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One- and two-atom states in a rotating ring lattice
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We study the states of one and two atoms in a rotating ring lattice in a Hubbard-type tight-binding model.
The model is developed carefully from basic principles in order to properly identify the physical observables. The
one-particle ground state may be degenerate and represent a finite flow velocity depending on the parity of the
number of lattice sites, the sign of the tunneling matrix element, and the rotation speed of the lattice. Variation of
the rotation speed may be used to control one-atom states and leads to peculiar behaviors such as wildly different
phase and group velocities for an atom. Adiabatic variation of the rotation speed of the lattice may also be used
to control the state of a two-atom lattice dimer. For instance, at a suitably chosen rotation speed both atoms are
confined to the same lattice site.
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I. INTRODUCTION

Optical lattices have enhanced both atomic, molecular,
and optical physics (AMO) and condensed matter physics
and will undoubtedly continue to do so for a long time.
Theoretical analyses of optical lattices routinely resort to
periodic boundary conditions, as if the lattice folded back onto
itself into a ring. Usually this is just a matter of convenience,
but the topology of a torus may have a profound effect on
the physics. As an example, the phase winding of a superfluid
around a ring cannot change discontinuously, which ultimately
stabilizes a persistent current. Ring traps for atoms have been,
in fact, demonstrated [1–4] and employed to study superfluid
flow [1,3]. An intriguing technique whereby a rapidly moving
optical trap, when averaged over time, may “paint” not only a
ring trap but also a virtually arbitrary time-dependent structure,
in particular, a rotating ring lattice, has also been demonstrated
[5]. A ring lattice with a precisely set and possibly small
number of sites rotating at a controllable speed is within the
reach of current experimental techniques.

The other background element here is the lattice dimer
made of two atoms in an optical lattice. Both the site-to-site
tunneling and the atom-atom interactions could be controlled
by adjusting lattice parameters and with the aid of a Feshbach
resonance. A lattice dimer may, thus, make a tailored custom
molecule. The experimental demonstration of a dimer bound
by repulsive atom-atom interactions [6] has, in part, motivated
theoretical work from several groups [6–16]. As usual, we
have applied periodic boundary conditions in our analysis
[14–16], which is convenient and permissible when the lattice
is long and the boundary conditions cannot matter in practice.
However, the boundary conditions are important if the lattice
truly is a finite-size ring, and some of our technical assumptions
such as the even number of lattice sites [14] need to be
reexamined. Moreover, rotation of the lattice could provide
another handle for controlling the molecules.

In the present paper we, first (Sec. II), study systematically
the effects of the rotation of the lattice on a Hubbard-type
model by expanding on our earlier coordinate-transformation
arguments [17]. This groundwork allows us to identify the

physical observable for one and two atoms in a rotating ring
lattice (Secs. III and IV). Thermal preparation and adiabatic
variation of the rotation speed prove to be effective methods
to control the state of both one- and two-atom systems, and
lead to quite a few perhaps surprising results. For instance, by
slowly spinning up the lattice one cannot change the speed with
which an atom emerges after it is released from the lattice, but
a localized atomic wave packet will almost track the varying
rotation speed. Also, at certain rotation speeds a bound dimer
of two atoms is confined to a single lattice site. We conclude
in Sec. V with a few brief comments.

II. HUBBARD-TYPE MODELS

Several methods have been used in the past to address the
effects of rotation on optical lattices [17–19], and by now the
observation that the rotation leads to phase factors in site-to-
site tunneling matrix elements has the force of folklore. We
find the same basic result but emphasize that one needs to keep
track of the physical observables of the system carefully.

One may resort to the formal similarity between rotation
and magnetic field, say, in that the Coriolis force derives
from a vector potential, and argue basically in terms of
minimal-coupling substitution [18]; develop for the lattice an
approximation to the usual −ω · L term that emerges in a
transformation to the rotating frame [19]; or analyze coordinate
transformations directly [17,20]. All of these methods have
their problems, however. For instance, in quantum mechanics,
coordinate transformations are mathematically unitary trans-
formations and change the appearance of quantum mechanics.
Similarly, minimal substitution is carried out in a given
fixed gauge, but in quantum mechanics a transformation to a
different gauge is also a unitary transformation. The following
question exemplifies the core of the problem: In which unitarily
transformed version of quantum mechanics is eip·r the wave
function representing a particle with the velocity p/m? The
debates about the p · A and d · E forms of the dipole interaction
that have erupted periodically in the past are a manifestation
of this type of ambiguity [21]. We resolve such issues by
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carefully expanding on our earlier coordinate-transformation
approach [17]. In the end, we will keep track of three reference
frames.

We start from the assumption that the motion of the atoms is
confined to a torus with the circumference L. In the limit of an
asymptotically strong transverse confinement the coordinate
along the direction of the torus, x, remains the only relevant
degree of freedom. In principle one might consider angular
momenta, but for sufficiently tight transverse confinement
we may model the motion in the x direction simply as
one-dimensional translation. The physics takes place over the
interval [−L/2,L/2), but here we imagine that the coordinate
x ranges over the entire real axis and impose periodic boundary
conditions over the distance L to account for the topology of
the torus. The inner product of one-atom wave functions is
defined as

(ψ,φ) =
∫ L/2

−L/2
dx ψ∗(x) φ(x), (1)

from which the Hilbert space structure follows.
Suppose next that we have a stationary potential V (x)

along the direction of the torus. We take the potential V (x)
to be periodic over the distance L and also over a shorter
distance a = L/N , so we have an N -site lattice with the lattice
spacing a and periodic boundary conditions from end to end of
the lattice. We denote the sites of the lattice, e.g., minima
of the potential V (x), by xn, and for future reference also
define the wave vectors kn. We set

xn = na, kn = 2πn

L
. (2)

The choice here (by no means unique) is that, unless otherwise
specified, for an even number of the sites in the lattice the index
n ranges from −N/2 to N/2 − 1 in unit steps, while for an
odd number of lattice sites N the range is from −N/2 − 1/2 to
N/2 − 1/2. The wave vectors thus run over the first Brillouin
zone of solid-state physics.

Assume now that the potential V (x) is made to rotate
along the torus in order to prepare a rotating ring lattice, with
the velocity along the ring specified by v. The way that we
proceeded in Ref. [17] is probably uncontroversial, but a closer
examination reveals a number of subtleties.

To begin with, the notion of an explicitly time-dependent
potential energy is not part of the standard edifice of classical
mechanics, and so not part of quantum mechanics either.
We resolve this immediate issue with the Galilean invariance
principle that in a frame moving with the potential energy at
the uniform speed v, the classical one-particle physics is the
same as in the stationary frame when the potential does not
move. In terms of the usual classical position and conjugate
momentum variables, the Hamiltonian is

Hv = p2

2m
+ V (x). (3)

We may quantize the Hamiltonian in the usual way by
replacing the position and momentum variables with the
quantum operators x̂ and p̂ to have

Ĥv = p̂2

2m
+ V (x̂). (4)

Interestingly, the canonical commutator does not uniquely
determine the quantized momentum operator p̂. For instance,
if [x̂,p̂] = ih̄, then [x̂,p̂ + f (x̂,t)] = ih̄ also holds true for
an arbitrary function f (x,t). For our purposes it suffices to
set f (x,t) = −λ, a so-far undetermined constant. In position
representation, in the frame moving with the lattice, we
therefore write the quantum Hamiltonian as

Hv = 1

2m

(
h̄

i

∂

∂x
− λ

)2

+ V (x) + K. (5)

Here we have added another constant K that has no effect on
the dynamics, but is at our disposal for later convenience.

Let us now transform from the moving coordinate system to
the stationary frame. The coordinate transformation, a Galilean
transformation, is defined by

t = τ, x = ξ − vτ, (6)

where ξ and τ are position and time in the stationary labo-
ratory frame. It follows from the time-dependent Schrödinger
equation in the rotating frame for the wave function ψv(x,t)
that the corresponding stationary-frame wave function

ψ(ξ,τ ) = ψv(ξ − vτ,τ ) (7)

also satisfies the time-dependent Schrödinger equation with
the Hamiltonian

H = 1

2m

[
h̄

i

∂

∂ξ
− (λ − mv)

]2

+ V (ξ − vτ )

+ vλ − 1

2
mv2 + K. (8)

The crux of the present argument is as follows: In the
stationary frame, and in the absence of the moving potential
(V → 0), we want to regain the ordinary Schrödinger equation
for a free particle, with the usual free-particle Hamiltonian

H = − h̄2

2m

∂2

∂ξ 2
, (9)

and periodic boundary condition for the wave function ψ(ξ,τ )
in the variable ξ . This happens only if we choose

λ = mv, K = − 1
2mv2. (10)

This puts the rotating-frame Hamiltonian into the form

Hv = 1

2m

(
h̄

i

∂

∂x
− mv

)2

+ V (x) − 1

2
mv2. (11)

The rotating-frame wave function ψv(x,t) has periodic bound-
ary conditions in the variable x.

The Hamiltonian (11) is still nonstandard form. To remedy
this situation, we introduce a transformation of the wave
function ψv → 	, a momentum translation, by

ψv(x,t) = ei mvx
h̄ 	(x,t). (12)

On this unitary transformation the Hamiltonian becomes

H ′
v = − h̄2

2m

∂2

∂x2
+ V (x) − 1

2
mv2, (13)

and the wave function 	 acquires twisted boundary conditions,

	(x + L,t) = e−i mvL
h̄ 	(x,t). (14)
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Our development has introduced three frames: The stationary
laboratory frame (LF), the rotating frame (RF), and the
momentum translated rotating frame (MTRF). In quantum
mechanics the frames are related by unitary transformations.
By choice, the bulk of our analysis is in the MTRF, but all three
frames figure in the argument and have to be distinguished
carefully.

We illustrate the distinction between these frames by
solving for the stationary states in the absence of any external
potential, V = 0, in the MTRF. The process is standard. In
particular, the operator h̄

i
∂
∂x

is Hermitian with respect to the
inner product [Eq. (1)], even with the MTRF twisted boundary
conditions. The normalized stationary states, solutions to the
time-dependent Schrödinger equation for which all quantum
mechanical expectation values are independent of time, read

	n(x,t) = 1√
L

ei(Knx−
nt), (15)

with

Kn = kn − kv;

kv = mv/h̄; kn = 2πn

L
, n = 0, ± 1, . . . ; (16)


n = h̄

2m

(
K2

n − k2
v

)
.

To go from the MTRF to the LF we apply both the appro-
priate momentum translation and the inverse of the Galilean
transformation [Eq. (6)] and find the stationary states

ψn(ξ,τ ) = 1√
L

ei(knξ−ωnτ ), ωn = h̄k2
n

2m
. (17)

These are the usual stationary states of the LF Hamiltonian
[Eq. (9)] and satisfy the proper LF periodic boundary condi-
tions.

Simple as this exercise is, it already underscores the
problem that one encounters in connection with statistical
mechanics. Namely, the energies of the states in the MTRF
and in the LF are different, h̄
n and h̄ωn, and the difference is
not just a constant. What would be the thermal equilibrium, and
even the ground state that gets prepared at zero temperature, is,
therefore, ambiguous. The question becomes even more acute
if there is a potential present, because the Hamiltonian then
depends explicitly on time in the stationary frame and standard
statistical mechanics is inapplicable. We will not attempt to
clean up these issues but simply hypothesize a resolution as
we go along.

We next proceed to Hubbard-type models for a lattice.
Here and in the rest of the paper we restrict ourselves to the
basic one-band (tight-binding) model and ignore altogether
the possible coupling of the energy bands that may occur with
increasing strength of atom-atom interactions [22,23].

We begin in the MTRF, the Hamiltonian of Eq. (13), with
what is essentially a rederivation of Bloch’s theorem. Thus, let
us introduce the lattice translation operator U and its inverse
U−1 via their actions on the wave function by

(U	)(x) = 	(x + a), (U−1	)(x) = 	(x − a). (18)

This operator preserves the inner products, (U	,U�) =
(	,�), and is invertible, so it is unitary. Moreover, for a

periodic potential V (x) it commutes with the Hamiltonian
H ′

v of Eq. (13). Therefore, H ′
v and U can be diagonalized

simultaneously. Let 	 be a simultaneous eigenfunction and λ

the corresponding eigenvalue of U . By virtue of the twisted
boundary conditions we have

(UN	)(x) = λN	(x) = 	(x + L) = e−ikvL	(x). (19)

The possible eigenvalues of U are, therefore, of the form

λn = eiKna (20)

[see Eqs. (16) for the notations used in the present argument].
By writing an eigenvector corresponding to Kn as follows,

	n(x) = eiKnxun(x) , (21)

we immediately see that un(x) has to be periodic over the
distance a. This is Bloch’s theorem for twisted boundary
conditions.

Obviously, by virtue of the unitary transformation of
Eq. (12), we would write Bloch’s theorem in the RF, for the
Hamiltonian of Eq. (11), in the form

ψn(x) = eiknxun(x), (22)

with the same functions un(x) as in Eq. (21).
When the lattice potential is weak, the rotation may

rearrange the band structure. However, as we are interested
in the tight-binding limit, we assume that the lowest-energy
band remains essentially undeformed by rotation and consider
only the N states therein.

Let us next define the analogs of Wannier functions, given
the twisted boundary conditions,

Wn(x) = 1√
N

∑
n′

e−ikn′ xn	n′(x)

= 1√
N

e−ikvx
∑
n′

eikn′ (x−xn)un′ (x)

= 1√
N

e−ikvx
∑
n′

eikn′ (x−xn)un′ (x − xn)

= e−ikvxw(x − xn) (23a)

= e−ikvxnW (x − xn), (23b)

where

w(x) = 1√
N

∑
n

eiknxun(x) (24)

is evidently the Wannier function in the RF for the lattice
position n = 0, and

W (x) = e−ikvxw(x) (25)

likewise in the MTRF. Incidentally, an attempt to construct
Wannier functions numerically quickly reveals that they are
not unique. Namely, the Bloch functions [Eq. (21)] can be
multiplied by arbitrary phase factors to give equally good
Bloch functions but possibly completely different Wannier
functions. Our usual choice is to put a minimum of the lattice
potential at x = 0 and pick the Bloch states so that 	n(0) is
real and positive. Empirically, this choice seems to produce
Wannier functions Wn(x), each of which is narrowly centered
at xn. Whatever the choice, according to Eq. (24), the Wannier
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functions Wn(x) are translated copies of a single function
W (x). The functions Wn(x) are orthonormal if the original
Bloch states [Eq. (21)] are and, in fact, make an orthonormal
basis for the states in the lowest-energy band.

The MTRF Wannier functions Wn(x) and W (x) ≡ W0(x)
themselves obey twisted boundary conditions by construction,
and so do all of their linear combinations. However, Eq. (23b)
also suggests another mechanism whereby twisted boundary
conditions may be satisfied: A linear combination of functions
of this form with an infinite number of coefficients cn satisfying
periodic boundary conditions, cn = cn+N , if it exists in the first
place, satisfies twisted boundary conditions no matter what
the function W (x) is. Conversely, if some W (x) were strictly
localized around x = 0, equal to zero by |x| � L/2, and did
not repeat at the intervals of L, then the only way to make
a wave packet satisfying twisted boundary conditions from
the functions Wn(x) = e−ikvxnW (x − xn) would be to insist on
periodic boundary conditions for the expansion coefficients cn.

In short, the following modeling suggests itself:
(i) We adopt a function W (x) that is localized around

x = 0, without periodic recurrences, and in such a way that
Wn(x) = e−ikvxnW (x − xn) for different n may be reasonably
regarded as an orthonormal set of functions.

(ii) We consider only linear combinations of the functions
Wn(x) of the form

	(x) =
∞∑

n=−∞
cnWn(x)

=
∞∑

n=−∞
cn e−ikvxnW (x − xn), (26)

where the expansion coefficients satisfy periodic boundary
conditions, cn = cn+N .

(iii) The wave function Wn(x) = e−ikvxnW (x − xn) is the
one-particle state representing an atom that resides at the site
n, and bn is the corresponding boson operator.

The function W (x) specifying the Wannier functions
restricted to the interval [−L/2,L/2) provides an example
of a function of this kind. Specifically, given the Wannier
function around x = 0, W0(x), and the unit step function θ (x),
we could define W (x) = W0(x)θ (x + L/2)θ (L/2 − x). The
ensuing construction of the lattice states is then precisely
the same as if we simply considered the original Wannier
function restricted to a proper finite set of indices such as n ∈
[−N/2,N/2 − 1). Likewise, one could use an approximation
to the ground state of a particle in the potential well at x = 0 to
model the function W (x). Such constructions are most useful
if the dependence on rotation is primarily contained in the
prefactors e−ikvxn of the basis wave functions Wn(x). After we
have adopted these one-particle states and boson operators, the
lattice per se is periodic, with the sites n and n + N regarded
as the same.

Given the functions Wn(x), we finally set up the corre-
sponding Hubbard model with nearest-neighbor tunneling and
atom-atom interactions in the usual manner,

H

h̄
= 1

2

∑
n

[−(eiφJb
†
n+1bn+e−iφJ ∗b†nbn+1)+Ub†nb

†
nbnbn].

(27)

Logic would dictate that we use the notation H ′
v for this MTRF

operator, but we write H anyway. We have

J = −2

h̄

∫ L/2

−L/2
dx W ∗(x − a)(H ′

vW )(x) (28a)

= −2

h̄
e−iφ

∫ L/2

−L/2
dx w∗(x − a)(Hvw)(x). (28b)

Since the twisted boundary conditions of the MTRF are
awkward to deal with, using the transformation of Eq. (12)
we have also expressed the tunneling matrix element in terms
of what would approximate the Wannier functions for the RF
Hamiltonian [Eq. (11)]. The phase factor φ equals the phase
twist per lattice site, or

φ = �

N
, � = mvL

h̄
, (29)

where � is the end-to-end phase twist over the lattice. The
atom-atom interaction part depends on the s-wave scattering
length a0, but to obtain it accurately we need to know also about
the structure of the wave function in the directions transverse
to x. Given a full 3D form of the Wannier functions, we could
write

U = 4πh̄a0

m

∫
d3x |W (x)|4. (30)

A periodic lattice is implied, so the sites n = 0 and n = N

are the same. We have finally dropped the constant − 1
2mv2

in the Hamiltonian, as it has no effect on either dynamics or
thermodynamics.

We also need the Hamiltonian in the lattice momentum
representation. Specifically, let us define the boson operators
in lattice momentum space Bq in such a way that

bn = 1√
N

∑
q

eiqnBq ⇔ Bq = 1√
N

∑
n

e−iqnbn. (31)

The Hamiltonian then reads,

H = −J
∑

q

cos(q − φ) B†
qBq

+ U

2N

∑
q1,q2,q3,q4

δq1+q2,q3+q4B
†
q1

B†
q2

Bq3Bq4 . (32)

With definitions in terms of the lattice spacing a such as
q ≡ akn, the discrete numbering of the lattice momenta is
hidden and the lattice momenta q are made dimensionless.
Moreover, by virtue of the periodicity in lattice momentum
space, sums and comparisons of lattice momenta are modulo
2π unless there is an explicit reason to proceed differently.
If the original operators bn annihilate Wannier states of the
lattice, the operators Bq annihilate Bloch states.

Several items remain to be cleaned up. First, some fine-
tuning on the rotation phase is in order. Suppose that we have
at the origin the harmonic oscillator potential V (x) = 1

2mω2x2

and use the ground state following from the RF Hamiltonian
Hv [Eq. (11)] as the “Wannier function” w(x) in Eq. (27). The
tunneling matrix element is then

J = ω e− mωa2

h̄ , (33)
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independent of the rotation phase φ. On the other hand, when
we use a sinusoidal potential V (x) as appropriate for an ideal
optical lattice in a numerical solution of the RF Hamiltonian
(11), we find that both the magnitude and the phase of the
tunneling amplitude J depend somewhat on φ. In particular,
there is a phase drag of sorts incorporated into J . However, in
the tight-binding limit these are small corrections. Given that
our model is heavy-handed in many other details anyway, we
will assume that the phase φ accounts for all effects of the
rotation of the lattice.

Second, one could augment each of the functions Wn(x)
with an arbitrary phase factor e−iϕn ,

Wn(x) → e−iϕnWn(x). (34)

Indeed, this operation does not change the orthonormality
of the functions Wn(x) or the function space they span. The
end result would be additional phase factors in the site-to-site
tunneling amplitudes, such as

eiφJb
†
n+1bn → ei(φ+ϕn+1−ϕn)Jb

†
n+1bn. (35)

The lattice remains periodic, and wraps around at n = N , only
if the added phase factors wrap around, so we have eiϕn+N =
eiϕn . This means that the phases added to the tunneling matrix
elements, ϕn+1 − ϕn, must add up to an integer multiple of
2π . Since the absolute phases assigned to the members of an
orthonormal basis cannot have any effect on the physics, the
total transformation [Eqs. (34) and (35)] to alter the phase
winding cannot change the physics of the lattice in any way.

Because the effect of the transformation of Eqs. (34) and
(35) on the Hamiltonian [Eq. (27)] with the choice ϕn = n�φ

is exactly the same as the change of the rotation phase by �φ,
one might be tempted to conversely surmise that the physics
repeats periodically when the rotation speed is increased, and
remains unchanged whenever � changes by 2π or the rotation
phase φ changes by 2π/N . This notion, if valid, would severely
limit the possibilities to control the lattice by varying the
rotation speed. Fortunately, it is incorrect.

The transformation of Eq. (34) comes with both phase
changes in the basis functions and an apparent change in the
rotation phase [Eq. (35)] that cancel inasmuch as physical
observables are concerned. On the other hand, a change in
the rotation speed and the accompanying changes in the
Hamiltonian do not in themselves alter the basis functions.
The spectrum of any observable, such as the Hamiltonian, is
periodic in � with the period of 2π since the absolute phases
of the basis wave functions used in the calculations have no
effect on the diagonalization. However, if we were to change
the rotation phase adiabatically so that � changes by 2π , the
wave function of an energy eigenstate could change and, along
with it, measurable properties of the system. The situation is
analogous to what happens to a function with a branch cut
starting from the origin of the complex plane: Moving the
complex argument of the function a full circle about the origin
could put the value of the function to another branch.

For instance, according to Eqs. (34) and (35), one could
effectively flip the sign of J in the Hamiltonian by flipping
the sign of every other basis function without any physical
consequences, but only if the number of the lattice sites is
even. Otherwise, the phase adjustments in the Hamiltonian
over the lattice would not add up to an integer multiple of 2π .

This tells us that the physics may depend on the parity of the
number of lattice sites. On the other hand, one could effectively
flip the sign of J and adjust the energy spectrum accordingly
by spinning the lattice up and thereby adding π to the rotation
phase, but it is not obvious without further investigation what
happens to the observable properties of the lattice.

III. ONE-ATOM STATES

We begin our investigation of the physics due to the rotation
with the case of one atom in the lattice. If it were possible to
extinguish atom-atom interactions, for instance, with the aid
of a Feshbach resonance, many bosons may be put in the same
one-particle state without any side effects. Such a many-atom
sample could aid in the observation of the phenomena we will
discuss.

In the case of one particle, the MTRF Hamiltonian
[Eq. (32)] is diagonalized trivially. Each lattice momentum
eigenstate annihilated by the boson operator Bq is also an
eigenstate of energy with the characteristic frequency

ωq = −J cos(q − φ). (36)

The corresponding energy eigenstates are given by
∣∣	q

〉 =
B

†
q |0〉 or, in the first-quantized representation in terms of the

Wannier-like function W ,

	q(x) ≡ 	(q,φ; x) = 1√
N

∑
n

ei(q−φ)nW (x − xn). (37)

Let us now consider measurement of lattice momentum in a
ring lattice by a variation of the methods that were successfully
applied to measure lattice momenta in usual linear lattices
[6,24]. Imagine, first, that the ring lattice were straightened
out somehow in such a way that the boundary conditions, etc.,
still work out as in the closed ring. The wave function of the
state 	q(x) is given by Eq. (37) in the MTRF, so we undo the
momentum translation and in the RF find

ψq(x) = 1√
N

∑
n

eiqn[eiφ(x−xn)/aW (x − xn)]. (38)

The wave function inside the square brackets is localized to a
fraction of the lattice spacing a and as such should have little
effect on lattice momenta over the scale of the first Brillouin
zone. Specifically, assume that the lattice is turned off so slowly
that the details of the wave function on the scale of lattice
spacing a get smoothed out but fast enough that the structure
over the length scale of the entire lattice L survives [6,24].
With n ≡ x/a, the wave function then becomes

ψq ∝ eiqx/a. (39)

Now, given the RF momentum operator as shown in the
Hamiltonian of Eq. (11), we have(

h̄

i

∂

∂x
− mv

)
ψq =

(
h̄q

a
− mv

)
ψq, (40)

which identifies the measured kinetic momentum, mass times
velocity, in the moving frame. Finally, applying the Galilean
transformation, we see that in the LF the momentum measured
in this way would be h̄q/a, simply the lattice momentum q

translated into units of momentum. Therefore, as in the case
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with an ordinary stationary linear lattice, the lattice momentum
q may be converted to linear momentum and measured.

In practice, an operation that just straightens out a ring
lattice appears implausible. Instead, think of a section of the
ring that looks approximately like a straight piece. The atom,
when released from different sections, would have different
directions of momenta but still the same speed and energy.
The latter could then be measured. However, as design of
experiments is not our aim, we will not pursue a more
quantitative analysis.

We have considered three different frames in our deriva-
tion: stationary laboratory frame LF, rotating frame RF, and
momentum translated rotated frame MTRF. It may come as a
surprise that, after we undo the momentum translation and are
still formally in the RF, the lattice momentum q is the lattice
momentum that would be observed in the LF. Nevertheless,
an inspection of the Hamiltonian [Eq. (11)] shows why this is
consistent: To get to the RF, we subtract the momentum due
to the motion of the frame, mv, from the quantum-mechanical
momentum operator p̂ = h̄

i
∂
∂x

, which means that p̂ should
represent the momentum in the stationary LF. All of this is
consistent with the observations surrounding Eqs. (15)–(17).

On the other hand, when we quote values of energies, they
are always in a moving frame, RF or MTRF. Momentum
translation has no effect on energy, as it comes with canceling
transformations of both the state and the energy operator
(Hamiltonian).

We plot in Fig. 1 the characteristic frequencies of all energy
eigenstates as a function of the rotation phase φ for a lattice
with N = 3 and 4 sites, upper and lower panels. There is a
qualitative difference in the spectra in accordance with the
observation that the parity of the number of states may make a
difference. Since the plot presents ωq/J , for J > 0 the energy
increases from bottom to top on the vertical axes.

Suppose first that, in fact, J < 0 holds true, so the lowest
energies are at the top. Without rotation the ground state of
a lattice with an odd number of sites is doubly degenerate.
Moreover, the degenerate states have q �= 0, i.e., present a flow
along the lattice. If we prepare the ground state and measure
the lattice momentum, we find one of two nonzero values at
random. If the lattice has an even number of sites, the ground
state is nondegenerate. It has the lattice momentum π , which is
physically equivalent to −π . Depending on the measurement
scheme the result may be π or −π , but they count as the same.

On the other hand, for J > 0 the ground state is nondegen-
erate and has zero lattice momentum, no matter if the number
of lattice sites is even or odd. The sign of the hopping matrix
elements may have dramatic qualitative consequences if the
number of lattice sites is odd.

Incidentally, in the examples we have studied analytically
and numerically, we always found J > 0. There may be a
general principle dictating that for the kind of passive tunneling
we have considered J > 0 should hold true. But, if so, active
schemes that control the tunneling externally, say, using light-
induced Raman transitions, are clearly not restricted to J > 0.

As we have already noted, the question of the ground state is
precarious once the lattice rotates. Let us posit that preparation
to a very low temperature produces the lowest-energy state in
the rotating frame. We also assume J > 0 for the sake of the
argument, and take the example with N = 4. Consultation
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FIG. 1. (Color online) Energies of the lattice eigenstates for N =
3 (upper panel) and N = 4 (lower panel) sites as a function of the
site-to-site rotation phase φ. The graphs are for lattice momenta q = 0
(solid black line), q = 2π/N (red dotted line), q = 4π/N (green
dashed line), and q = 6π/N (blue dash-dotted line).

of the lower panel in Fig. 1 then shows that, by varying
the phase φ over a 2π interval, for each q a region of φ

emerges such that the corresponding state q is the ground
state and gets prepared. For instance, q = 0 is a ground state
in the interval φ/2π ∈ [−1/8,1/8], q = π/2 in the interval
φ/2π ∈ [1/8,3/8], and so on. Such switching of the nature
of the ground state in a rotating ring lattice as a function
of the rotation speed has been noted before, and in the
many-atom case with weak atom-atom interactions it may lead
to a Schrödinger-cat-state superposition of macroscopic flow
states [25,26].

Thermal preparation presents an example about the roles
of the rotation phases and system observables. Consider the
ground state first around φ = 0, which in the MTRF reads,

	0(x) = 1√
N

∑
n

e−iφnW (x − xn). (41)

On the other hand, the ground state around φ = π/2 has q =
π/2, and the wave function can be written, among others, in
the form

	π/2(x) = 1√
N

∑
n

e−i(φ−π/2)nW (x − xn). (42)

This is the same function of x as in Eq. (41), albeit with
the replacement φ → φ − π/2. As a function of φ and x, the
ground state for all φ is the same as the ground state in the
interval φ/2π ∈ [−1/8,1/8) repeated in φ with the period
2π/N = π/2. Nevertheless, even though in the MTRF the

033637-6



ONE- AND TWO-ATOM STATES IN A ROTATING RING . . . PHYSICAL REVIEW A 85, 033637 (2012)

wave function repeats with the period �φ = 2π/N , this is not
necessarily the case with the observed quantities. In fact, lattice
momentum as measured in the LF steps by 2π/N every time
the q label of the ground state switches. This would probably
be the educated guess of most colleagues familiar with vortices
in trapped gases.

Things differ in an interesting way if one considers “slow”
time-dependent variation of the rotation velocity. We call such
variation adiabatic. At this stage there are no interactions
between the energy eigenstates and they (Bloch states) belong
to different discrete symmetries, eigenvalues of the lattice
translation operator U [Eq. (18)]. We therefore assume that
they are extremely robust even if a degeneracy is crossed
when the rotation speed is varied in time. Put differently,
when two states cross, they have a difference of an integer
multiple of 2π in their end-to-end phase winding. A continuous
dynamics cannot discontinuously change the phase winding,
so transitions between the states are not possible. In Fig. 1 one
would follow a curve of a given color with varying φ, and the
lattice momentum observed in the LF is independent of the
rotation speed of the lattice.

It might seem peculiar that in a lattice an energy eigenstate
such as the ground state cannot be wound up adiabatically, but
this appears to be a manifestation of the same phase rigidity
that sustains a persistent current in a ring. We argued a while
ago [27] that one has to cut the superfluid inside an essentially
one-dimensional ring and thereby severe the continuity of
the phase if one is to alter the state of circulation. The lattice
potential cuts the ring but not all the way. If the rate of change
of the rotation phase � is sufficiently small compared to the
tunneling matrix element J , the “fluid” of the single atom can
still adjust and respond as if it were continuous.

Continuing from the preceding ground-state example, one
could, first, prepare the ground state 	π/2(x) in a rotating
lattice corresponding to the rotation phase φ = π/4 and then
wind down the rotation adiabatically while the state 	π/2(x)
stays this way. This is a way to prepare, in principle, any
eigenstate of the stationary lattice.

As one more item of the phenomenology of the rotating
lattice, let us discuss the fate of a wave packet. We use group ve-
locity as the tool. The concept of group velocity is increasingly
useful, the larger the number of lattice sites and the broader the
wave packet (so the role of dispersion is diminished). We will
not carry out the associated quantitative analysis for finite-size
lattices or wave packets but simply assume that group velocity
yields useful qualitative predictions. It is

vg = dωk

dk
= aJ sin(q − φ) , (43)

where, in order to permit a direct comparison with the rotation
velocity, we have included the lattice constant a explicitly, as
in k = q/a. Group velocity governs the evolution of the spatial
envelope of the wave packet and is given by the expression (43)
in both the RF and the MTRF.

Take a localized stationary wave packet with q  0 pre-
pared when the lattice does not rotate and assume that the
lattice is then set in motion adiabatically in such a way that the
decomposition of the wave packet into its component q states
is not perturbed by the process. In the rotating frames the wave

packet picks up the group velocity

vg = −aJ sin φ  − 1

N

ma2J

h̄
v, (44)

where the latter form applies for a small rotation velocity. The
group velocity is small compared to the rotation velocity, both
because of the factor 1/N and because of the second factor that
is essentially the ratio of the tunneling frequency to the photon
recoil frequency associated with an atom in the optical lattice.
This means that the wave packet starts moving approximately,
but not exactly, with the rotating lattice. Depending on the
sign of the transition matrix element J , the wave packet either
slightly lags or may even lead the lattice. We emphasize
the curious contrast: Lattice momenta are unchanged when
the lattice is spun up, but the wave packet basically tracks the
moving lattice.

We have described several peculiar phenomena that should
occur with a single particle or noninteracting particles in
a rotating ring lattice. Some of them, such as the scheme
to prepare an arbitrary eigenstate of energy, were based on
nontrivial assumptions. But then, we can turn the tables and say
that an experiment would test the validity of these assumptions.

IV. LATTICE DIMER

We next proceed to the case of two interacting atoms in
the lattice. We have discussed an analogous situation in detail
before [14], but some reorientation is in order here. While our
emphasis was on the limit of an infinitely long lattice and the
periodic boundary conditions were a matter of convenience,
in a laboratory ring lattice the topology of the ring is, and a
small number of sites could be, a physical reality, and may
necessitate a numerical solution of the system. For the most
part, however, our main emphasis here is on the rotation phases,
and, when possible, we piggyback on our earlier analysis [14]
of lattice dimers.

Thus, we write the most general state of two bosons in the
lattice in the lattice momentum representation as

|ψ〉 =
∑

q

A(q)B†
1
2 P+q

B
†
1
2 P−q

|0〉 , (45)

where |0〉 is the vacuum with no atoms present. Here P is the
total lattice momentum of the dimer of sorts, the value of the
conserved quantity,

P̂ =
∑

q

q B†
qBq. (46)

We let the value P of the operator P̂ range from −2π to
2π , so 1

2P runs over the usual interval [−π,π ) of lattice
momenta. Moreover, 1

2P need not be a valid lattice momentum,
but 1

2P ± q have to be. This means that in the sum the
lattice-momentum-like quantity q may either run over legal
“integer” lattice momenta, or it may be displaced from legal
lattice momenta by a half-step π/N . This is what we earlier
termed half-integer lattice momenta. Either way, the sum over
q in Eq. (45) runs over a set of N values such that 1

2P + q and
1
2P − q both run once over all permissible lattice momenta,
with no two values separated by 2π or more.
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The coefficients A(q) govern the internal structure of the
dimer. They remain to be determined. By the boson symmetry
they can be, and are, chosen so that A(q) = A(−q). For
convenience, we regard the coefficients A(q) as periodic over
2π . The states associated with the coefficients A(q) and
A(−q), B

†
1
2 P±q

B
†
1
2 P∓q

|0〉 are the same. As a result, the usual

inner product of the states of the lattice system is expressed in
terms of the expansion coefficients as

(ψA,ψB) = 2
∑

q

A∗(q)B(q). (47)

An explicit solution to the problem of a few-site lattice has
to be tailored to the even or odd number of lattice sites and
integer or half-integer lattice momenta, with different sets of
possible values of the lattice momenta q [14], but we will not
embark on an enumeration of the various cases.

We now turn to the specifics of a rotating ring lattice. In
the MTRF the time-independent Schrödinger equation gives
an equation for the coefficients A(q),

− 2J cos

(
1

2
P − φ

)
cos q A(q) + U

N

∑
q ′

A(q ′) = E

h̄
A(q).

(48)
Defining the overall frequency scale 
(P,φ) as


(P,φ) = 2J cos
(

1
2P − φ

)
, (49)

and dimensionless variables representing energy and the
strength of atom-atom interactions

ω = E

h̄

, K = U



, (50)

the energy eigenvalue problem may be written as

1

N

∑
q

1

ω + cos q
= 1

K . (51)

The corresponding unit-normalized energy eigenstates are
defined by the coefficients

A(ω,q) = C(ω)

ω + cos q
, C(ω) =

[∑
q

2

(ω + cos q)2

]−1/2

.

(52)
We [14–16] and others [6–8,12] have discussed the nature
of the solutions before. There is a band of continuum
states restricted to the interval of characteristic frequencies
(−|
|,|
|), and one bound state of the lattice dimer that peels
off from the continuum as the strength of atom-atom interac-
tions is increased. The designations such as “continuum” are
obviously only qualitative in the case of a finite, and possibly
even a small, number of lattice sites. In the limit of a large
number of sites, the the unscaled characteristic frequency of
the bound state is

Eb

h̄
= sgn(U )

√

2 + U 2. (53)

As has also been noted many times before, the center-of-
mass motion encompassed into the lattice momentum P

does not completely separate from the internal degree of
freedom, the variable q. The new feature here is that the
rotation phase similarly, indirectly, influences the internal

structure of the lattice dimer. In view of Eq. (49), for two
identical bosons the roles of center-of-mass lattice momentum
and rotation phase may be interchanged as it comes to
energetics. Any variation with respect to one may just as well
be realized by varying the other.

For attractive atom-atom interactions the bound state is
the lowest-energy state, and by our statistical-mechanics
assumption it gets prepared at zero temperature. Given the
rotation phase φ, the lowest energy occurs for P  2φ,
so thermal equilibration at low temperature and with fixed
rotation phase φ will in general prepare a finite flow velocity
for the molecule.

Also, in the presence of atom-atom interactions the bound
state is always separated from the continuum by a nonzero
amount, so adiabatic manipulations of the bound state are
possible. One could prepare thermally a stationary lattice
dimer (P = 0) and then add adiabatically an arbitrary phase
φ. As far as the energetics of the dimer is concerned, this is
physically equivalent to generating the center-of-mass lattice
momentum P = −2φ. This applies to the spatial structure of
the dimer. The rms size of the bound dimer is �n = √

2|
/U |
[14], so the dimer could be shrunk to a single site by choosing
a rotation speed such that 
 = 0. Similarly, the spectroscopy
of the dimer [14] may be controlled.

The final item to understand is measurements of lattice
momentum. As we have noted already, the label q even in the
MTRF directly corresponds to a lattice momentum measured
in the LF. Completely analogously to the earlier analysis of
the stationary lattice [14], the probability to find a lattice
momentum q is proportional to |A( 1

2P − q)|2. The rotation
phase does not directly enter this expression. In the limit
N � 1, the unit-normalized (in the sense of the integral over
q) probability density for the lattice momentum q is found to
be

f (q)= |K(P )|3
2π

√
1 + K(P )2

× 1{
cos

(
q − 1

2P
) + sgn[K(P )]

√
1 + K(P )2

}2 , (54)

with

K(P ) = U

2J cos
(

1
2P − φ

) . (55)

Consider past experiments in which repulsively bound lattice
dimers were produced with P  0 and the lattice momenta of
the atoms were subsequently measured. The lattice momenta
were predominantly found at the edges of the first Brillouin
zone, q  π [6]. Suppose now that, after the repulsively
bound pairs have been created, it would be possible to spin
up the lattice adiabatically to the rotation phase φ = π . By
Eqs. (54) and (55), the effect is the same as reversing the
sign of the atom-atom interaction. Correspondingly, the lattice
momenta then would be found predominantly at the center of
the Brillouin zone. This should be contrasted to the observation
that adiabatic variation of the rotation speed has no effect on
the lattice momentum of a single atom.

A repulsively bound state (U > 0) lies above the continuum
band and an attractively bound state (U < 0) below. We
doubt if any adiabatic method exists that converts one to
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the other, as in the process the state should move intact
across the dissociation continuum. In our thought experiment,
according to Eq. (53), the repulsively bound state remains
the highest-energy state the entire time while the lattice is
set in motion. However, its signature changes to that of
an attractively bound state. This is an indirect effect of the
energetics. It is as if the rotation effectively changed the sign
of the tunneling matrix element, and here it is the relative sign
of the tunneling matrix element and the atom-atom interaction
strength that counts.

Still further opportunities for control open up if the atoms
are not identical [9,16] and, in particular, if their masses differ.
This implies that for the same rotation speed the rotation phases
of the two atoms are different. We have discussed the Hamilto-
nian and the results that emerge for dissimilar species in detail
before for a nonrotating lattice [16]. Here we briefly comment
on the effects of the rotation phases, calling them φ1 and φ2 for
the two species 1 and 2. These could be bosons, fermions, or
one of each.

This time around the expansion coefficient A(q) describing
atom 1 with lattice momentum 1

2P + q and atom 2 with lattice
momentum 1

2P − q is no longer constrained to be an even
function of q, and the correct form of the inner product now is
as one might expect in the first place,

(ψA,ψB) =
∑

q

A∗(q)B(q). (56)

With the definitions


 =
√

J 2
1 + J 2

2 + 2J1J2 cos(P − φ1 − φ2),

β = arctan

[
J1 − J2

J1 + J2
tan

(
P − φ1 − φ2

2

)]
− 1

2
(φ1 − φ2),

K = U12

2

, ω = E

h̄

, (57)

the Schrödinger equation becomes

− cos(q + β)A(q) + K
N

∑
q ′

A(q ′) = ωA(q). (58)

The branch of the explicit arctan function must be chosen
judiciously to make the quantity β a continuous function of
its variables. U12 is the strength of the interspecies interaction.
The eigenvalue equation and its solutions may eventually be
written

1

N

∑
q

1

ω + cos(q + β)
= 1

K , (59)

A(ω,q) ∝ 1

ω + cos(q + β)
. (60)

A comparison with the case of two identical bosons first
shows that, completely analogously, the sum of the rotation

phases of the two atoms always gets subtracted from the center-
of-mass lattice momentum. In the control of the system, φ1 +
φ2 and P are, for the most part, equally good knobs to turn.

Next, consider the eigenvalue problem [Eqs. (59) and (60)],
for the sake of simplicity ignoring the dependence of K on the
rotation phases. The values of the parameter β then matter
only modulo the spacing between the states q, or modulo
2π/N . On the other hand, a bound state appears in this system
just as for identical bosons and, likewise, it can be modified
adiabatically. In such a case an arbitrary value of β may have
physical relevance.

As an example, let us consider lattice momenta. Just like
in Ref. [16], we may find in the limit N � 1 the probability
distribution, normalized to unity, that a measurement would
find either atom 1 or atom 2 with the lattice momentum q,

f1,2(q) = |K(P )|3
2π

√
1 + K(P )2

× 1{
sgn[K(P )]

√
1 + K(P )2 + cos

[
q − 1

2P ± β
]}2 ;

K(P ) = U1,2

2J cos
[

1
2 (P − φ1 − φ2)

] . (61)

To limit the scope of the present exercise, we assume that the
tunneling matrix elements are the same whereupon we have
β = 1

2 (φ1 − φ2), that it is possible to hold P + φ1 + φ2 ≡ 0
while varying φ1 and φ2, and that K is negative. Practicalities
aside, this is not as far-fetched as it might sound, since the
variables φ1,2 are only defined modulo 2π and their sum and
difference may be, in general, varied independently, even if
they are proportional to one another. The species 1 and 2 then
predominantly come out with the lattice momenta −φ1 and
−φ2. The novelty here is that until now we have not produced
an example in which the position of the maximum of the lattice
momentum distribution is somewhere else than at 0 or ±π .

V. CONCLUDING REMARKS

We have developed a Hubbard model for atoms in a rotating
ring lattice carefully and in great detail in order to correctly
identify the physical observables. It turns out that thermal
preparation and adiabatic variation of the rotation speed can
be used to control the states of both a single atom and a dimer
of two atoms, occasionally with unexpected results.

Our Hubbard model could be a rather cursory approxima-
tion under many experimental circumstances. For instance,
it might happen that the motion of the atoms is not strictly
confined to one spatial dimension, or a high rotation speed or
atom-atom interactions render the tight-binding approximation
questionable. However, the phenomena we have described
arise from general principles such as the difficulty of abruptly
altering the phase winding of a quantum state around a ring,
and should survive modest experimental imperfections.
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