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Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes
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Three-dimensional Weyl fermions are found to emerge from simple-cubic lattices with staggered fluxes.
The mechanism is a gapping of the quadratic-band touching by time-reversal-symmetry-breaking hoppings. The
system exhibits a rich phase diagram where the number of Weyl fermions and their topological charges are tunable
via plaquette fluxes. The Weyl semimetal state is shown to be the intermediate phase between a nontopological
semimetal and a quantum anomalous Hall insulator. The transitions between those phases can be understood
through the evolution of the Weyl points as Berry-flux insertion processes. As the Weyl points move and split (or
merge) through tuning of the plaquette fluxes, the Fermi arcs and surface states undergo significant manipulation.
We also propose a possible scheme to realize the model in ultracold fermions in optical lattices with artificial
gauge fields.
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I. INTRODUCTION

Massless Dirac fermions possess chiral symmetry and
can be classified by their chirality γ . For example, in three
dimensions (3D), if the Hamiltonian is H = vF σ · q where
|vF | is the Fermi velocity, σ is the vector of Pauli matrices, and
q is the wave vector, then the chirality is γ = sgn(vF ). Such
fermions (also called chiral or Weyl fermions) possess several
peculiar behaviors such as the Adler-Bell-Jackiw anomaly [1].
Chiral fermions in two dimensions (2D) have been found
in real condensed-matter systems since the discovery of
graphene [2]. Many novel electronic properties of graphene
[3]—Klein tunneling, the peculiar integer quantum Hall effect,
transport properties such as the conductivity minimum, the
weak (anti)localization, and edge states—originate from its
chiral fermion nature. Recent studies also found realizations of
2D chiral fermions in ultracold-atomic-gas optical lattices [4].
A generic route to chiral fermions is to search systems in which
two bands touch [5]. Around the band-touching node, the
Hamiltonian can generally be written as H = h(k) · σ , where
the Pauli matrices σ act on the space spanned by the two bands
and |h| → 0 at the node. For example, in graphene, around
one of the nodes K, h(k + K) = vF k. Thus chiral fermions
emerge as topological defects (vortices) in k space. They are
generally classified by their vortex winding number Nw. In
the special cases when Nw = ±1, the winding number gives
the chirality, γ = Nw. In general cases, Nw can be any integer.
The total winding number in the system must be conserved
under adiabatic transformation. The winding number can
be defined by the Berry phase carried by the node, Nw =
1
π

∮
�

dk · 〈�(k)|i∇k|�(k)〉, where � is a contour enclosing
the node and �(k) is the single-valued and continuous wave
function of the eigenstates with H |�(k)〉 = ±|h(k)||�(k)〉.
By breaking the time-reversal symmetry, such two-band
touching can be gapped, leading to a quantum anomalous Hall
(QAH) insulator with Chern number C = ± 1

2Nw [6].
3D Weyl fermions are more robust: they cannot be gapped

even by time-reversal-symmetry breaking. In fact they can
only be annihilated in pairs with the total winding number con-
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served under adiabatic transformations. The winding number
of 3D Weyl fermions is defined as [7] Nw = 1

8π
ενδρ

∮
S dSρ n̂ ·

(∂kν
n̂ × ∂kδ

n̂) (ν,δ,ρ = x,y,z and ε is the Levi-Cività tensor),
where S is a surface enclosing the band-touching node (Weyl
point), dSρ represents the surface area elements along the ρ

direction, and n̂ = h/|h|. 3D Weyl fermions are monopoles of
the Berry-phase gauge fields where the monopole charge is the
topological charge Nw [7]. As a consequence, there is a step
change in the Hall conductivity, e.g., σxy(kz) [and the Chern
number Cxy(kz) = h

e2 σxy(kz)], as a function of kz,

σxy(kz) = sgn
(
kz − kc

z

)Nw

2

e2

h
+ · · · , (1)

due to the monopole at kc
z ; the ellipsis denotes other contribu-

tions to the Hall conductivity (Chern number). According to
the Nielsen-Ninomiya theorem [8], Weyl points must appear
in pairs with opposite Nw in a lattice system.

The Weyl semimetal (a system with 3D Weyl fermions)
possesses very special properties such as chiral surface states
with open Fermi surfaces (Fermi arcs) terminating at the pro-
jection of the Weyl points, and thickness-dependent quantized
anomalous Hall conductivity in thin films, which were first
found in studies of 3He-A [7,9]. After that Murakami showed
that a Weyl semimetal phase can appear as an intermediate
phase between a normal insulator and a topological insulator
[10]. Recent studies demonstrate that Weyl semimetals can
also be realized in other condensed-matter systems [11]:
some pyrochlore iridates (such as Y2Ir2O7) [12], superlattices
made of topological insulator and nontopological insulator
thin films with broken time-reversal [13,14] or inversion [15]
symmetry, the ferromagnetic compound HgCr2Se4 [16,17],
and bulk magnetically doped Bi2Se3 [18]. It is also found that
in some situations the number and type of the Weyl points are
determined and protected by the lattice symmetries [17,19].
Topological nodal semimetals where the bulk spectrum ex-
hibits nodal lines were also proposed and studied in Ref. [14].
There are also some lattice models where Weyl fermions are
found [20].

In this work we show that Weyl fermions can emerge
from simple-cubic lattices with staggered fluxes through
plaquettes (see Fig. 1). Unlike previous studies where the Weyl
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FIG. 1. (Color online) Lattice structure in (a) (001) plane in an
odd layer and (b) (110) plane. Red dots and blue squares represent
type-A and -B sites, respectively. Hoppings along (opposite) the green
solid and blue dotted arrows are t2e

−iφ1 and t⊥e−iφ2 (t2eiφ1 and t⊥eiφ2 )
separately. Those along the red dashed and blue dotted lines are
ty and tx , respectively. ±1 and ±2 are the plaquette fluxes. In
the phase diagram (c) |t2/t⊥| = 0.95 and in (d) |t2/t⊥| = 1.3. Yellow
region, Weyl semimetal; green region, QAH state with Chern number
Cxy(kz) = −2sgn(t1t2t⊥) for all kz; brown region, QAH state with
Cxy(kz) = 2sgn(t1t2t⊥) for all kz.

semimetal phases emerge due to inverted bands with spin-orbit
interactions [10,15–17] or gaping Dirac cones from various
mass terms [13,14,18], here the mechanism is to gap the
quadratic-band touching via time-reversal-symmetry-breaking
hoppings due to the staggered fluxes. A direct distinction is
that this scenario does not need to invoke spin-degeneracy
breaking (i.e., spin-orbit coupling). The system exhibits rich
phase diagrams where the number of Weyl fermions and their
topological charge are tunable via the fluxes per plaquettes.
The Weyl semimetal state is demonstrated as the intermediate
phase between a nontopological semimetal and a quantum
anomalous Hall insulator. The transitions between those
phases can be understood via the evolution of the Weyl
points as Berry-flux insertion processes (see Sec. IV and the
Summary). As the Weyl points move and split (or merge)
through tuning of the plaquette fluxes, the Fermi arcs and
surface states undergo significant change, because the Fermi
arcs act as Dirac strings which have to connect the monopoles
with opposite charges. Finally, we propose a possible scheme
to realize this model in ultracold fermionic gases in optical
lattices with artificial gauge fields.

II. LATTICE AND HAMILTONIAN

We consider a simple-cubic lattice system, which can be
viewed as stacking of layers of 2D lattices with checkerboard-
patterned staggered fluxes (see Fig. 1) [21–24]. The 2D
checkerboard lattice is designed in such a way that the
hoppings between the nearest-neighbor A-type sites along the
x and y directions are tx and ty , respectively, whereas those

for B-type sites are ty and tx , respectively [see Fig. 1(a)].
The hoppings from the A-type to the nearest B-type sites
are t2e

±iφ1 , as indicated in Fig. 1(a). The flux per plaquette
is ±1 = ±4φ1 [Fig. 1(a)]. Recently Sun et al. proposed
a realistic optical lattice system to realize such a model
[21]. Additionally, it can be realized in ultracold fermions
in optical lattices and in condensed-matter systems with
artificial [25–29] or “emergent” [30] gauge fields. The Hamil-
tonian for each layer is [21–24] H2D = h0(k)σ0 + h1(k) ·
σ , where σ is the Pauli matrix vector acting on the (B)
[pseudospin up (down)] site space and σ0 is the 2 × 2
identity matrix. As there is no need to invoke true-spin
splitting, we keep the true-spin states as degenerate. h0(k) =
2t0(cos kx + cos ky), h1z(k) = 2t1(cos kx − cos ky), h1x(k) =
4t2 cos φ1 cos kx

2 cos ky

2 , and h1y(k) = 4t2 sin φ1 sin kx

2 sin ky

2 ,
where t0 = (tx + ty)/2 and t1 = (tx − ty)/2. (Note that
throughout this paper, we set the lattice constant a = 1. All
the wave vectors are then in units of 1/a = 1.) The two
bands touch quadratically at (π,π ) when sin φ1 = 0. This band
touching is nontrivial as it carries a nonzero winding number
Nw = 2sgn(t1t2 cos φ1) = ±2. At finite sin φ1 (broken time-
reversal symmetry), the quadratic-band touching is gapped
and the system becomes a QAH insulator with Chern number
C = 1

2 sgn(t2 sin φ1)Nw [22,23].
The 3D lattice is a stacking of the 2D layers in such a

way that different types of site are on top of each other
[see Fig. 1(b)]. The hopping between those sites is t⊥e±iφ2 .
The staggered flux per plaquette in the (110) plane is
±2 = ±2(φ1 + φ2) [in the (110) plane, the plaquette flux
is ±2(φ1 − φ2)]. The Hamiltonian of the system is then

H = [h0(k)σ0 + h(k) · σ ]τ0 + g(kz)(cos φ2σx + sin φ2σy)τx.

(2)

Here the σ and τ matrices act on the A (B) sites and odd (even)
layers, respectively. g(kz) = 2t⊥ cos kz

2 . The Hamiltonian can
be block diagonalized directly, giving

H± = h0(k)σ0 + h±(k) · σ (3)

in the two blocks, where

h±x(k) = 4t2 cos φ1 cos
kx

2
cos

ky

2
± g(kz) cos φ2,

h±y(k) = 4t2 sin φ1 sin
kx

2
sin

ky

2
± g(kz) sin φ2, (4)

h±z(k) = 2t1(cos kx − cos ky).

For the sake of easier formulation, we set the first Brillouin
zone as kx ∈ [0,2π ], ky ∈ [0,2π ], and kz ∈ [0,2π ]. Finally,
the system possesses a series of inversion symmetries. It is
invariant under the following inversion transformations: (i)
z → −z, (ii) (x,y) → (−x, − y), and (iii) (x,y,z) → (−x, −
y, − z). At h0 = 0, the system also has particle-hole symmetry.

III. PHASE DIAGRAMS

The energy spectrum of the system is

Eα±(k) = h0(k) ± |hα(k)| (5)

with α = ±. The equations for the nodes (Weyl points)
are hαx = hαy = hαz = 0. One finds that away from φ1 or
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φ2 = 0, ± π/2,π (see Fig. 1 and discussion below), there are
four Weyl points K+β = (βkc

x,βkc
y,k

c
z ) (β = ±) in the + block

and K−β = (βkc
x,βkc

y,2π − kc
z ) in the − block, where

kc
y = π − 2 arctan

√∣∣∣∣ tan φ1

tan φ2

∣∣∣∣,
kc
x = ηkc

y with η = sgn

(
tan φ1

tan φ2

)
, (6)

kc
z = 2 arccos

[
−2ηt2 sin φ1

t⊥ sin φ2

(
1 +

∣∣∣∣ tan φ1

tan φ2

∣∣∣∣
)−1

]
.

Note that the above equation holds only when∣∣∣∣∣2t2 sin φ1

t⊥ sin φ2

(
1 +

∣∣∣∣ tan φ1

tan φ2

∣∣∣∣
)−1

∣∣∣∣∣ � 1, (7)

which sets the phase boundaries of the Weyl semimetal. It is
required that |h0(k) − h0(Kαβ)| � |hα(k)| so that the system
is an insulator everywhere away from the nodes Kαβ (the
definition of a semimetal). Given this, the h0(k)σ0 term is
irrelevant for the physics to be discussed, and we hence take
h0 ≡ 0 hereafter.

In Figs. 1(c) and 1(d) we plot the phase diagram at two
different |t2/t⊥|. There are three phases: the Weyl semimetal,
the QAH insulator, and the nontopological semimetal. The last
one refers to semimetals that have only nodes with Nw = 0.
Such nodes are accidental band-degeneracy points, which can
be gapped by infinitesimal band mixing without breaking any
symmetries. The QAH phase actually consists of two topolog-
ically distinct phases with opposite Chern numbers [Cxy(kz) =
±2sgn(t1t2t⊥) for all kz]. Those two phases are separated by
the Weyl semimetal and nontopological semimetal phases. In
fact, the Weyl semimetals can be viewed as intermediate phases
between the nontopological semimetal (or insulator) phase and
the QAH phase. In the former the Chern number is always zero,
whereas in the latter it is always nonzero. In Weyl semimetals,
there are two regions in the Brillouin zone: the Chern number is
zero in one region and nonzero in the other. Specifically, in the
current model Cxy(kz) is nonzero only when kz ∈ (kmin

z ,kmax
z )

with kmin
z = Min(kc

z,2π − kc
z ) and kmax

z = Max(kc
z,2π − kc

z ).
The QAH and nontopological semimetal phases can be viewed
as the limits kmin

z → 0 and kmin
z → π , respectively. There are

actually two Weyl semimetal phases with Chern numbers

Cxy(kz) of opposite signs at kz ∈ (kmin
z ,kmax

z ). Those two states
are the intermediate states between the two QAH states (with
opposite Chern numbers) and the nontopological semimetal
state separately. The latter lies at the lines φ1 = 0, ± π/2,
and π in the phase diagrams, where kmin

z = kmax
z = π . We will

show in the next section that the evolution of the ground state
and quantum phase transitions between those phases can be
understood via the evolution of the Weyl points as Berry-flux
insertion processes.

We find that, as |t2/t⊥| increases, the area of the Weyl
semimetal phase in the phase diagram as a function of φ1 and
φ2 shrinks. At |t2/t⊥| → ∞, this area becomes zero. When
|t2/t⊥| � 1/2 the system is always in the Weyl semimetal
phase except at the special lines φ1 = 0, ± π/2,π . Hence the
region of the Weyl semimetal phases can be tuned by the ratio
|t2/t⊥|. It is noted that the phase diagram exhibits some angle-
shaped structures around the special points (φ1,φ2) = (φc, ±
φc), with φc = 0, ± π/2,π , as well as (0,π ) and (π,0) where
Eq. (6) becomes ill defined. The structure around, say, (0,0),
can be understood via the following analysis. For (φ1,φ2) close
to (0,0), along the line φ2 = ξφ1, kc

z = 2 arccos[−2t2/t⊥(|ξ | +
1)]. Hence the Weyl semimetal phase is at |ξ | > |2t2/t⊥| − 1,
which is angular. When |t2/t⊥| < 1/2, the system is in the
Weyl semimetal phase for all parameters (φ1,φ2) around (0,0).

It is worthwhile to point out some special regions in
the phase diagram. First, when φ2 = ±π/2, there are only
two Weyl points: K+ = (π,π,kc

z ) in the + block and K− =
(π,π,2π − kc

z ) in the − block. Those Weyl points are
quadratic-band touchings with winding number Nw = ±2.
Similarly, when φ2 = 0,π , there are two quadratic-band-
touching Weyl points: K+ = (0,0,kc

z ) in the + block and
K− = (0,0,2π − kc

z ) in the − block. In addition, as pointed
out before, at the lines φ1 = 0, ± π/2,π the system is a
nontopological semimetal.

IV. EVOLUTION OF WEYL POINTS

Away from the above regions, there are four Weyl points,
around which fermions are described by the Weyl Hamiltonian

Hαβ(k) = σ · v̂αβ · q + O(q2), (8)

where q = k − Kαβ . The velocity tensors of the Dirac cones
are

v̂αβ =

⎛
⎜⎝

−βηt2 cos φ1 sin kc
y −βt2 cos φ1 sin kc

y −αt⊥ cos φ2 sin kc
z

2

βt2 sin φ1 sin kc
y βηt2 sin φ1 sin kc

y −αt⊥ sin φ2 sin kc
z

2

−2βηt1 sin kc
y 2βt1 sin kc

y 0

⎞
⎟⎠ . (9)

The winding number is the sign of the determinator of the
velocity tensor, Nw(αβ) = sgn[det(v̂αβ)]. One finds

Nw(αβ) = −αsgn[t1t2t⊥ sin(φ1 + ηφ2)]. (10)

Note that Weyl points in the same block α have the same
topological charge (independent of β), whereas Weyl points

in different blocks have opposite topological charges. The
positions and motions of the four Weyl points are illustrated
in Fig. 2 for a specific case where Nw = −α, kc

y = −kc
x < π ,

and kc
z > π . According to Eq. (1), the Chern number Cxy(kz)

varies with kz. The Chern number changes only when the gap
is closed and reopened, i.e., when kz passes through kc

z and
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FIG. 2. (Color online) (a),(c) Illustration of the Weyl points when
there are four in the ky-kz plane. The arrows indicate the z-direction
movement of the Weyl points as φ1 increases. Blue squares (red dots)
denote Weyl points with Nw = −1 (Nw = 1). The parameters are
t1 = 1, t2 = 2, t⊥ = 2, and φ2 = −0.25π . φ1 = −0.1π in (a), and
φ1 = 0.1π in (c). (b),(d) Chern number Cxy(kz) as a function of kz

for the cases in (a) and (c), respectively.

2π − kc
z . The Chern number is calculated as

Cxy =
∑
α=±

1

4π

∫ 2π

0
dkx

∫ 2π

0
dkynα · (

∂kx
nα × ∂ky

nα

)
, (11)

where nα = hα/|hα|. We find that Cxy(kz) =
2sgn[t1t2t⊥ sin(2φ1)] when kz ∈ (kmin

z ,kmax
z ), otherwise

Cxy(kz) = 0. The relation between the quantum phase
transitions and the evolution of the Weyl points is depicted in
Fig. 2 where we consider a situation with φ2 = −0.25π and φ1

varying from −0.1π to 0.1π . At φ1 = −0.1π , the Weyl points
with Nw < 0 are in the kz < π region whereas those with
Nw > 0 are in the kz > π region [Fig. 2(a)]. Consequently, the
Chern number Cxy(kz) is negative at kz ∈ (kmin

z ,kmax
z ). As φ1

increases the Weyl points with Nw < 0 and those with Nw > 0
move in opposite directions along kz and become closer
together. At φ1 = 0, Weyl points with opposite Nw coincide
and the system becomes a nontopological semimetal. After
that their positions shift as φ1 increases [Fig. 2(c)]: the Weyl
points with Nw < 0 move into the kz > π region whereas
those with Nw > 0 move to the kz < π . As a consequence
the Chern number Cxy(kz) changes sign at kz ∈ (kmin

z ,kmax
z ).

Further variation of φ1 will enlarge the region and finally
the system becomes a QAH insulator after kmin

z → 0 where
pairs of monopoles with opposite topological charge (Nw)
merge and annihilate each other. During those processes
quantized Berry fluxes are inserted into each kx-ky plane with
fixed kz, whenever the monopoles move across it, as there
are quantized Berry fluxes flowing between monopoles with
opposite charges.

In addition, as φ2 → 0, ± π/2, and π , the two Dirac cones
with the same kz merge together and form a quadratic-band
touching as they have the same winding number. The kz

dependence of Cxy(kz) in this situation is similar to the previous
one. However, as we will show later, the Fermi arcs and surface
states in those two situations are significantly different.

V. EVOLUTION OF FERMI ARCS AND SURFACE STATES

The movement and merging (or splitting) of the Weyl
points have profound effects on the topologically protected
surface states. In particular, we demonstrate the Fermi arcs on
the surface for two situations where there are (i) four Dirac
cones and (ii) two quadratic-band touchings in Figs. 3(a)
and 3(b), respectively. The color represents the spectral
function A(E) = −1

π
ImGr (E) [Gr (E) is the retarded Green

function of the system] of the zero-energy (E = 0) surface
states (i.e., the Fermi arcs). The surface is perpendicular to
the x direction. It is noted that although the kz dependence of
Cxy(kz) is similar in the two cases, the Fermi arcs are quite
different. This is essentially due to the different positions
of the monopoles in k space. From Fig. 3(c), one can see
that the zero-energy surface states (Fermi arcs) merge into
the bulk bands through the Weyl points. This figure clearly
visualizes the fact that Fermi arcs are Dirac strings which
link the monopoles and antimonopoles of opposite “magnetic”
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FIG. 3. (Color online) Spectral function A(E) of the surface
states at zero energy (E = 0) in the case with (a) four Dirac cones and
(b) two quadratic-band touchings. Spectra of surface and bulk states as
functions of (c) kz (at ky = 0.8π ) and (d) ky (at kz = π ) with the same
parameters as in (a). The size of the system is 151 unit cells (due to
the finite-size effect the bulk bands are slight gapped at the node). The
gray region represents bulk spectra, while red thick (green thin) curves
denote the surface spectra at the left (right) boundary. [Note that in (c)
the surface spectra at the two boundaries coincide.] t1 = 1, t2 = 2,
and t⊥ = 2. In (a), (c), and (d) φ1 = 0.1π , φ2 = −0.25π , whereas
in (b) φ1 = 0.15π , φ2 = −0.5π . Correspondingly, kc

y = 0.8π and
kc

z = 1.4π in (a), (c), and (d), whereas kc
y = π and kc

z = 1.5π in (b).
The results are calculated via the iterative Green function method in
Ref. [31]. An artificial spectral broadening 0.04 is used for the sake
of visibility.
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FIG. 4. (Color online) Spectral functions of the surface states for
two cases: (a) four Dirac cones; (b) two quadratic-band touchings.
The energies of the surface states from left to right (in both the ky < π

and ky > π regions) are −0.8, −0.4, 0, 0.4, and 0.8, respectively. For
example, both the leftmost arc in the ky < π region and the leftmost
arc in the ky > π region have energy −0.8. The parameters for (a)
and (b) are the same as those in Figs. 3(a) and 3(b), respectively. An
artificial spectral broadening 0.04 is used for the sake of visibility.

charges (Nw) in the Berry-phase gauge fields [7]. As Fermi arcs
terminate at the Weyl points, the positions of the monopoles are
essential to the shape of the Fermi arcs and the topologically
protected surface state spectra. From the figure it is seen
that the monopole-antimonopole pair with the same ky (but
opposite kz) is connected via the Dirac strings. This string
configuration is due to the facts that (i) the system possesses
inversion symmetry kz → −kz; (ii) the string connecting the
monopoles and antimonopoles must pass through the kz = π

plane because it exists only in the region kz ∈ (kmin
z ,kmax

z )
dictated by the topology. Hence the string connection between
members of a monopole-antimonopole pair with the same ky

(and opposite kz) is protected by the symmetry and dictated by
the topology.

It is noted from Fig. 3(b) that in case (ii) the two Fermi
arcs are actually connected together as kc

y = −kc
y , forming a

closed Fermi surface. In the four-Dirac-cone case in Fig. 3(a),
when kc

y 	= −kc
y , the Fermi surface is not closed. It seems

that the Fermi arcs are also invariant under the inversion
operation ky → −ky . However, this is only a special property
of zero-energy surface states due to the particle-hole symmetry.
For surface states with nonzero energy, the spectral functions
are not ky-inversion symmetric as the boundary breaks the
(x,y) → (−x, − y) inversion symmetry. To illustrate the
surface states explicitly, we plot the spectral functions of
the surface states in Figs. 4(a) and 4(b) for the two cases that
correspond to Figs. 3(a) and 3(b), respectively. The selected
energies of the surface states from left to right (in both the
ky < π and ky > π regions) are −0.8, −0.4, 0, 0.4, and 0.8,
respectively. For each energy there are two arcs: one in the
ky < π region and another in the ky > π region. For example,
both the leftmost arc in the ky < π region and the leftmost
arc in the ky > π region have energy E = −0.8. It is clearly
seen that the spectra are not invariant under ky inversion but
invariant under the particle-hole transformation. In addition,
only the arcs with zero energy link between the monopoles
whereas other arcs merge into the bulk bands without going
through the Weyl points. Finally, it is seen from Fig. 3(d) that
the two Fermi arcs are assigned to two different chiral edge
states at the left boundary, which both have positive group
velocity along the z direction. It is found that the shape of the

Fermi arcs can be tuned via φ1 and φ2 to be curved in [as in
Fig. 3(b)], curved out, or flat [as in Fig. 3(a)]. Flat bands can be
interesting in the context of elevated transition temperatures
in spontaneous symmetry breaking [7], as the density of states
is increased.

VI. A POSSIBLE SCHEME FOR EXPERIMENTAL
REALIZATION

In this section we propose a possible scheme to realize the
model in optical lattices. The required artificial gauge fields
are generated by spatial variation of the laser-atom interaction
as suggested in Ref. [27]. Suppose that there is an excited
state with energy much higher than the energy scale where
the above model is defined. Impose standing waves of light to
induce the following coupling between the ground and excited
states in the rotating-wave approximation:

HR(r) = M[cos 2πz cos π (x + y)F̂x

+ cos π (x − y)F̂y + ζ F̂z], (12)

where F̂ν (ν = x,y,z) are the Pauli matrices acting on the
(dressed) ground and excited states. M and ζ are parameters
of the laser-atom coupling. This scheme can be realized in a
system with three standing-wave Raman lasers with a detuning
of Mζ [27]. The three laser wave vectors are (π,π, ± 2π )
and (π, − π,0), and the kinetic energy is small compared
to the energy splitting of the local dressed states [i.e., the
eigenstates of the local Hamiltonian HR(r)]. The emergent
gauge fields can be obtained via the Berry phase [27], A =
〈�G(r)|i∇r|�G(r)〉 with |�G(r)〉 being the ground state of the
local Hamiltonian HR(r). One can show that A = 1

2�∇r�

where � = 1 − |ζ |√
cos2(2πz) cos2 π(x+y)+cos2 π(x−y)+ζ 2

and � =
Arg[cos(2πz) cos π (x + y) + i cos π (x − y)]. The effective
“magnetic field” (i.e., the Berry curvature, or the “magnetic
flux density”) is written as Bν = ενδρ∂δAρ , with ν,δ,ρ = x,y,z

and ε the Levi-Cività tensor. The plaquette flux for each
plaquette is the “magnetic flux” through it. For example,
for a plaquette in the x-y plane, the plaquette flux is  =∫

dx dy Bz, where the integral is limited within the plaquette.
We plot the effective magnetic field Bz through the x-y plane
(in odd layers) and B[110] through the (110) plane in Figs. 5(a)
and 5(b), respectively. It is seen that the magnetic flux density
has exactly the same checkerboard pattern as the plaquette

FIG. 5. (Color online) The magnetic flux density through (a) the
(001) plane at an odd layer; (b) the (110) plane. τ = r · (1,1,0)/2 =
(x + y)/2. The bright region has positive and the dark region negative
value.

033640-5



JIAN-HUA JIANG PHYSICAL REVIEW A 85, 033640 (2012)

2 1 1 2

0.1

0.2

0.3

Ζ
g Ζ Π

FIG. 6. (Color online) The function g(ζ ).

fluxes in Figs. 1(a) and 1(b). This shows that the gauge field
generated by the Hamiltonian, Eq. (12) is exactly what is
needed for the realization of the model. The magnetic flux
density in the (110) plane is zero everywhere, because the
current scheme realizes the model with φ1 = φ2.

The phase along a hopping path l is given by φl = ∫
l
dr · A.

Combining this with Figs. 1(a) and 1(b), one can show that
the hopping phases φ1 and φ2 in the Hamiltonian Eq. (4) are
given by

φ1 = φ2 = g(ζ ), (13)

whereas the phases of other hoppings are zero. The function
g(ζ ) is plotted in Fig. 6. φ1 = φ2 ∈ [−π/4,0]. Due to the
factor cos(2πz) the gauge phases are inverted from the odd
layers at z = n to the even layers at z = n + 1

2 with n being
integer. This exactly realizes the lattice structure in Fig. 1.
The amplitudes and signs of the remaining hoppings can, in
principle, be tuned via various optical lattice techniques [32].
By manipulation of the ratio t2/t⊥, the system can experience
various phases in the phase diagram: (i) At finite φ1 when
|t2/t⊥| < 1 it is a Weyl semimetal; (ii) otherwise it is a
QAH insulator with Cxy(kz) = 2sgn[t1t2t⊥ sin(2φ1)] for all
kz. (iii) At φ1 = 0 the system is always a nontopological
semimetal.

VII. SUMMARY

In summary, a model of a simple-cubic lattice with
staggered fluxes which exhibits a Weyl semimetal phase is
proposed and studied. The model is simple and can act as a
prototype to study the properties of Weyl semimetals. Due
to its simplicity, the model is potentially achievable both in
ultracold fermions in optical lattices and in condensed-matter
systems. In particular, we propose a possible scheme to
realize the model in an optical lattice system. Unlike previous

works, here the mechanism to achieve the topological Weyl
semimetal state is to gap the quadratic-band touching by time-
reversal-symmetry-breaking hoppings. The system exhibits a
rich phase diagram, where the number of Weyl fermions and
their topological charges and positions are tunable via the
plaquette fluxes (hopping phases). The Weyl semimetal state is
demonstrated to be the intermediate phase between a nontopo-
logical semimetal and a quantum anomalous Hall insulator.
The transitions between those phases can be understood via
the evolution of the Weyl points (see below). As the Weyl
points move and split (or merge) via the manipulation of the
hopping phases, the Fermi arcs and surface states undergo
significant change, as the Fermi arcs have to be terminated at
the Weyl points.

The relations between nontopological insulators or
semimetals, topological Weyl semimetals, and QAH insulators
demonstrated in this paper can be summarized in the following
processes: (i) A nontopological insulator becomes a nontopo-
logical semimetal via forming an accidental band-touching
node with winding number Nw = 0. (ii) By splitting the
node into pairs of Weyl fermions with opposite topological
charges and moving the positively and negatively charged
Weyl fermions in opposite directions in k space, a Weyl
semimetal state is created. (iii) When the positively and
negatively charged Weyl points are moved by half of the
reciprocal lattice vector, they merge and annihilate each other
in pairs, making the system transit into a QAH insulator.
The sign of the Chern number of the QAH state depends
on the direction along which the Weyl fermions are moved.
Quantized Berry fluxes are inserted into the bulk states during
the evolution because Weyl fermions are the monopoles of
Berry-phase gauge fields. This picture can be generalized to
understand the relations between the nontopological insulators
or semimetals, the time-reversal-symmetric topological Weyl
semimetals, and the 3D quantum spin Hall insulator (i.e.,
the time-reversal-invariant Z2 topological insulators), where
quantized non-Abelian Berry fluxes are inserted into the bulk
states during the moving of the monopoles.
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