0 < k < ks becomes flat in the
early stages of the instability, leading to the time dependence
of n.

In summary, we observed a −7/3 power law in spin-1
spinor BECs with the ferromagnetic interaction. This law
is independent of the relative velocity VR in our numerical

calculations based on the GP equation for 0 < VR/cs < 1.96.
However, if the relative velocity is much greater than the sound
speed cs , this law will not hold because the total particle density
n may be inhomogeneous.

B. Antiferromagnetic interaction case

The spectrum of the spin-dependent interaction energy in
the antiferromagnetic case exhibits a power law being not
as clear as that in the ferromagnetic case. This is confirmed
by Fig. 15, which shows the spectrum of the spin-dependent
interaction energy in the antiferromagnetic case at t/τ =
6000 when the spin density vector is greatly disturbed. This
spectrum may show a power law in the narrow range 0.3 <

kξ < 1.4. However, as shown in the following, we cannot
estimate the power exponent by the simple scaling analysis
applied to the ferromagnetic case.

The −7/3 power law for the ferromagnetic case was
obtained by applying a scaling argument under certain assump-
tions, which are not applicable for the antiferromagnetic case.
This can be confirmed by checking the PDF of the magnitude
of the spin density vector (Fig. 16). There are two distinct
differences between Figs. 12 and 16: the peak width and the
magnitude of the spin density vector corresponding to the peak
both differ. The peak width in Fig. 16 for the antiferromagnetic
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FIG. 14. (Color online) Time dependence of the power exponent
and deviation from the straight line obtained by the least-squares
method for the ferromagnetic case. The value of n in (a) is calculated
by the least-squares method. The deviation σ in (b) is defined as√∑N

i=1[yi − f (xi)]2/N , where f , N , and (yi,xi) are the line obtained
by the least-squares method, the number, and the data set. In this
calculation, the wave number region (k0 < k < ks) is limited with
k0 = 8π/L. This was obtained by performing numerical calculations
with c0/c1 = −20, c0 > 0, VR/cs = 0.39,0.78,1.96.

case is larger than that in Fig. 12 for the ferromagnetic case.
The magnitude of the spin density vector corresponding to the
peak for the ferromagnetic case is approximately n0, whereas
that for the antiferromagnetic case is smaller than n0. These
results imply that Eq. (26) is not valid for the antiferromagnetic
case. Thus, Eq. (34), which is based on Eq. (26), cannot be
applied to the antiferromagnetic case. Therefore, the spectrum
for the antiferromagnetic case cannot be analyzed by the
simple scaling analysis applied to the ferromagnetic case.

VI. DISCUSSION

In this section, we discuss the following three topics:
(i) comparison between turbulence in spin-1 spinor BECs and
other kinds of turbulence; (ii) possibility of observing the −7/3
power law, and (iii) how to generate counterflow in spin-1
spinor BECs.
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FIG. 15. (Color online) Spectrum of spin-dependent interaction
energy Es(k) for the antiferromagnetic case at t/τ = 6000. In the
spectrum, the red squares and blue solid and black dashed lines
indicate the numerical results for the spectrum, the line proportional
to k−7/3, and the boundary of the wave number corresponding to the
spin coherent length, respectively. This was obtained by performing
numerical calculations with the following parameters: c0/c1 = 20,
c0 > 0, VR/cs = 0.78.

A. Comparison of turbulence in spin-1 spinor Bose-Einstein
condensates and other kinds of turbulence

We compare the turbulence in spin-1 spinor BECs with that
in one-component BECs and classical incompressible fluids.
Through this comparison, we discuss some characteristic
properties of turbulence in spin-1 spinor BECs.

There are some differences between turbulence in one-
component BECs and that in spin-1 spinor BECs. In the
former system, the Kolmogorov −5/3 power law spectrum
is obtained only if an external force is applied. This force
injects energy on large scales and generates quantized vortices.
If the external force is weak and the number of vortices
is not enough, the incompressible kinetic energy decreases
and the Kolmogorov spectrum tends to disappear [28,29].
Thus, the existence of the quantized vortices is considered
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FIG. 16. Probability density function of the magnitude of the spin
density vector for the antiferromagnetic case at t/τ = 6000. This was
obtained by performing numerical calculations with the following
parameters: c0/c1 = 20, c0 > 0, VR/cs = 0.78.
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to be important for sustaining the Kolmogorov −5/3 power
law in the turbulence of one-component BECs. On the other
hand, the −7/3 power law in spin-1 spinor BECs is sustained
without the application of an external force, as confirmed by
Fig. 14. In the ferromagnetic case [see Figs. 8(a) and 10(a)],
the absolute value of the spin-dependent interaction energy of
Eq. (22) tends to increase without the application of an external
force due to the ferromagnetic interaction. This is in contrast
with the reduction in the incompressible kinetic energy in the
turbulence of one-component BECs when no external force
is applied. We conjecture that this increase allows the system
to obey the −7/3 power law even when no external force is
applied.

The self-similarity in wave number space can be strongly
related to the structures in real space, which is very important
for understanding the behavior of turbulence in real space. In
the turbulence of the one-component BEC, the Kolmogorov
−5/3 power law is believed to be related to the Richardson
cascade of quantized vortices, where larger vortices become
smaller through reconnections of vortices. This cascade may
correspond to the energy cascade in wave number space, where
the incompressible kinetic energy is transported to a high
wave number. We expect that there are some spin structures
characteristic of turbulence with the −7/3 power law in a
spin-1 spinor BEC. Like the Richardson cascade of quantized
vortices, some larger spin structures may become smaller
to transport the energy to a high wave number. However,
we currently do not know what kinds of spin structures are
essential for the −7/3 power law.

We compare turbulence in spin-1 spinor BECs with that
in classical fluids. In classical turbulence where the Reynolds
number becomes infinite, the inertial term of the Navier-Stokes
equation becomes dominant in the inertial range, which causes
the system to obey the −5/3 power law. We do not know any
quantities that correspond to the Reynolds number in spin-1
spinor BECs. However, as our system becomes turbulent, the
term on the right-hand side of Eq. (30) becomes dominant.
Hence, the spin-dependent interaction energy in the turbulence
is transported to a high wave number mainly by this term;
this differs from the turbulence mechanism in incompressible
classical fluids. This is very significant for the −7/3 power
law, as pointed out in Sec. V.

From the above discussion, it follows that the turbulence
in spin-1 spinor BECs has some properties that other kinds of
turbulence do not have. There are several unknowns associated
with this turbulence such as the kinetic energy spectrum, the
spin structure in real space, the interaction between the velocity
and the spin field. These are subjects for future study.

B. Possibility of observing the −7/3 power law

The possibility of observing the −7/3 power law is
discussed. We consider that the −7/3 power law may be
experimentally observed if the following three conditions are
satisfied.

The spectrum of trapped systems with the ferromagnetic
interaction is expected to manifest the −7/3 power law less
clearly than that the spectrum of homogeneous systems. This
is because we neglect the term containing ∇n in Eq. (28)
in our derivation of the −7/3 power law. Variation of the

total particle density n should affect the spectrum in trapped
systems. However, for large trapped systems, this is expected
to have a small effect on the spectrum. Therefore, large trapped
systems are preferable for observing the −7/3 power law. This
is the first condition.

All components of the spin density vector have been
experimentally observed by a phase contrast imaging method
[21]. The expressions for the spectrum of the spin-dependent
interaction energy show that it is possible to obtain a spectrum
if the spin density vector is observed everywhere. This is
because Eq. (25) contains only the Fourier component of the
vector s̃(k). Thus, the second condition is the observation of
the spin density vector.

The experimental resolution in wave number space is
important for observing the −7/3 power law. Our numerical
calculations reveal that the spectrum of the spin-dependent
interaction energy obeys the −7/3 power law in the low
wave number region (k < ks), as shown in Fig. 11. In trapped
systems, we expect that the −7/3 power law holds in the region
kR < k < ks , where kR is the wave number corresponding to
the system size. Typically, the system size is approximately
equal to the Thomas-Fermi radius. Thus, experiments for
observing the −7/3 power law need to have a resolution up
to the spin coherence length ξs in real space. Since Sadler
et al. [21] observed a polar core vortex, the resolution of
their experiments seems to be sufficient for observing the
−7/3 power law. The third condition is the observation with
a resolution up to the spin coherence length ξs . Note that the
larger a system size is, the broader the region that obeys the
−7/3 power law will be, because kR is inversely proportional
to the system size. Thus, larger systems are more suitable for
observing the −7/3 power law (this is also consistent with the
first condition).

In summary, we conclude that the −7/3 power law may
be experimentally observed if the above three conditions are
satisfied.

C. How to generate counterflow in spin-1 spinor
Bose-Einstein condensates

We discuss the two methods for generating counterflow of
spin-1 spinor BECs in trapped systems.

The first method is to use a double-well potential. A
numerical study has already investigated this [8]. In this case,
the m = ±1 components are separately trapped in each well.
The central barrier between two wells is then removed, which
generates counterflow in spin-1 spinor BECs.

The second method is to utilize a magnetic field gra-
dient. This method was used to generate counterflow of
two-component BECs [6]. In the initial state, the m = ±1
components are trapped in a harmonic trap. As a magnetic
field gradient is applied, one component moves in the the field
gradient direction, while the other component moves in the
opposite direction. The magnetic field gradient is switched off
when the two components are sufficiently separated, which
causes the m = ±1 components to move toward the center of
the trap, generating a counterflow.

In future, these methods may be used to study counterflow
in spin-1 spinor BECs in a trapped system.
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VII. CONCLUSION

This paper addressed two main topics: the dynamics
induced by counterflow of the spin-1 spinor BECs in a
homogeneous two-dimensional system and the turbulence
generated by the counterflow. These themes are investigated
using the GP and BdG equations.

The results reveal that the properties of the dynamics
and turbulence in this system are strongly dependent on
whether the spin-dependent interaction is ferromagnetic or
antiferromagnetic. We summarize the results below.

The dynamics induced by the counterflow in the spin-1
spinor BEC was investigated by performing analytical cal-
culations using the BdG equation and numerical calculations
using the GP equation. We obtain the dispersion relations of
Eqs. (18) and (19) from the BdG equation; these relations show
the dynamical instability. The dispersion relations depend
on the spin-dependent interaction, so that Im[ω1,−1] and
Im[ω0] for the antiferromagnetic case differ from those for the
ferromagnetic case (Figs. 1 and 2). The numerical calculations
reveal that, in the early stages of the instability, the dynamics
can be understood in terms of the dispersion relations. The
stripe width of the density modulation in Figs. 5(a) and 9(a) is
approximately equal to the most unstable wavelength obtained
by the dispersion relations. In addition, the isotropy and
anisotropy of the density modulation in Figs. 3(b) and 5(a) can
be explained in terms of the dispersion relations. The distinct
difference between the ferromagnetic and antiferromagnetic
cases appears in the magnitude of the spin density vector, as
shown in Figs. 3–10. This is very important for the spectrum
of the spin-dependent interaction energy in the turbulence, as
pointed out in Sec. V. These results reveal dynamics peculiar
to the spin degrees of freedom.

We studied the turbulence generated by the counterflow in
spin-1 spinor BECs by performing numerical calculations us-
ing the GP equation and scaling analysis. In the ferromagnetic
case, the spectrum of the spin-dependent interaction energy
obeys the −7/3 power law (Fig. 11). The power exponent
−7/3 is obtained by the scaling analysis of Eq. (31) when we
make the following three assumptions. The first is that the wave

functions ψm are approximately expressed by Eq. (26), which
means the condensates behave ferromagnetically. The second
is that Eq. (31) are invariant under the scale transformation.
The third is that the flux of the spin-dependent interaction
energy is independent of the wave number.

On the other hand, in the antiferromagnetic case, some
power law seems to appear in the spectrum of the spin-
dependent interaction energy too, but the power exponent
cannot be estimated by the scaling analysis. This is attributable
to the breakdown of the validity of Eq. (26). In this case, the
PDF of the magnitude of the spin density vector (Fig. 16)
differs from that for the ferromagnetic case (Fig. 12), so that
such a scaling analysis used for the ferromagnetic case is not
applicable.

These results are characteristic of the spin degrees of
freedom and are thus not exhibited by turbulence in one-
component BECs. As described in Sec. VI, there are two
unsolved problems associated with turbulence in spin-1 spinor
BECs. The first is what kind of spin structure in the real
space is essential for the −7/3 power law. The second is the
spectrum of the kinetic energy of the superflow velocity field
in this turbulence. In spin-1 spinor BECs, the spin and velocity
fields coexist and are coupled. In this paper, we focus on the
spin field, investigating the spectrum of the spin-dependent
interaction energy. The spectrum of the kinetic energy in
one-component BECs is known to exhibit the Kolmogorov
−5/3 power law [15]. Our current system may exhibit the
Kolmogorov −5/3 power law too, but there is interaction
between the spin and velocity fields. Hence, it is not so trivial
whether the spectrum of the kinetic energy in the turbulence
exhibits the −5/3 power law or not. The spin-1 spinor BECs
give an interesting system where spin turbulence and quantum
turbulence of superflow coexist, which should be addressed in
the near future.
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