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Slow quench dynamics of Mott-insulating regions in a trapped Bose gas
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We investigate the dynamics of Mott-insulating regions of a trapped bosonic gas as the interaction strength
is changed linearly with time. The bosonic gas considered is loaded into an optical lattice and confined to a
parabolic trapping potential. Two situations are addressed: the formation of Mott domains in a superfluid gas as
the interaction is increased and their melting as the interaction strength is lowered. In the first case, depending
on the local filling, Mott-insulating barriers can develop and hinder the density and energy transport throughout
the system. In the second case, the density and local energy adjust rapidly, whereas long-range correlations
require a longer time to settle. For both cases, we consider the time evolution of various observables: the local
density and energy and their respective currents, the local compressibility, the local excess energy, the heat, and
single-particle correlators. The evolution of these observables is obtained using the time-dependent density-matrix
renormalization-group technique and comparisons with time evolutions done within the Gutzwiller approximation
are provided.
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I. INTRODUCTION

Due to their good isolation from the environment and to
their tunability, ultracold quantum gases are ideal candidates to
investigate the physics of systems away from equilibrium [1].
Cold atoms are well suited for exploring situations where
the Hamiltonian describing a system is slowly varied with
time. Understanding the physical implications of such slow
quenches is of great theoretical and practical importance to
shed light on the coherent evolution of quantum systems
and to devise methods to prepare complex quantum phases.
Seminal works on the dynamics of classical systems near a
second-order phase transition conducted by Kibble [2] and
Zurek [3] identified that the defect production rate as a function
of the ramp velocity is described by a scaling law when
the system crosses a critical point. However, despite many
recent theoretical advances [4–31], the response of strongly
correlated quantum gases to the slow quench of a Hamiltonian
parameter is still far from being fully understood. Meanwhile,
on the experimental side, considerable efforts have been
devoted to understanding the dynamics of interacting bosonic
atoms when the depth of the optical lattice is varied [32–36] or
when the slow quench of an effective parameter is performed
[37,38].

In relation to these experimental protocols, in
Refs. [17,33,39,40], the presence of a parabolic trapping
potential was found to significantly influence the dynamics.
Two dynamical regimes have been shown to exist when
interacting atoms loaded into an optical lattice and confined
to a trap are subjected to a slow change of the interaction
strength. For short ramp times, the evolution is dominated
by intrinsic local dynamics, which is also present in a
homogeneous system, whereas for longer ramp times the
density redistribution can play an important role.

*bernier@phas.ubc.ca

In this work, we study the response of bosonic atoms to a
linear change in the interaction strength. As these atoms are
confined to one-dimensional tubes and loaded into an optical
lattice running along the tube’s main axis, the physics for
a wide range of parameters is well described by the one-
dimensional Bose-Hubbard model. Here our main objective
is to understand the evolution, as a function of the ramp time,
of the local and nonlocal observables of the quantum gas. We
focus on the crucial issues of the formation and melting of
Mott domains and on how the adiabatic limit is approached.

The article is structured as follows: In Sec. II A, we
introduce the model and the time-dependent protocol.
Sections II B and II C detail the methods and theoretical
definitions. These two sections can be skipped by readers
more interested in the main phenomena. In Sec. III, we
turn to a description of the evolution resulting from the
increase in interaction strength. In Sec. III A 1, we focus
on the occurrence of two dynamical regimes, the intrinsic
dynamics and the dynamics induced by the trapping potential,
and explain their origin (Sec. III A 2). Afterward, we direct
our attention to the formation of “Mott barriers,” which
strongly block the equilibration process (Sec. III A 3), the
energy transport (Sec. II C 4), and the evolution of longer
range correlations (Sec. III B). Then, in Sec. IV, we consider
the opposite case of melting the Mott domains occurring
when the interaction strength is lowered, and in particular,
we point out the long equilibration times for long-range
correlation functions. For both situations, we characterize the
time evolution considering observables such as the density,
the compressibility, the energy, various particle correlators,
and the momentum distribution, which is related to the
interference patterns in time-of-flight measurements. These
results are supplemented by a detailed analysis of the physical
mechanisms responsible for the presence of the intrinsic
and global dynamical regimes. We further show that the
different time scales can be identified experimentally from
interference patterns. Our numerical results are obtained from
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the time-dependent density-matrix renormalization-group
(t-DMRG) method. We also compare these quasiexact results
to time evolutions done within the mean-field Gutzwiller
method (Sec. III A 5) to identify the limitations of the latter
approach and pinpoint the qualitative physical insights it
provides. The present work extends substantially our previous
results on the same setup [17].

II. MODEL AND CONSERVATION LAWS

A. Hamiltonian and time-dependent protocol

Ultracold bosons in optical lattices are, in a wide parameter
regime, well described by the Bose-Hubbard Hamiltonian
[41,42]:

H = −J
∑

l

(b̂†l+1b̂l + H.c.) + U (t)

2

∑
l

n̂l(n̂l − 1)

−
∑

l

μln̂l,

where b̂
†
l is the operator creating a boson at site l and n̂l = b̂

†
l b̂l

the local density operator. The total number of atoms is fixed to
N . The first term of the Hamiltonian corresponds to the kinetic
energy of atoms with hopping amplitude J , and the second
to the on-site interaction of strength U . The site-dependent
chemical potential μl accounts for an external confinement.
We consider here a one-dimensional geometry (tube) and
use either a homogeneous (μl = 0) or a harmonic trapping
potential of the form μl = −V0[l − (L + 1)/2]2, with L the
number of sites in the tube (open-boundary conditions) used
in our simulations. We assume an experimentally realistic
strength for the trapping potential of V0 = 0.006J and particle
numbers N = 24,48. For these parameters the choice L = 64
assures that edge effects are not important. One nontrivial
aspect of the model is that it is nonintegrable [43,44] for
nonzero J and U . Further, at commensurate fillings, a quantum
phase transition from a superfluid to a Mott-insulating state
occurs (at (U/J )c ≈ 3.4 for unity filling in one dimension
[45,46]). This phase transition is accompanied by the opening
of a gap in the low-energy excitation spectrum, which strongly
modifies the ground-state, thermodynamic, and transport
properties. At incommensurate fillings a crossover between
a superfluid and a Tonks-Girardeau, or hard-core boson, gas
occurs in equilibrium. This distinct behavior at commensurate
and incommensurate fillings implies that in a trapped system,
different states can coexist in spatially separated regions
[47–49]. For instance, for a strong enough interaction, a Mott-
insulating plateau with commensurate filling, surrounded by a
superfluid region, emerges.

Regarding the time-dependent protocol, we consider a
slow quench of the interaction strength U (t), which can be
achieved experimentally using a suitable Feshbach resonance
[50]. Different time-dependent protocols have been considered
in previous works in homogeneous systems using several
analytical or numerical approximation schemes [5,9,10,18,20–
22,25]. For the sake of simplicity and generality, the variation
in time is chosen to be linear, starting from Ui up to a
final value Uf : U (t) = Ui + t

τ
δU , with τ the ramp time and

δU = Uf − Ui the quench amplitude. The real-time evolution
starts from the ground state corresponding to Ui . The labels

i and f are used for the initial and final ground-state values,
respectively. The limit τ → 0, i.e., the sudden quench limit,
has been studied intensively in the Bose-Hubbard model using
analytical [23,51,52] and numerical [53–59] methods.

B. Methods

1. t-DMRG

Accurate ab initio numerical simulations of the time
evolution of the quantum gas are carried out using the t-
DMRG technique [60–64]. The time evolution is implemented
using the second-order Trotter-Suzuki decomposition. The
dimension of the effective space is a few hundred states and
the time step is adjusted with the ramp velocity. We introduce
a cutoff value of M = 5 or 6 in the number of on-site bosons,
as higher boson occupancies are negligible in the situations
considered here.

2. Gutzwiller variational method

In this section, we describe how to determine the evolution
of the system within the Gutzwiller mean-field method [65,66].
This approximation has been used before to describe the
evolution during a slow change in the lattice depth in a
higher dimensional trapped Bose-Hubbard system [40,70].
The Gutzwiller method is based on a variational ansatz of the
many-body wave function |�〉 = ⊗

l

[∑
nl

cl,nl
(t)|nl〉

]
, where

|nl〉 is the Fock state on site l with nl particles and cl,nl

are the variational parameters. The ground state for a given
Hamiltonian is obtained by minimizing the total energy EGW:

EGW = −J
∑

l

(〈b̂l〉∗〈b̂l+1〉 + c.c.)

+ U (t)

2

∑
l,nl

nl(nl − 1)|cl,nl
|2 −

∑
l,nl

μlnl|cl,nl
|2,

where 〈b̂l〉 = ∑
nl

√
nl + 1 c∗

l,nl
cl,nl+1 and the asterisk denotes

complex conjugation. The validity of the Gutzwiller method
in evaluating static observables of one-dimensional systems
has been studied, for example, in Ref. [71]. The Gutzwiller
approach predicts, in one dimension, a phase transition at
(U/J )c = 2(1 + √

2)2 � 11.7 [65]. The superfluid phase is
signaled by a nonvanishing order parameter 〈b̂l〉, and for a
low interaction strength, the properties of local quantities are
reasonably well approximated. In contrast, the Mott-insulating
phase is characterized by a vanishing order parameter and
vanishing local compressibility, thus neglecting completely
particle fluctuations which are present in the real Mott-
insulating phase.

The time evolution for the coefficients cl,nl
(t) can be readily

derived [66] from the Schrödinger equation. The equations are

ih̄∂t cl,nl
(t) =

{
U (t)

2
nl(nl − 1) − μlnl

}
cl,nl

(t)

− J
√

nl + 1[〈b̂l−1〉∗ + 〈b̂l+1〉∗] cl,nl+1(t)

− J
√

nl[〈b̂l−1〉 + 〈b̂l+1〉] cl,nl−1(t).

They are solved numerically by implementing a split-step
method.
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C. Observables and definitions from continuity equations

1. Correlations and interference pattern

We define the one-body correlation function between site l

and site m as

gl,m = 1
2 〈b̂†l b̂m + H.c.〉. (1)

While g is not easily accessible, time-of-flight techniques
measure an interference pattern related to the momentum
distribution of the correlated gas. Neglecting the Wannier-
function envelope, the interference pattern is given by

N (k) = 1

L

∑
l,m

ei(l−m)ka〈b̂†l b̂m〉, (2)

where a is the lattice spacing. For a superfluid state, N (k)
is expected to be strongly peaked around zero momentum,
whereas for a Mott-insulating state the interference pattern
should be rather flat.

2. General expression for the continuity equation

In this section, we want to determine, in the Schrödinger
picture, the current operators corresponding to a given ob-
servable O(t) = 〈ψ(t)|Ô(t)|ψ(t)〉, where Ô(t) can explicitly
depend on time, using the associated continuity equation.
In the following, the shorthand notation 〈· · ·〉 stands for
the expectation value 〈ψ(t)|· · ·|ψ(t)〉 at a given time. The
continuity equation takes, on general grounds, the following
form:

h̄∂tO(t) = −div〈Ĵ O〉 + 〈ŜO〉. (3)

Ĵ O is the current operator, for which we have

−div〈Ĵ O〉 = i〈[H(t),Ô(t)]〉. (4)

Since we are interested in studying a one-dimensional system
and local operators, we give the specialization for an observ-
able located around site l, thus defining incoming and outgoing
currents according to

−div〈Ĵ Ol 〉 = −(〈
Ĵ O

l,l+1

〉 − 〈
Ĵ O

l−1,l

〉)
. (5)

The source operator ŜO(t) = h̄∂t Ô(t) is nonzero only for an
explicitly time-dependent operator.

Interestingly, integrating (3) between time 0 and time τ ,
taking the adiabatic limit τ → ∞, and doing the change of
variable t → U (in the source term integral) enables one
to express the integrated contribution of currents only as a
function of ground-state expectation values,∫ ∞

0

dt

h̄
div〈Ĵ O〉(t)

= Oi − Of +
∫ Uf

Ui

dU 〈ψ0(U )|∂UÔ|ψ0(U )〉, (6)

where |ψ0(U )〉 is the ground state corresponding to U . The
integral on the right-hand side is taken along the adiabatic
path. This remark is important from a numerical perspective
because the right-hand side can be efficiently computed via
ground-state techniques, while the left-hand side would require
time-dependent simulations over very long times, which is not
feasible.

As explained in Sec. I, the main objective of this work is
to characterize how particles and energy redistribute when the
interaction strength U (t) is ramped up or down. Therefore,
we introduce below the relevant quantities and the physically
significant terms of their associated continuity equations. A
few commutators, useful in the derivation of these continuity
equations, are provided in Appendix A.

3. Local observables on sites and bonds

As the first example, (3) can be used to derive the particle
current associated with the local density n̂l :

ĵl,k ≡ Ĵ
nl

l,k = iJ (b̂†kb̂l − b̂
†
l b̂k). (7)

This current is defined between site l and site k and there is
no source term associated with n̂l , as it is not explicitly time
dependent. As the particle current appears quite often in the
rest of this article, henceforth it is denoted ĵl,k . Finally, it is
instructive to note that for a homogeneous and translationally
invariant system, the local density is constant at all times due
to the conservation of the total number of particles.

In order to better understand the different time scales
involved during the evolution, it is also useful to consider
separately the evolution equation for the density fluctuations
n̂2

l . This quantity is essential to our comprehension of the Bose-
Hubbard model and is related to the the local compressibility
κl = 〈n̂2

l 〉 − 〈n̂l〉2. Using (3) and after some algebra, we find
that the evolution of n̂2

l is controlled by a “density-assisted” or
“correlated” current,

Ĵ
n2

l

l,l+1 = n̂l ĵl,l+1 + ĵl,l+1n̂l . (8)

Note that the label J n2
l is necessary to obtain a unique

notation. In particular, Ĵ
n2

l

l−1,l = n̂l ĵl−1,l + ĵl−1,l n̂l and Ĵ
n2

l+1
l,l+1 =

n̂l+1ĵl,l+1 + ĵl,l+1n̂l+1. The origin of this density-assisted
current, mixing ĵ and n̂p operators, comes from the evolution
equation for the on-site occupancy probabilities discussed in
Appendix B. In equilibrium, in our system, the average of
(8) computed in the ground state vanishes, as for the particle
current operator.

The same strategy is used to get the current operators
associated with observables living on bonds, such as the
local kinetic energy operator K̂l,l+1 (or nearest-neighbor one-
particle correlation), defined by

K̂l,k = −J (b̂†kb̂l + b̂
†
l b̂k) (9)

between site l and site k. We find that the incoming current
associated with K̂l,l+1 reads

Ĵ
Kl,l+1

l−1,l = −μlĵl,l+1 (10a)

+ J ĵl−1,l+1 (10b)

+ U (t)

2
(n̂l ĵl,l+1 + ĵl,l+1n̂l), (10c)

showing the interplay of the correlated and usual particle
currents. It is worth noting that for a homogeneous system,
the evolution of local kinetic fluctuations is directly related to
that of the density fluctuations, since in this case

∂t 〈b̂†l b̂l+1 + b̂
†
l+1b̂l〉 = U (t)

2J
∂t

〈
n̂2

l

〉
. (11)
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Thus, even in the homogeneous limit, the time dependence of
U (t) affects the evolution of the local kinetic term or nearest-
neighbor correlations. Equation (11) is also straightforwardly
obtained from the evolution of the total energy discussed
below. Note that this equation is not valid for inhomogeneous
gases, where the balance of particle currents can be nonzero.

Similarly, the current operator associated with the particle
current itself contains density-assisted hoppings, following the
expression

Ĵ
jl,l+1

l−1,l = μlK̂l,l+1 (12a)

+ 2J 2n̂l (12b)

+ J K̂l−1,l+1 (12c)

− U (t)

2
(n̂lK̂l,l+1 + K̂l,l+1n̂l). (12d)

We also give, for clarity, the outgoing current operator:
Ĵ

jl,l+1

l+1,l+2 =μl+1K̂l,l+1 +2J 2n̂l+1+J K̂l,l+2− U (t)
2 (n̂l+1K̂l,l+1 +

K̂l,l+1n̂l+1). It is worth mentioning that the correlated
current and hopping terms in (10) and (12) all come with
the interaction strength as a prefactor and disappear for a
noninteracting gas. Their behavior is thus strongly affected by
the presence of interactions. Finally, as, in the next section,
the time derivative of the particle current will be of great use
to understand the mechanisms responsible for the evolution
of the density profile, we provide here its full expression:

h̄∂t 〈ĵl,l+1〉 = (μl − μl+1)〈K̂l,l+1〉 (13a)

+ 2J 2(〈n̂l〉 − 〈n̂l+1〉) (13b)

+ J (〈K̂l−1,l+1〉 − 〈K̂l,l+2〉) (13c)

− U (t)

2
〈(n̂l − n̂l+1)K̂l,l+1 + H.c.〉. (13d)

4. Energy and heat

We now turn to the transport of energy by first defining the
bond-symmetric local energy operator as

ĥl = 1
2 [K̂l−1,l + K̂l,l+1] + U (t)Îl − μln̂l, (14)

where Îl = n̂l(n̂l − 1)/2 is the operator related to the interac-
tion energy. In this case, we find that the energy current Ĵ

hl

l−1,l

is given by

Ĵ
hl

l−1,l = − (μl−1 + μl)

2
ĵl−1,l (15a)

− U (t)

2
ĵl−1,l (15b)

− J

2
(ĵl−2,l + ĵl−1,l+1) (15c)

+ U (t)

4
[(n̂l−1 + n̂l)ĵl−1,l + ĵl−1,l(n̂l−1 + n̂l)], (15d)

in which we naturally recover the particle and correlated
currents appearing in (7), (8), and (10). In addition, since the
energy operator is explicitly time dependent and therefore not
a conserved quantity during the protocol, we have the source
term

Ŝ
hl

l = h̄∂tU (t)Îl , (16)

which shows the importance of the density fluctuations in
the energy production. In particular, the total energy E(t) =
〈H(t)〉 satisfies the relation

∂tE(t) = 〈ψ(t)|∂tH|ψ(t)〉 = [∂tU (t)]
∑

l

〈Îl〉(t); (17)

i.e., the energy put into the system is directly related to the
evolution of the density fluctuations. For an inhomogeneous
system, there are two contributions to the local energy
production, as seen from (15) and (16): one from currents
and correlated currents and one from the external driving of
the system. Summing up the total energy, the contribution from
currents must vanish to fulfill (17), but locally, one may have
energy redistribution. We can define the heat produced in the
system as the energy of the atoms at the final time compared
to that of the ground state for the final interaction strength,

Q(τ ) = E(τ ) − E0,f

= E0,i − E0,f + δU

τ

∫ τ

0
dt

∑
l

〈Îl〉(t), (18)

with E0,i/f the ground-state energies. Note that 〈Îl〉 is
accessible experimentally, which makes it possible to measure
the interesting Q(τ ) dependence. We can quickly check that
this formula gives back the correct results in the sudden
quench and adiabatic quench limits. In the sudden quench
limit, |ψ(t)〉 = |ψ0(Ui)〉, which yields Q(0) = E0,i − E0,f +
δU

∑
l〈Îl〉0,i . This means that the heat only depends on the

ground-state properties of the corresponding initial and final
parameters. In the adiabatic case, we have |ψ(t)〉 = |ψ0(U (t))〉
along the adiabatic path so the integral can be re-expressed
as

∫ Uf

Ui
dU

∑
l〈Îl〉0(U ), with 〈Îl〉0(U ) = 〈ψ0(U )|Îl|ψ0(U )〉.

Using the Feynman-Hellmann theorem [67–69] over U , it is
clear that this integral cancels E0,i − E0,f , to make Q(∞) = 0.

One can define a local excess energy ql as the difference in
local energies between the final energies and the ground-state
expectation for the final parameters:

ql(τ ) = 〈ĥl〉(τ ) − 〈ĥl〉0,f . (19)

The local excess energy produced splits up into three different
contributions,

ql(τ ) = 〈ĥl〉0,i − 〈ĥl〉0,f (20a)

− 1

h̄

∫ τ

0
dtdiv〈Ĵ h〉(t) (20b)

+ δU

τ

∫ τ

0
dt 〈Îl〉(t), (20c)

where the first term is simply the local ground-state energy
difference (independent of τ ), the second term is the integrated
contribution of energy currents, and the last term is the
integrated contribution due to the external operator. While
Q(τ ) is necessarily non-negative, ql(τ ) can be negative or
positive, depending on the relative contributions of each term.

Finally, using (6) with Ô = ĥl allows one to calculate these
quantities in the adiabatic limit,∫ ∞

0

dt

h̄
div〈Ĵ hl 〉(t) = 〈ĥl〉0,i − 〈ĥl〉0,f +

∫ Uf

Ui

dU 〈Îl〉0(U ),

(21)
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where the right-hand side can be computed accurately using
numerical techniques.

With this set of equations in mind, we are now ready to
identify the different driving forces responsible for the system
evolution when the interaction strength is ramped up or down.

III. DIGGING A MOTT DOMAIN IN A SUPERFLUID

A. Evolution of local quantities from t-DMRG

In this section, we consider a linear quench from Ui =
4J to Uf = 6J . Ui is close to the homogeneous superfluid-
Mott transition point and Uf lies deeper in the Mott-insulating
regime. We compare two typical situations: (i) the number of
particles is chosen low enough for the maximal filling to remain
below unity at all times (N = 24); and (ii) N is sufficiently
large that, at Uf , the corresponding ground-state density profile
has a Mott-insulating “shell” and a superfluid center (N = 48).
We focus on different aspects of the dynamics: time scales, role
of insulating domains on particle transport, energy production
and transport, and their experimental signature.

1. Existence of two dynamical regimes

In Fig. 1, the final values (t = τ ) of most of the local
observables introduced before (density, local compressibility,
local particle current, local correlation gl,l+1), and also the
first two occupancy probabilities P0 and P1, are presented as
a function of the ramp time τ . This figure clearly uncovers
the existence of two dynamical behaviors. First, we observe
that for short ramp times, the densities at l = 32, which lies
in the center of the trap, and l = 18, which lies close to
the forming Mott-insulating barrier, are both approximately
constant, following the evolution of the homogeneous system
[72]. In fact, variations (and oscillations) of both central
and outer densities become significant only for longer ramp
times, beyond h̄/J . In contrast, the evolution of both the
occupancy probabilities and the compressibility occurs on a
much faster time scale: these observables vary rapidly at short
τ and display less pronounced variations at larger τ . These
two distinct behaviors reveal the presence of two dynamical
regimes [17,39,40]: (i) the intrinsic dynamics, occurring here
at short times before particle transport sets in (present in both
the homogeneous and trapped systems); and (ii) a long-time
behavior associated with particle transport and clearly due to
the inhomogeneous structure of the density profiles.

Qualitatively, one can understand the origin of different
time scales from the continuity equations in Sec. II C. For
instance, the incoming and outgoing particle currents balance
each other in a translational invariant configuration so that the
density remains constant. However, for the density fluctuations
whose current operator, (8), has correlated terms, no such
balance is achieved, and consequently these quantities evolve
with time. In the case of an inhomogeneous gas, gradients of
local quantities and chemical potentials inevitably give rise
to particle currents, themselves sustaining the evolution of all
local quantities. Contrary to the intrinsic dynamics, we expect
these effects to vanish with decreasing trap amplitude V0. Thus,
their time scale is distinct from the intrinsic one and is related
to the external potential strength. In order to quantify these
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FIG. 1. (Color online) Slow quench from Ui = 4J to Uf = 6J .
Evolution of local observables in the presence of a trap as a function
of the ramp time τ and compared with that of a homogeneous system
(open symbols) having the same initial local density. Observables
are the density nl , compressibility κl , occupancy probabilities P0

and P1, neighboring correlation gl,l+1, and the particle current
jl,l+1 = 〈ĵl,l+1〉. Subplots correspond to two different total numbers
of particles, N = 24 and 48, and two different sites: l = 18 and the
central site l = 32 (cf. Fig. 2 for the location of these sites).

ideas better, we now present arguments based on perturbative
calculations.

2. Insights from perturbative expansions

In Ref. [17], we observed that, for the quench parameters
typically considered, the homogeneous dynamics of most local
observables was well reproduced by time-dependent perturba-
tion theory, particularly in the small-τ regime. Working in
the initial Hamiltonian eigenstates basis |α〉, of energy Eα ,
the first-order expansion in δU/τ for a real, symmetric, and
dimensionless observable Ô reads

O(τ,δU ) = O00 − 2
δU

h̄τ

∑
α �=0

ωατ − sin(ωατ )

ω2
α

O0αIα0. (22)

The frequencies ωα = (Eα − E0)/h̄ are excitation energies of
level |α〉 with respect to the ground state |0〉. Iαβ = ∑

l〈α|Îl|β〉
are the matrix elements of the interaction operator, and
Oαβ = 〈α|Ô|β〉 those of the observable. Such series can be
well behaved in the thermodynamic limit even in the absence
of a spectral gap, and this is what we observe for our setup by
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looking at different system sizes. Taking the τ → 0 limit [73],
the response of the observable is typically quadratic,

O(τ,δU ) � O00
(
1 ± 1

2fOτ 2
)
, (23)

where the ± sign depends on the observable. Here we have
introduced the “curvature”

fO = 2

3

δU

J

τ−2
O

O00
, (24)

containing an intrinsic characteristic ramp time τO associated
with the observable Ô (J is there for dimensionality normal-
ization):

τ−2
O = J

h̄

∣∣∣∣∣∣
∑
α �=0

ωαO0αIα0

∣∣∣∣∣∣ . (25)

The curvature helps clarify the departure from the initial value
O00, as one can see, for example, in Fig. 1. In particular, fO

is linear with the quench amplitude δU (within this approx-
imation). For example, in the homogeneous gas limit, one
can obtain an explicit expression for the driving of the particle
fluctuations fn2 by, in addition, resorting to perturbation theory
in J/Ui (strong interaction limit). We find that

fn2 ≈ 32

3

δUJ 2

h̄2Ui

, (26)

which is consistent with the change in the compressibility at
a short time plotted in Fig. 1. The breakdown of the quadratic
behavior, which coincides with the onset of relaxation, is
expected to happen on a time scale τ = |fn2 |−1/2. We note
that the parameter J/Ui in Fig. 1 is not in the regime where
perturbation theory is expected to give a quantitative descrip-
tion. Nevertheless, putting numerical values in (26), one finds
short relaxation times (below h̄/J ) compatible with Fig. 1.

It is also worth mentioning that in the definition of the
curvature, (24), we were careful to separate what depends
on the quench protocol, the parameter δU and the prefactor
2/3, from what is intrinsic to the initial ground state: O00

and τO . Indeed, when the U (t) function is of the general
type δUf (t/τ ), the prefactor 2/3 is replaced with 4

∫ 1
0 dx(1 −

x)f (x). Hence, τO is an intrinsic characteristic time of the
initial state. We stress that the quantities in (24) and (25) are
accessible by ground-state numerical techniques. Within this
perturbative framework, one can easily understand the two
regimes discussed above and also derive, in the homogeneous
case, relations between the characteristic time scales of various
observables.

We first consider the characteristic time associated with the
local density operator. In the homogeneous case, the ground
state is characterized by a spatially uniform local density.
Taking advantage of this symmetry, we find that τn = ∞. This
result agrees with the fact that the density remains constant
for all times. In contrast, for the local density fluctuations (or
compressibility) and local kinetic energy, τn2/g are finite even
in a homogeneous system since the matrix elements in (25)
do not vanish. Furthermore, the two time scales are actually
related to each other. Since the Hamiltonian has only two terms,
we find that

∑
l〈0|ĝl,l+1|α〉 = (Ui/J )

∑
l〈0|n̂2

l |α〉, leading to

τg =
√

J
Ui

τn2 . This relation agrees with a dimensional analysis

of (11) and is also in qualitative agreement with Fig. 1,
where we find a slightly slower relaxation for the kinetic term
compared to the compressibility. In addition, these time scales
are themselves related to the characteristic ramp time for the
heat, τc, defined as τ−2

c = J
12h̄L

∑
α ωα |Iα0|2 [17]. Then we

find that τn2 = τc/
√

24 (although the prefactor depends on the
chosen definition for τc).

We now turn to the situation where a trapping confinement is
present. In this case, the translational symmetry is lost, leading
to a finite τn. Naturally, τn2/g should also be affected by the
presence of the trap, but provided the latter is small enough, the
corrections can be negligible as illustrated in Fig. 1. We expect
that τn(V0) diverges when the trap magnitude V0 reaches 0.
Consequently, by tuning V0 to a low enough value, one should
in general be able to observe the intrinsic dynamics of the
system occurring below τn. The behavior of the τn(V0) function
is an open issue, particularly because V0 is not a perturbation in
experiments and realistic numerical calculations. If we were to
trust a naive first-order perturbation argument for the relatively
unphysical situation of a gas in a box and perturbed by a small
V0, one would expect a linear scaling of the matrix elements,
yielding the scaling τn ∝ 1/

√
V0. However, this scaling only

serves as an illustration of the above statements. Of course, τn

also depends on Ui/J . Finally, we may argue that when V0

is too large, transport phenomena could eventually hide the
intrinsic dynamics.

These results put on firmer grounds the existence of
two different dynamical regimes: one deeply connected to
inhomogeneities and controlled by V0 and the intrinsic one
present in the homogeneous gas and much less sensitive to V0.

3. Profiles and “Mott barriers”

We detail here the spatial evolution of local quantities.
In Fig. 2, we present the final profiles for the density and
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FIG. 2. (Color online) Final local density and compressibility
profiles after a slow quench from Ui = 4J to Uf = 6J for different
ramp times, τ , and for the ground state (τ = ∞) at U = 6J in the
trapped system. (a, c) N = 24; (b, d) N = 48.
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compressibility as a function of the ramp time. At low filling
(N = 24), the shape of these final profiles is well understood
if one resorts to the arguments presented above: we see
that for short ramp times the density profiles barely evolve
while the compressibility changes considerably. For longer
τ , the profiles approach the final ground-state configuration
smoothly. For the larger filling N = 48, the evolution is
more involved. A strong reduction in the compressibility
occurs locally in regions with filling close to unity at short
ramp times τ ≈ h̄/J , whereas the formation of pronounced
Mott-insulating “shells” in the density profile only takes place
at much longer ramp times. For example, for the 5h̄/J density
profile, only a slight kink is detectable.

To understand better the complex dynamics at play in
the presence of regions close to filling one, we show in
Fig. 3 real-time snapshots of the compressibility and particle
current for the ramp time τ = 7h̄/J . The connection between
these two quantities becomes evident at close inspection.
One first notices that, once again, the compressibility in
regions away from unit filling evolves quickly, while the
flow of atoms toward the system boundaries takes a much
longer time to set in. In addition, once the compressibility
is sufficiently suppressed in the regions of filling n = 1, the
current in these regions weakens, which slows down the
density redistribution across the gas. Even though the regions
close to unit filling are small and are not real Mott-insulating
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FIG. 3. (Color online) Time evolution of the local compressibility
κl and current jl,l+1 = 〈ĵl,l+1〉 during a slow quench from Ui = 4J to
Uf = 6J in a time τ = 7h̄/J for N = 48 in the trapped system. As
the “Mott barriers” are formed, the current in their vicinity weakens.
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FIG. 4. (Color online) (a–d) Time evolution of the different con-
tributions to the time derivative of the particle current: (a) Eq. (13a),
(b) Eq. (13b), (c) Eq. (13c), and (d) Eq. (13d). (e) Time evolution of
the time derivative of the particle current. (f) Time evolution of the
particle current. For (a) to (e), the value at t = 0 is subtracted. The
evolution parameters are the same as in Fig. 3.

plateaus, they still reduce significantly the transport from the
inner to the outer superfluid domains. Consequently, the onset
of low-compressibility regions explains why systems above
unity filling evolve slowly when U is increased. From here on,
we refer to these regions as “Mott barriers.’

To shed even more light on the buildup and suppression
of the particle current, we analyze the contribution of the
different terms appearing in (13) which make up the time
derivative of the particle current. For each term, we plot in
Fig. 4 the different contributions to −div〈Ĵ j 〉 for various times
in order to understand what drives the evolution of the particle
current. The first remarkable feature is Fig. 4(e), where the time
derivative of the current changes sign near unity filling around
t � 5h̄/J . This inversion is a clear indication that the current
is being suppressed by the formation of Mott barriers. By
considering each contribution separately using Figs. 4(a)–4(d),
we observe that the main driving terms boosting the particle
currents are the ones related to the local kinetic energy, (13a)
and (13c), and the density-assisted hopping term, (13d), while
the density gradients, (13b), become significant only at the
edges where the density varies rapidly. The most striking
phenomenon is due to the density-assisted hopping term, (13d).
We see in Fig. 4(d) that this term, which is nonzero only in
the presence of interactions, changes sign in the regions where
Mott barriers are forming, thus drastically slowing down the
equilibrating outflow of atoms.

We, finally, stress again that the time scales associated with
contributions (13) are essentially controlled by the steepness
of profiles induced by the trapping potential V0. Within our

033641-7



BERNIER, POLETTI, BARMETTLER, ROUX, AND KOLLATH PHYSICAL REVIEW A 85, 033641 (2012)

choice of parameters they take longer times than the intrinsic
evolution. Experimentally, changing the confinement strength
V0/J would affect the creation of Mott barriers both in time
and in magnitude [74].

4. Energy transport and heat production

We now turn our attention to the energy transport and
heat production during a quench. We present in Figs. 5(a)
and 5(e) the final local energy profiles for N = 24 and 48
[75]. These figures confirm our findings obtained from the
analysis of the local density and compressibility profiles: for
N = 24 the system approaches the adiabatic limit much more
rapidly than for N = 48. For N = 48, the final profile remains
highly excited even for the longest ramp time considered
(τ ≈ 25h̄/J ). The local excess energy production highlights
a series of differences in the evolution of systems with filling
below n = 1 versus above n = 1 [see Figs. 5(b) and 5(f)]. We
first note that the local excess energy is lower by nearly an order
of magnitude for N = 24 compared to N = 48. Furthermore,
while for τ = 25h̄/J and N = 24 the local excess energy is
rather uniformly distributed and close to 0, the N = 48 result
exhibits strong spatial fluctuations, with ql large and negative
at the edges and large and positive at the center of the cloud. In
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FIG. 5. (Color online) Final local energy (a, e) and local excess
energy (b, f) profiles after a slow quench from Ui = 4J to Uf = 6J

for different ramp times, τ , and for the ground state (τ = ∞) at
U = 6J for a trapped system. (c) The contribution to ql due to the
external operator [see (20c)]; (d) the contribution from the energy
currents [see (20b)]. The dashed line in (b) and (f) corresponds to
〈ĥl〉0,i − 〈ĥl〉0,f .

fact, the local excess energy pattern resulting from the quench
is highly nontrivial even for the seemingly simplest situation
where N = 24, as illustrated in Figs. 5(b)–5(d). At short ramp
times (sudden quench limit), particles and energy currents are
negligible so that term (20b) does not contribute, all the final
excess energy being a balance between the ground-state energy
difference, (20a), and the density fluctuation average, (20c).
The latter is always positive and distributed rather uniformly
in a Gaussian-like function whose maximum decreases with τ

[see Fig. 5(c)]. Hence, for short ramp times, the bulk retains
most of the local excess energy while the edges have negative
ql due to term (20a). For longer ramp times, energy currents
set in, with the effect of redistributing energy from the bulk
to the edges [see Fig. 5(b)]. Thus, these currents tend to
strongly reduce both the spatial fluctuations and the total
excess energy (heat) produced by the quench. For intermediate
times, either negative or positive ql at the edges and in the
bulk (see, e.g., the opposite distribution for τ = 10h̄/J and
τ = 15h̄/J for N = 24) can be found. This effect arises as,
for these parameters, the density profiles overshoot their final
ground-state configurations. For N = 48, the “Mott barrier
effect” tends to freeze the excess local energy pattern to the
sudden quench typical distribution, with negative ql at the
edges and positive in the bulk. Let us note that the freezing of
the local excess energy pattern is strongly related to the frozen
density pattern.

Looking at the contributions to the evolution of the energy
current in Fig. 6, we can identify the leading contribution driv-
ing the energy redistribution. Comparing Figs. 4(f) and 6(e),
we see that the overall evolutions of the particle and energy
current are very similar: both currents set in at about the same
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and (d) Eq. (15d). (e) Time evolution of the full energy current. The
evolution parameters are the same as in Fig. 3.
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time and are suppressed in regions where Mott barriers form.
We also observe that the main contribution, determining the
sign, to the energy current is from the density-assisted particle
current [see Fig. 6(d)]. However, this flow of energy toward
the system edges is partially counterbalanced by two terms
[Figs. 6(b) and 6(c)] where the energy transport occurs in the
opposite direction to the particle current.

Finally, one may wonder how the total heat produced Q as a
function of 1/τ differs from the homogeneous situation studied
in Ref. [17]. We show how the heat behaves as a function of the
ramp time in Fig. 7 for N = 24 and 48 for both the quench from
Ui = 4J to Uf = 6J and its reverse. We first notice that these
curves are more complex than the one presented in Ref. [17]
for a homogeneous system. We also observe that the heat per
atom produced in the case N = 24 is always much lower than
that for N = 48. Our understanding of this phenomenon is that
for lower filling the populated excited states are less energetic,
as they are less likely to have doubly occupied sites. We finally
observe that, for fast ramps, the heat produced in the protocol
with Ui = 4J and Uf = 6J is larger than that for the reverse
protocol (while the opposite happens for slower ramps). We
relate this to the fact that in the Ui/J = 4 initial state a lot of
particle fluctuations are present, leading to a large interaction
energy in the final state. However, in order to fully understand
the crossover to the inverse behavior at slow ramp times, the
number of excitations that are created and their final energies
would need to be identified, a task that we leave to future
studies.

5. Comparison with mean-field Gutzwiller method

Our aim here is to understand to what extent the mean-
field Gutzwiller method can describe the time evolution of
a Bose gas loaded into a one-dimensional optical lattice
and confined to a parabolic trap. With this objective in
mind, we study here a system made of 54 atoms confined
to a parabolic trap with V0 = 0.006J and loaded in an
optical lattice of 84 sites and consider slow quenches from
Ui = 6J to Uf = 15J for two ramp times: τ = 60h̄/J and
τ = 16h̄/J . These quenches begin on the superfluid side and
the interaction strength is linearly increased up to a value above
the n = 1 homogeneous superfluid–Mott-insulating transition,
occurring at Uc ≈ 11.7J (using the Gutzwiller method). At the

mean-field level, the ground state at U = 6J is a superfluid
with a central density above n = 1, while the ground state at
U = 15J presents a broad Mott plateau.

Considering Fig. 8, we first note that the Gutzwiller method
captures well the presence of two dynamical regimes. For both
ramps, we see that the evolution of the local compressibility
and superfluid order parameter begins at t = 0, whereas the
local density remains fixed at its initial value for a few h̄/J (cf.
central panel in Fig. 8). For a sufficiently fast quench, as shown
in the upper panels in Fig. 8, we see that the superfluid order
parameter, the compressibility, and the current are strongly
suppressed in a narrow region around filling n = 1. The local
suppression of these three quantities around t = 6h̄/J signals
the formation of Mott barriers hindering the flow of atoms.
For τ = 16J/h̄, these barriers are unstable and we notice the
presence of oscillations reminiscent of the ones arising when
a strongly interacting phase is abruptly quenched to strong
interactions [76].

By comparison, for sufficiently slow ramps, a stable Mott-
insulating plateau forms at long times. On this plateau, the
condensate order parameter and the compressibility drop to
zero. This total suppression of the density fluctuations is an
artifact of the mean-field method and also results in the absence
of particle current on the plateau as, within the Gutzwiller
picture, the current factorizes into jl−1,l = 2J Im(〈b̂l−1〉∗〈b̂l〉).
Finally, we also observe, in the lower panels in Fig. 8, that the
quench triggers collective breathing modes signaled by density
oscillations (along the time axis) in boundary regions [77].

From this discussion of slow superfluid–Mott-insulating
quenches within the Gutzwiller method, we conclude that this
approach captures some of the important out-of-equilibrium
physical phenomena uncovered by t-DMRG, however, as
expected, it cannot provide an accurate quantitative picture.

B. Evolution of nonlocal quantities

1. Real-space correlations

Local and nonlocal correlations can propagate very dif-
ferently during a quench. To understand how correlations
evolve during the slow quench of a global parameter, we
investigate here the evolution of single-particle correlations.
Past studies on other systems have found that, after a slow
parameter change, long-range correlations take a long time
to adjust [5,25]. For example, for spin systems described by
locally acting Hamiltonians, the propagation of correlations
during the slow change of a global parameter was found to be
bound by a “light cone.” Outside of this light cone, the so-called
Lieb-Robinson bound, only exponentially small changes to the
correlations can be detected [78,79].

We show in Fig. 9 the value of the correlator gL/2+1,L/2+1+d

at t = τ for different ramp times and two fillings. The first
striking result emerging from our study is that the evolution of
this correlator is not monotonic with the ramp time. We also
find that in all cases the short-distance correlator responds
quickly to an increase in interaction strength and that, even
for the fastest quenches, the final correlation function differs
considerably from the initial ground-state correlator. Focusing
on the left panel in Fig. 9, we see that at low filling (N = 24)
the short-distance correlations reach their final ground-state
values for almost all considered ramp times. In contrast,
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the longer range correlations take much longer to reach
their corresponding ground-state values. For example, for
τ = 5h̄/J , the long-distance correlations have clearly not yet
relaxed to their final ground-state values.

In the situation where regions with filling above n = 1
are present (right panel in Fig. 9), the evolution is even
more involved. In this case, the correlator at t = τ varies
nonmonotonically with distance and takes negative values
for intermediate ramp velocities. Even for the slowest ramps
considered, the correlator deviates considerably from its final
ground-state value at all distances. Finally, let us note that
the final ground- state correlations present a dip at a distance
corresponding to the location of regions of filling n = 1.

2. Interference pattern for experiments

Part of the complex dynamical behavior presented above
can be observed experimentally in the time-of-flight interfer-
ence pattern N (k) defined in (2). As shown in the left panel
in Fig. 10, at low filling the interference pattern presents a
peak at k = 0 which changes in amplitude nonmonotonically
with the ramp time. This behavior reflects the nonmonotonic
variation of long-range correlations discussed in the previous
section. The final interference pattern is very different in the
presence of regions close to filling n = 1. In this case, a peak at
k �= 0 develops at intermediate ramp times (see the right panel
in Fig. 10). This peak signals the strong out-of-equilibrium
character of the state formed during the slow quench. However,
the absence of such a peak cannot be used to conclude that the
system evolves adiabatically. Unfortunately, the interference
pattern is not as sensitive to out-of-equilibrium features as
correlation functions are: N (k) can be dominated by large
“in-equilibrium” contributions coming from the short-range
correlators.

IV. MELTING OF MOTT-INSULATING REGIONS

In this section, we consider a linear quench from Ui =
6J to Uf = 4J . At Ui , the system presents a sizable
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FIG. 10. (Color online) Final value of interference pattern N (k)
after a slow quench from Ui = 4J to Uf = 6J in a trap for different
ramp times τ and for the final ground state (τ = ∞). Left: N = 24.
Right: N = 48.

Mott-insulating “shell” and a superfluid center, while Uf is
close to the homogeneous superfluid–Mott-insulating tran-
sition point. The ground-state density and compressibility
profiles at Uf show none of the features associated with the
presence of Mott regions. Here again we focus on the different
aspects of the dynamics: time scales, particle transport, energy
production, and experimental signatures.

A. Existence of two dynamical regimes

When the interaction strength is lowered, the dynamics
at play are also characterized by “two dynamical regimes.”
However, as shown in Fig. 11, in this case, the atoms are
moving toward the center of the system, not toward the
edges.
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FIG. 11. (Color online) Slow quench from Ui = 6J to Uf =
4J ; N = 48. Evolution of local observables in the presence of a
trap as a function of the ramp time τ , compared with that of a
homogeneous system (open symbols) having the same initial local
density. Observables are the density nl , compressibility κl , occupancy
probabilities P0 and P1, neighboring correlation gl,l+1, and particle
current jl,l+1 = 〈ĵl,l+1〉.
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FIG. 12. (Color online) Final profiles for the local density (a),
local compressibility (b), local energy (c), and local excess energy
(d) after a slow quench from Ui = 6J to Uf = 4J for different ramp
times, τ , and for the ground state (τ = ∞) at U = 4J for a trapped
system. (e) The contribution to ql due to the external operator [see
(20c)]; (f) the contribution from the energy currents [see (20b)]. The
dashed line in (d) corresponds to 〈ĥl〉0,i − 〈ĥl〉0,f .

B. Density, compressibility, and energy profiles

Considering the density and compressibility profiles for dif-
ferent ramp times shown in Fig. 12, we note that for ramp times
of the order of 5h̄/J the Mott-insulating regions are almost
fully melted and that the system is more compressible. For
example, local dips, initially present, have completely disap-
peared and only plateaus remain. For even longer ramp times,
the final density and compressibility profiles resemble closely
the Uf ground state. Density redistribution occurs at a much
faster pace when Mott-insulating regions are melted away than
when they are formed since, in the former case, Mott barriers
are no longer effective. To conclude this comparison between
the two protocols, it is interesting to note that, when the
interaction strength is lowered, energy is transferred from the
edges to the center of the system as atoms pile up in the central
region. The opposite occurs when the interaction is increased.

C. Real-space correlations and interference patterns

Even though for long ramp times the density and com-
pressibility profiles seem to evolve almost adiabatically, the
single-particle correlator gL/2+1,L/2+1+d indicates that the
system is still far from equilibrium. As shown in Fig. 13(a),
this correlator is negative at large distances and remains far
from its ground-state Uf value even at long ramp times,
except for short distances. Therefore, to judge if the system
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FIG. 13. (Color online) Ramp from Ui = 6J to Uf = 4J ; N =
48. (a) Final value for correlator gl,l+d with l = L/2 + 1 for different
ramp times, τ , and the final ground state (τ = ∞). (b) Final value for
the interference pattern N (k) [see (2)] for different ramp times and
the final ground state (τ = ∞).

has reached equilibrium by considering solely the density
and compressibility profiles is inadequate. Our results show
unequivocally that the system is far from having fully relaxed
even at long ramp times. The nonequilibrium nature of the final
state can be partially probed by measuring experimentally the
interference pattern [see (2)]. In Fig. 13(b), we see that for
intermediate ramp times, the peak at k = 0 is shifted to a
higher momentum, signaling the nonequilibrium nature of the
final state. However, as the interference pattern is a sum over
all-distance correlators and is dominated by short-distance
values, it is difficult to distinguish the shifted peak at long
ramp times.

V. CONCLUSION

In this article we have investigated the dynamics of the
Mott-insulating regions of a bosonic gas trapped and loaded
into an optical lattice as the interaction strength is changed
linearly with time. We have considered two situations: we
first studied how Mott domains are formed by ramping up
the interaction strength from Ui = 4J to Uf = 6J and, in
a separate set of simulations, investigated how the domains
melt when U is ramped down. We conducted this study by
examining how the atomic density and compressibility profiles
evolve, how particles and energy flow through the system,
how heat is produced, and how single-particle correlations
propagate as a function of the ramp time. For both situations
we have confirmed the existence of two dynamical regimes:
an intrinsic regime, occurring at short times before particle
transport sets in; and a long-time behavior, connected to the
system inhomogeneities and controlled by the strength of
the underlying trapping potential. We were able to establish
the existence of these regimes on firmer grounds using various
arguments based on time-dependent perturbation theory. In
a system with regions above unity filling, we found that a
linear increase in the interaction strength is accompanied by
the formation of Mott-insulating barriers which hinder the flow
of atoms from the center toward the edges. The emergence of

these barriers is evidenced by dips in the local compressibility
and by the suppression of the particle current in regions where
the local density nears unity. We have also established that, in
these regions, the change in sign of the particle-current time
derivative is due to density-assisted hopping, a mechanism
which only exists when U is finite. The presence of these
barriers has multiple consequences; among others, the system
“freezes” into a highly excited configuration and long-range
single-particle correlations deviate strongly from their final
ground-state values, even for the slowest ramp considered.
This last feature could possibly be detected experimentally
from the gas interference pattern. By comparison, when the
interaction strength is ramped down the evolution is much less
involved. For sufficiently long ramps, the density, compress-
ibility, and local energy profiles approach the corresponding
Uf ground-state configuration. However, even for the slowest
ramp considered, the final system is still far from being
equilibrated, as the associated one-body correlator departs
strongly from its final ground-state value for all distances.
To conclude, we believe that this thorough investigation of
the dynamics of a strongly interacting bosonic gas will help
experimentalists devise protocols to prepare complex quantum
phases and provide a new perspective on the understanding of
the coherent evolution of quantum systems in the presence of
inhomogeneities.
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APPENDIX A: USEFUL COMMUTATORS

We list below some helpful commutators which generate the
terms appearing in the various current operators in Sec. II C:

[b̂l ,n̂l] = b̂l ,

[b̂†kb̂l,n̂l] = b̂
†
kb̂l,

[b̂†kb̂l,n̂
2
l ] = (1 + 2n̂l)b̂

†
kb̂l,

[b̂†l b̂k,b̂
†
mb̂l] = −b̂†mb̂k (m �= k),

[b̂†l b̂k,b̂
†
kb̂l] = n̂l − n̂k.

Permutations between l and k are obtained by taking the
Hermitian conjugate.

APPENDIX B: EQUATION OF EVOLUTION FOR THE
OCCUPANCY PROBABILITY

A single-site l in the Bose-Hubbard model is fully charac-
terized by the occupancy probabilities Pnl

of having nl bosons
on-site. The reduced density matrix of the site is diagonal
because of the conservation of the total number of bosons
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and reads

ρl(t) =
N∑

nl=0

Pnl
(t)|nl〉〈nl|. (B1)

The mean value and standard deviation of the Pnl
(t) distri-

bution are simply 〈nl〉(t) and
√〈κl〉(t). In order to get the

continuity equation for Pnl
(t), we introduce the characteristic

function

f (θ ; t) = 〈eiθn̂l 〉(t) =
+∞∑
p=0

(iθ )p

p!

〈
n̂

p

l

〉
(t) =

∑
nl

Pnl
(t)eiθnl

(B2)

such that 〈n̂p

l 〉(t) = (−i)p dpf

dθp

∣∣∣
θ=0

. Using (B2), the probabili-

ties are recovered using

Pnl
(t) = 1

2π

∫ 2π

0
dθe−iθnl f (θ ; t). (B3)

Using the relations b̂le
zn̂l = ez(n̂l+1)b̂l and b̂

†
l e

zn̂l = ez(n̂l−1)b̂
†
l ,

we get

h̄∂t 〈eiθn̂l 〉 = iJ (eiθ − 1){〈b̂†l b̂l−1e
iθn̂l 〉 − 〈eiθn̂l b̂

†
l−1b̂l〉

− [〈eiθn̂l b̂
†
l+1b̂l〉 − 〈b̂†l b̂l+1e

iθn̂l 〉]} (B4)

= iJ {(eiθ − 1)[〈b̂†l b̂l−1e
iθn̂l 〉 + 〈b̂†l b̂l+1e

iθn̂l 〉]
− (1 − e−iθ )[〈b̂†l−1b̂le

iθn̂l 〉 + 〈b̂†l+1b̂le
iθn̂l 〉]}.

(B5)

By taking the pth derivatives of this equation with respect to
θ , we get the time evolution of 〈np

l 〉. In particular, we recover
the time evolution of the local density with the first derivative.
We also see that this equation yields correlated currents of the
form 〈b̂†l b̂l+1n

p−1
l 〉 for the evolution of 〈np

l 〉. If we want the
time evolution of the probabilities Pnl

(t), we have to integrate
(B5) over θ . Formally, we have

∂tPnl
= 1

2π

∫ 2π

0
dθe−iθnl ∂t 〈eiθn̂l 〉. (B6)

While these formulas are of little help for the numerics, they
highlight the connection between the evolution of the Pnl

distribution and the correlated currents.
Furthermore, knowing the evolution equation of Pnl

(t)
allows one to obtain the evolution equation for the associated
on-site entropy of particle fluctuations,

sl(t) = −kB

∑
nl

Pnl
(t) ln Pnl

(t). (B7)

This entropy is rigorously defined also in the nonequilibrium
regime. Indeed, in a superfluid regime, or even for free bosons
where Pnl

is Poissonian, many n have significant weights
leading to large sl , while the n = 1 Mott regime is such that
there is a strong peak at n = 1 with shoulders at n = 0,2,
associated with a much smaller entropy. Thus, sl is sensitive
to the nature of the local phase and domain. Formally, we
immediately get the equation of evolution from

∂t sl = −kB

∑
nl

(∂tPnl
) ln Pnl

. (B8)
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