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The Fredholm equations for one-dimensional two-component fermions with repulsive and with attractive
δ-function interactions are solved by an asymptotic expansion for strong repulsion, weak repulsion, weak
attraction, and strong attraction. Consequently, we obtain the first few terms of the expansion of the ground-state
energy for the Fermi gas with polarization for these regimes. We also prove that the two sets of Fredhom equations
for weakly repulsive and attractive interactions are identical as long as the integration boundaries match each
other between the two types. Thus the asymptotic expansions of the energies of repulsive and attractive fermions
are identical to all orders in this region. The identity of the asymptotic expansions may not mean that the energy
connects analytically.
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I. INTRODUCTION

One-dimensional (1D) Fermi gases with δ-function inter-
action are important exactly solvable quantum many-body
systems and have had tremendous impact in quantum statistical
mechanics. The two-component δ-function-interaction Fermi
gas with arbitrary polarization was exactly solved by Yang
[1] using the Bethe-ansatz hypothesis in 1967. Sutherland
[2] generalized the ansatz to solve the 1D multicomponent
Fermi gas with δ-function interaction in 1968. The study of
multicomponent attractive Fermi gases was initiated by Yang
[3] and by Takahashi [4] in 1970. Since then exactly solvable
models have been extensively studied by a variety of methods
developed in the context of mathematical physics; see [3,5,6].
In particular, recent breakthrough experiments on trapped
fermionic atoms confined to one dimension [7] have provided a
better understanding of significant quantum-statistical effects
and the novel pairing nature in quantum many-body systems.
The observed results are seen to be in good agreement with the
results obtained using the analysis of exactly solved models
[8–12].

Although the Bethe-ansatz equations for the 1D two-
component δ-function-interaction Fermi gas with arbitrary
polarization were found long ago [1], it was not until much later
that this model began to receive more attention in the context
of cold atoms [13]. The asymptotic ground-state energy of
a Fermi gas with polarization was studied via the discrete
Bethe-ansatz equations in strongly and weakly interacting
regimes in [14]. But it turns out that the asymptotic expansion
of the discrete Bethe-ansatz equations can be controlled only
up to the leading-order correction to the interaction energy.
However, the fundamental physics of integrable models is
usually determined by the set of the generalized Fredholm
integral equations in the thermodynamic limit; see the article
by Yang [15]. The solutions of the Fredholm equations have
not been thoroughly investigated analytically except in a
few limiting cases [13,16]; and there are some numerical

results [8,9,17,18]. It is usually a difficult task to solve those
Fredeholm equations analytically. It is highly desirable to find
a systematic way to treat the generalized Fredholm equations.

In the present paper, we develop a systematic method to
solve asymptotically the Fredholm equations for a 1D two-
component Fermi gas with δ-function interaction and with
polarization in four regimes: the strongly repulsive, weakly
repulsive, weakly attractive, and strongly attractive regimes.
The first few terms of the expansion of the ground-state energy
for the Fermi gas with polarization are obtained explicitly
for these regimes. We also address the analytical behavior
of the ground-state energy at vanishing interaction strength.
This method which we develop can be directly applied to 1D
multicomponent Fermi gases. The results for 1D κ-component
fermions will be reported in the second paper of this study [19].

II. THE FREDHOLM EQUATIONS

The Hamiltonian for the 1D N -body problem [1,20],

H = − h̄2

2m

N∑
i=1

∂2

∂x2
i

+ g1D

∑
1�i<j�N

δ(xi − xj ), (1)

describes N fermions of the same mass m with two internal
spin states confined to a 1D system of length L interacting
via a δ-function potential. For an irreducible representation
[2N↓ ,1N↑−N↓ ], the Young tableau has two columns. Here, N↑
and N↓ are the numbers of fermions in the two hyperfine levels
| ↑〉 and | ↓〉 such that N = N↑ + N↓. The coupling constant
g1D can be expressed in terms of the interaction strength
c = −2/a1D as g1D = h̄2c/m, where a1D is the effective 1D
scattering length [21]. Let 2m = h̄ = 1 for our convenience.
We define a dimensionless interaction strength γ = c/n for
the physical analysis, with the linear density n = N/L. For
repulsive fermions, c > 0 and for attractive fermions, c < 0.

The energy eigenspectrum is given in terms of the quasi-
momenta {ki} of the fermions via E = h̄2

2m

∑N
j=1 k2

j , which in
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terms of the function eb(x) = (x + ibc/2)/(x − ibc/2) satisfy
the Bethe-ansatz (BA) equations

exp(ikiL) =
N↓∏
α=1

e1 (ki − λα) ,

N∏
j=1

e1(λα − kj ) = −
N↓∏
β=1

e2(λα − λβ), (2)

where i = 1,2, . . . ,N and α = 1,2, . . . ,N↓. The parameters
{λα} are the rapidities for the internal hyperfine spin degrees
of freedom. The fundamental physics of the model is deter-
mined by the set of transcendental equations which can be
transformed to the generalized Fredholm types of equation in
the thermodynamic limit. This transformation was found by
Yang and Yang in a series of papers on the study of the spin
XXZ model; see [15].

A. Repulsive regime

For repulsive interactions, it is shown from (2) that the
Bethe-ansatz quasimomenta {ki} are real, but all {λα} are real
only for the ground state; see Ref. [6]. There are complex
roots of λα called spin strings for excited states. In the ther-
modynamic limit, i.e., L,N → ∞, with N/L finite, the roots
of the Bethe-ansatz equations (2) are dense enough in the
parameter space. Therefore we can define the particle quasimo-
mentum distribution function r1(ki) = 1/[L(ki − ki+1)] in the
quasimomentum space. Here ki and ki+1 are two conjunction
quaisimomenta. Similarly, the distribution function of the
spin rapidity is defined as r2(λi) = 1/[L(λi − λi+1)] in spin
parameter space. In order to unify the notations in the Fredholm
equations, we replace the parameter λ by k for the distribution
function of the spin rapidity. Thus the above Bethe-ansatz
equations (2) can be written as the generalized Fredholm
equations

r1(k) = 1

2π
+

∫ B2

−B2

K1(k − k′)r2(k′)dk′, (3)

r2(k) =
∫ B1

−B1

K1(k − k′)r1(k′)dk

−
∫ B2

−B2

K2(k − k′)r2(k′)dk′. (4)

The associated integration boundaries B1 and B2 are deter-
mined by the relations

n : ≡ N/L =
∫ B1

−B1

r1(k)dk,

n↓ : ≡ N↓/L =
∫ B2

−B2

r2(k)dk, (5)

where n denotes the linear density while n↓ is the density of
spin-down fermions. The boundary B1 characterizes the Fermi
point in the quasimomentum space, whereas the boundary B2

characterizes the spin rapidity distribution interval with respect
to the polarization. They can be obtained by solving Eqs. (5).
In the above equations, we denote the kernel function as

K
(x) = 1

2π


c

(
c/2)2 + x2
. (6)

The ground-state energy per unit length is given by

E =
∫ B1

−B1

k2r1(k)dk. (7)

The magnetization per length is defined by sz = (n − 2n↓)/2.
Through the boundary conditions (5), the ground-state energy
(7) can be expressed as a function of total particle density n

and magnetization sz. In the grand-canonical ensemble, we can
also get the magnetic field h and chemical potential μ via

h = 2
∂E(n,sz)

∂sz

, μ = ∂E(n,sz)

∂n
. (8)

B. Attractive regime

For the attractive regime, i.e., c < 0, it is found from (2)
that complex string solutions of ki also satisfy the Bethe-ansatz
equations. Thus the quasimomenta {ki} of the fermions with
different spins form two-body bound states [4,22], i.e., ki =
k′
i ± i 1

2c, accompanied by the real spin parameter k′
i . Here i =

1, . . . ,N↓. The excess fermions have real quasimomenta
{
kj

}
with j = 1, . . . ,N − 2N↓. Thus the Bethe-ansatz equations
are transformed into the Fredholm equations for the density
of the pairs ρ2(k) and the density of single Fermi atoms ρ1(k).
They satisfy the following Fredholm equations [3,4]:

ρ1(k) = 1

2π
+

∫ Q2

−Q2

K1(k − k′)ρ2(k′)dk′, (9)

ρ2(k) = 2

2π
+

∫ Q1

−Q1

K1(k − k′)ρ1(k′)dk′

+
∫ Q2

−Q2

K2(k − k′)ρ2(k′)dk′. (10)

Here c < 0 in the kernel functions K
(x). The integration
boundaries Q1 and Q2 are the Fermi points of the single
particles and pairs, respectively. They are determined by

n ≡:
N

L
= 2

∫ Q2

−Q2

ρ2(k)dk +
∫ Q1

−Q1

ρ1(k)dk,

n↓ ≡:
N↓
L

=
∫ Q2

−Q2

ρ2(k)dk. (11)

The ground-state energy per length is given by

E =
∫ Q2

−Q2

(2k2 − c2/2)ρ2(k)dk +
∫ Q1

−Q1

k2ρ1(k)dk. (12)

In a similar way, the magnetic field and chemical potential can
be determined from the relations (8). In the next section, we
discuss the solutions and analytical behavior of the Fredholm
equations.

III. ASYMPTOTIC SOLUTIONS OF THE
FREDHOLM EQUATIONS

A. Strong repulsion

The strong-coupling condition cL/N 	 1 naturally gives
the condition c 	 B1, where the Fermi boundary B1 ∝ nπ

according to the Fermi statistics. For the balanced case, the
numbers of spin-up and -down fermions are equal. Thus there
are no finite “Fermi” points in spin parameter space, i.e., the
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boundary B2 → ∞. Taking a Taylor expansion with the kernel
function K1(k − k′) in (4) at k′ = 0, we obtained with an
accuracy up to the order of 1/c4

r2(k) ≈ nK1(k) + E

2π

[
3c(

c2

4 + k2
)2 − c3(

c2

4 + k2
)3

]

−
∫ ∞

−∞
K2(k − k′)r2(k′)dk′. (13)

Here E is the ground-state energy per length. By taking a
Fourier transformation of (13), we may obtain the distribution
function

r̃2(ω) =
(

n − Eω2

2

)/ (
2 cosh

ωc

2

)
. (14)

Substituting (14) into the Fredholm equation (3), we have

r1(k) = 1

2π
+ 1

2π

∫ ∞

−∞
e−(1/2)c|ω|r̃2(ω)eiωkdω

= 1

2π
+ n

2π

(
Y0(k) − E

2n
Y2(k)

)
, (15)

where

Yα(k) ≈
∫ ∞

−∞

eiωkωαdω

1 + e|ω|c .

After some algebra, we obtain

Y0(k) = 2 ln 2

c
− 3k2

2c3
ζ (3), Y2(k) ≈ 3

c3
ζ (3).

Here ζ (z) is the Riemann zeta function. Then we obtain

r1(k) = 1

2π
+ n ln 2

πc
− 3nζ (3)

4πc3

(
k2 + E

n

)
+ O(c−4). (16)

We see clearly that for strong repulsion the distribution of
r1(k) is very flat and it is a constant up to a correction of
the order of 1/c3. This naturally suggests that 1D fermions
with strong repulsion can be treated as ideal particles with
fractional statistics. Substituting (16) into the linear density
(5) and energy (7), we obtain

n = B1

π

(
1 + 2n ln 2

c
− 3Eζ (3)

2c3
− n3π2ζ (3)

2c3

)
,

E = B3
1

3π

(
1 + 2n ln 2

c
− 3Eζ (3)

2c3
− 9n3π2ζ (3)

10c3

)
,

which give

B1 = nπ

[
1 − 2 ln 2

γ

(
1 − 2 ln 2

γ

)
− 8(ln 2)3

γ 3

+π2ζ (3)

γ 3

]
+ O(c−4), (17)

E = n3π2

3

[
1 − 4 ln 2

γ
+ 12(ln 2)2

γ 2
− 32(ln 2)3

γ 3

+ 8π2ζ (3)

5γ 3

]
+ O(c−4). (18)

We see that the energy is given in terms of the dimensionless
strength γ = c/n. The correction to leading order in 1/γ

FIG. 1. (Color online) The ground-state energy per length vs
logarithmic γ = cL/N in units of h̄2N 3/2mL2: comparison between
the asymptotic and numerical solutions of the Fredholm equations for
polarization P = 0,0.2,0.4,0.6,0.8,1.0. In the attractive regime, the
binding energy εb = −c2/2 was subtracted. The crossing of the two
lowest curves in the attractive regime indicates a relation between
the critical polarization and interaction, where the chemical potential
of single fermions exceeds the chemical potential of the pairs. An
excellent agreement between our asymptotic results and numerical
plots is seen for strong repulsion, weak repulsion, weak attraction,
and strong attraction

was found in [13,14]. Actually, the two sets of the Fredholm
equations can be converted into dimensionless units. Therefore
the ground-state energy can be written as an analytical function
of γ except at γ = 0. This ground-state energy is a good
approximation for the balanced Fermi gas with a strongly
repulsive interaction (good agreement is seen for cL/N > 8);
see Figs. 1 and 2. In these figures, the solid lines are obtained
from the ground-state energy (7) and (12) with the numerical
solutions to the two sets of Fredholm equations (3) and (4) for
the repulsive regime and (9) and (10) for the attractive regime.
The dashed lines are plotted from the asymptotic ground-state
energy for the four regimes.

However, it is extremely hard to obtain a closed form
of the ground-state energy of the gas with an arbitrary
spin-population imbalance in the repulsive regime. This is
mainly because the distribution function r2(k) spans the
region −B2 < k < B2, where the integration boundary B2

can vary from zero to infinity as the polarization changes.
The integration boundary B2 decreases as the polarization
increases. An intuitive way of understanding this point is
that zero polarization corresponds to B2 = ∞ while the fully
polarized case corresponds to B2 = 0. From dressed-energy
formalism [10], we can easily see this monotonic relation
between the Fermi boundary and polarization by analyzing
the band filling under an external field. For high polarization
and strong repulsion (i.e., N↓ � N ), we have the conditions
c 	 B1,B2, which allows us to make the following Taylor
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(a)

(b)

(c)

FIG. 2. (Color online) The ground-state energy per length vs γ =
cL/N in units of h̄2N 3/2mL2: comparison between the asymptotic
and numerical solutions of the Fredholm equations for polarization
P = 0,0.2,0.4,0.6,0.8,1.0. An excellent agreement between our
asymptotic expansion results and numerical plots is seen in (a) for the
weakly repulsive and attractive regimes, (b) for the strongly repulsive
regime, and (c) the strongly attractive regime.

expansion:

r2(k) = 1

2π

∫ B1

−B1

cr1(k′)
c2

4 + k2

[
1 − −2kk′ + k′2

c2

4 + k2
+ · · ·

]
dk′

−
∫ B2

−B2

K2(k − k′)r2(k′)dk′

= n

(
1 − 4E

c2n

)
K1(k) − n↓K2(k) + O(c−4). (19)

Here we denote n↓ = N↓/L. We notice that the leading
order of the distribution function r2(k) is proportional to 1/c.
Furthermore, taking a Taylor expansion in (3), we obtain

r1(k) ≈ 1

2π
+ 1

2π

∫ B2

−B2

cr2(k′)
c2

4 + k2

[
1 − −2kk′ + k′2

c2

4 + k2

]
dk′

= 1

2π

[
1 + cn↓

c2

4 + k2

]
+ O(c−4). (20)

From the asymptotic distribution functions (19) and (20), we
calculate the density

n =
∫ B1

−B1

r1(k)dk ≈ B1

π

(
1 + 4n↓

c
− 16B2

1n↓
3c3

)

which gives

B1 ≈ nπ

(
1 − 4n↓

c
+ 16n2

↓
c2

+ 16n2n↓π2

3c3
− 64n3

↓
c3

)
.

(21)

From the energy (7) and the distribution function r1(k) (20),
we may obtain an asymptotic ground-state energy of a highly
polarized Fermi gas with strong repulsion (c 	 B1,B2),

E ≈ 1

3
n3π2

[
1−8n↓

c
+48n2

↓
c2

− 1

c3

(
256n3

↓−32

5
π2n2n↓

)]
.

(22)

In fact, for strong repulsion, the interaction energy in the
ground state of the highly polarized Fermi gas solely depends
on the BA quantum number N↓. A similar structure can
be found for 1D κ-component fermions [19]. By numerical
checking, we see that for γ > 8 and polarization P = (N↑ −
N↓)/(N↑ + N↓) � 0.5, the energy (22) is very accurate; see
Fig. 2.

B. Weak repulsion

For the weakly repulsive regime, it is convenient to rewrite
the Fredholm equations (3) and (4) as

r1(k) = 1

2π
+

∫ B2

−B2

K1(k − k′)r2(k′)dk′, (23)

r2(k) = 1

2π
−

∫
|k′|>B1

K1(k − k′)r1(k′)dk′. (24)

The derivation of (24) is straightforward via the Fourier
transform of the Fredholm equations (3) and (4), where for
our convenience in the study, we actually used

rmin(k) =
{

rm(k), |k| � Bm,

0, |k| > Bm,

rmout(k) =
{

rm(k), |k| > Bm,

0, |k| � Bm,
(25)

with m = 1,2 in the Fourier transformation. These Fredholm
equations are valid for arbitrary polarization including the
balanced case. In the following unification of the ground-state
energy, we assume B1 > B2 as an ansatz. In the light of
Takahashi’s unification of the ground-state energy [23], we
give the ground-state energy per length as

E = B2
1

3π
+ 1

2π

∫ B2

−B2

H (k,B1)dk

−
∫ B2

−B2

[∫
|k′|>B1

K1(k − k′)r1(k′)dk′
]

H (k,B1)dk,

(26)

where

H (x,y) = 1

π

[(
x2 − c2

4

)
πgy(x) + yc

+1

2
xc ln

4(x − y)2 + c2

4(x + y)2 + c2

]
,

gy(x) = 1 − G+(y,x),

G±(x,y) = tan−1 c

2(x − y)
± tan−1 c

2(x + y)
.

From (5), we find that the integration boundaries B1 and B2

satisfy the following conditions:

N↑
L

= B1

π
− 1

π

∫ B2

−B2

r2(k)G+(B1,k)dk, (27)
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N↓
L

= B2

π
− 1

π

∫
|k|>B1

r1(k)G−(k,B2)dk, (28)

in this weakly repulsive regime. Using the condition (28), we
may obtain the integration boundary B2 (up to an order-of-c
contribution),

B2 ≈ n↓π + c

4π
ln

4(B1 + B2)2 + c2

4(B1 − B2)2 + c2

− (B1 − B2)

π
tan−1 c

2(B1 − B2)

+ (B1 + B2)

π
tan−1 c

2(B1 + B2)
, (29)

or

B2 = n↓π + c

2π
ln

|B1 + B2|
|B1 − B2| + O(c2). (30)

The logarithmic term in (29) converges as B1 = B2. However,
the logarithmic term in (30) becomes divergent as B1 = B2.
This divergent term in the ground-state energy can be canceled
out. Here we see a subtlety of this asymptotic expansion.
Similarly, we calculate the Fermi momentum B1 by definition
(5) and the distribution (23),

B1 = n↑π + c

4π
ln

4(B1 + B2)2 + c2

4(B1 − B2)2 + c2

− (B1 − B2)

π
tan−1 c

2(B1 − B2)

+ (B1 + B2)

π
tan−1 c

2(B1 + B2)
, (31)

or

B1 ≈ n↑π + c

2π
ln

|B1 + B2|
|B1 − B2| + O(c2). (32)

The ground-state energy per length in the weakly repulsive
coupling limit can be expressed in terms of the Fermi
boundaries,

E ≈ B3
1

3π
+ B3

2

3π
+ 2c

π2
B1B2

− c

2π2

(
B2

1 + B2
2

)
ln

|B1 + B2|
|B1 − B2| . (33)

Substituting (30) and (32) into (33), we obtain the ground-state
energy of the Fermi gas with a weakly repulsive interaction
and with polarization

E = 1
3n3

↑π2 + 1
3n3

↓π2 + 2cn↑n↓ + O(c2). (34)

This leading-order correction to the interaction energy indi-
cates a mean-field effect. By numerical checking, we see that
the energy (34) agrees well with the numerical results in this
weak-coupling regime; see Fig. 2.

For the balanced case, the integration boundary B2 tends
to infinity. It is different from the above setting where we
consider B1 > B2. The Fredholm equations (3) and (4) [or
(23) and (24)] can be simplified with the help of a Fourier
transformation,

r1(k) = 1

π
−

∫
|k′|>B1

K2(k − k′)r1out(k
′)dk′. (35)

However, for |k| > B1, we find

r1out(k) = 1

2π
−

∫ ∞

−∞
R(k − k′)r1in(k′)dk′, (36)

where the function R(k) is given by

R(k) = 1

2π

∫ ∞

−∞

1

1 + e−|ω|c e−iωkdω

= − 1

π

(
c

4k2
+ c3

8k4
+ · · ·

)
.

We see clearly that the second term in (36) gives a contribution
O(c). Substituting the leading term r1(k) = 1/2π for the
region |k| > B1 into the distribution function r1(k) (35), we
obtain the distribution function r1(k) for |k| < B1,

r1(k) ≈ 1

π
− 1

2π2

[
tan−1 c

k + B1
+ tan−1 c

B1 − k

]
.

From the relation n = ∫ B1

−B1
r1(k)dk, we find

B1 ≈ nπ

2

[
1 + c

4πB1
ln

4B2
1 + c2

c2
+ 1

π
tan−1 c

2B1

]
.

(37)

Then we obtain the balanced ground-state energy for a weakly
repulsive interaction,

E = 2

3π
B3

1

[
1 − 3

4π

(
c

B1
ln

4B2
1 + c2

c2

+4

3
tan−1 c

2B1
− 8

3

c

B1

)]
+ O(c2). (38)

It is clearly seen that up to the order O(c2) the ground-state
energy of a balanced gas with weak repulsion converges
as c → 0 (or say cL/N → 0 by a rescaling in the above
equations). By substituting B1 into (38), we find that the
logarithmic term is canceled. The ground-state energy for the
balanced case is given by

E = 1
12n3π2 + 1

2n2c + O(c2). (39)

We further discuss the continuity of the energy at vanishing
interaction strength in the next section.

C. Weak attraction

For the weakly attractive regime, the Fredholm
equations (9) and (10) are rewritten as

ρ1(k) = 1

2π
+

∫ Q2

−Q2

K1(k − k′)ρ2(k′)dk′, (40)

ρ2(k) = 1

2π
−

∫
|k′|>Q1

K1(k − k′)ρ1(k′)dk′. (41)

These Fredholm equations are valid for arbitrary polarization.
It is seen clearly that the Fredholm equations (23) and (24) for
the repulsive regime and (40) and (41) for the attractive regime
are identical as long as the integration boundaries match each
other between the two cases. Similarly, for unification of the
energy of a gas with weak attraction, we assume Q1 > Q2. In
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the above equations, Q1 and Q2 are determined by

N↑
L

= Q1

π
− 1

π

∫ Q2

−Q2

ρ2(k)G+(Q1,k)dk, (42)

N↓
L

= Q2

π
− 1

π

∫
|k|>Q1

ρ1(k)G−(k,Q2)dk, (43)

which indeed match the integration boundaries B1 and B2 [(27)
and (28)] in the region B1 > B2 and Q1 > Q2.

Furthermore, substituting (40) and (41) into the ground-
state energy (12), we obtain

E = Q2
1

3π
+ 1

2π

∫ Q2

−Q2

H (k,Q1)dk

−
∫ Q2

−Q2

[∫
|k′|>Q1

K1(k − k′)ρ1(k′)dk′
]

H (k,Q1)dk.

(44)

From Eqs. (42) and (43), we find

Q1 = n↑π − |c|
4π

ln
4(Q1 + Q2)2 + c2

4(Q1 − Q2)2 + c2

+ (Q1 − Q2)

π
tan−1 |c|

2(Q1 − Q2)

− (Q1 + Q2)

π
tan−1 |c|

2(Q1 + Q2)
+ O(c2), (45)

Q2 = n↓π − |c|
4π

ln
4(Q1 + Q2)2 + c2

4(Q1 − Q2)2 + c2

+ (Q1 − Q2)

π
tan−1 |c|

2(Q1 − Q2)

− (Q1 + Q2)

π
tan−1 |c|

2(Q1 + Q2)
+ O(c2). (46)

Indeed, by calculating the ground-state energy (44) with the
integration boundaries (45) and (46) for a weakly attractive
interaction, we do find a similar form of the ground-state
energy:

E = 1
3n3

↑π2 + 1
3n3

↓π2 − 2|c|n↑n↓ + O(c2). (47)

We see that the asymptotic ground-state energies (34) and (47)
continuously connect at c = 0 for arbitrary polarization; see
Figs. 1 and 2.

For the balanced attractive regime, the Fermi boundary
Q1 = 0 and Q2 is finite; the Fredholm equations (9) and (10)
[or (40) and (41)] reduce to

ρ2(k) = 1

π
+

∫ Q2

−Q2

K2(k − k′)ρ2(k′)dk′. (48)

By iteration, the Fermi boundary Q2 is obtained from n =
2
∫ Q2

−Q2
ρ2(k) in a straightforward way:

Q2 ≈ nπ

2

[
1 − |c|

4πQ2
ln

4Q2
2 + c2

c2
− 1

π
tan−1 |c|

2Q2

]
,

(49)

which gives a similar form to that of the Fermi boundary B1;
see (37). After lengthy algebra and iteration, we obtain the

ground-state energy

E = 2

3π
Q3

2

[
1 + 3

4π

( |c|
Q2

ln
4Q2

2 + c2

c2

+4

3
tan−1 |c|

2Q2
− 8

3

|c|
Q2

)]
+ O(c2). (50)

It is clearly seen that up to the oder O(c2) the ground-state
energy of the balanced gas with an attractive interaction also
converges as c → 0−. By substituting Q2 into (50), we find
that the logarithmic term is canceled out. Thus the energy is
given by

E = 1
12n3π2 − 1

2n2|c| + O(c2), (51)

which continuously connects to the energy (39) at c → 0. But
the identity of the asymptotic expansions may not mean that the
energy analytically connects because of the divergence in the
small region c → i0 and the mismatch of the Fermi boundaries
associated with the two sets of Fredholm equations for both
cases. Nevertheless, we see that under a mapping

r1(k) ←→ ρ1(k), r2(k) ←→ ρ2(k), c ←→ c, (52)

the Fredholm equations (23) and (24) with (27) and (28) for
the repulsive regime and the Fredholm equations (40) and
(41) with (42) and (43) for the attractive regime are identical
for Q1 > Q2 and B1 > B2. In the above equations c > 0
for repulsive interaction and c < 0 for attractive interaction
are implied. We also see that the ground-state energy of the
gas with a weakly repulsive interaction (26) and the gas
with a weakly attractive interaction (44) are unified under
the mapping (52). This unification leads to continuity of the
energy for this polarized gas at vanishing interaction strength,
i.e., c → 0. Thus the asymptotic expansions of the energies
of repulsive and attractive fermions with nonzero polarization
are identical to all orders in the vanishing-interaction-strength
limit as long as the conditions Q1 > Q2 and B1 > B2 hold.

The analyticity of the the energy at c = 0 was discussed
by Takahashi [23]. Takahashi’s theorem states that (a) the
energy function f (n↑,n↓; c) is analytic on the real axis of
c when n↑ �= n↓; (b) f (n↑,n↓; c) is analytic on the real axis of
c except for c = 0 when n↑ = n↓. This theorem appears not
to be true for the region B1 < B2 and Q1 < Q2 in our study.
Takahashi’s proof of this theorem relies on his Lemma 2, i.e.,
the function f , density n, and density of spin-down fermions
n↓ are analytic as functions of Q, B, and c except for the
region c = 0 and Q < B. Here Q and B are two integration
boundaries. Even the identity of the asymptotic expansions of
the energy may not mean that the energy analytically connects
due to the divergence of the two sets of Fredholm equations
in the limit c → i0 and the mismatch of the intervals for
the density distribution functions. Although we unified the
two sets of Fredholm equations (23),(24) and (40),(41) for
arbitrary polarization, the integration boundaries between the
two regimes are mismatched for the regions Q1 < Q2 and
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B1 < B2, i.e.,

N↑
L

= B1

π
− 1

π

∫ B1

−B1

r2(k)G+(B1,k)dk

−
∫

B1<|k|<B2

r2(k)

[
1 − 1

π
G−(k,B1)

]
dk, (53)

N↓
L

= B2

π
− 1

π

∫
|k|>B2

r1(k)G−(k,B2)dk

−
∫

B1<|k|<B2

r1(k)

[
1 − 1

π
G+(B2,k)

]
dk (54)

for the weakly repulsive regime, and

N↑
L

= Q1

π
− 1

π

∫ Q1

−Q1

ρ2(k)G+(Q1,k)dk

+
∫

Q1<|k|<Q2

ρ2(k)

[
1 + 1

π
G−(k,Q1)

]
dk, (55)

N↓
L

= Q2

π
− 1

π

∫
|k|>Q2

ρ1(k)G−(k,Q2)dk

+
∫

Q1<|k|<Q2

ρ1(k)

[
1 + 1

π
G+(Q2,k)

]
dk (56)

for the weakly attractive regime. It is obvious that the signs
in the last term in each equation are mismatched. In the
above equations c > 0 for repulsive interaction and c < 0 for
attractive interaction are implied. This mismatch is clearly
seen in the balanced case: B1 → Q2, B2 → ∞, and Q1 → 0.
Thus we see that the Fredholm equations cannot be unified
for the region Q1 < Q2 and B1 < B2 at vanishing interaction
strength.

D. Strong attraction

In recent years, the strongly attractive Fermi gas has
received considerable attention in theory and experiment due
to the existence of a novel pairing state. For the spin-1/2
Fermi gas with strongly attractive interaction, two fermions
with different spin states can form a tightly bound pair. For the
ground state, the model has three distinct quantum phases, i.e.,
a fully paired phase with equal numbers of spin-up and -down
fermions, a fully polarized phase of single spin-up fermions,
and a partially polarized phase with both pairs and excess
fermions. The key features of this T = 0 phase diagram of the
strongly attractive spin-1/2 Fermi gas were experimentally
confirmed using finite-temperature density profiles of trapped
fermionic 6Li atoms [7].

Here we calculate the ground-state energy (12) from
the Fredholm equations (9) and (10) with the integration
boundaries Q1,Q2 that characterize the Fermi points of two
Fermi seas, i.e., the Fermi seas for excess fermions and pairs,
respectively. Therefore, for strong attraction, i.e., |c|L/N 	 1,
all integration boundaries are finite, i.e., Q1 and Q2 are finite.
In this regime, the conditions c 	 Q1,Q2 hold for arbitrary
polarization. From the following calculation, we will see that
the conditions Q1 > Q2 and Q1 < Q2 do not change the
expression of the energy. Therefore, the following result is
valid for arbitrary polarization, including the balanced case. In

this regime, it is convenient to use the notation |c| instead of
a negative value of c. The ground-state energy is calculated in
the following way:

E = Q3
1

3π
+ 1

π

∫ Q2

−Q2

ρ2(k)

[(
k2 − c2

4

)
(2π

− tan−1 2(Q1 − k)

|c| + tan−1 2(Q1 + k)

|c|
)

−Q1|c| − 1

2
λ|c| ln

4(k − Q1)2 + c2

4(k + Q1)2 + c2

]
dk. (57)

Furthermore, we consider a strong-coupling expansion in
the energy (57); here we assume |c| 	 Q1,Q2. We collect
contributions up to the order of 1/|c|3, i.e.,

E ≈ Q3
1

3π

[
1 − 4n↓

|c| + 48Q2
1n↓

5|c|3 + 32Q3
2

3π |c|3
]

−c2

2
n↓ + 2

∫ Q2

−Q2

ρ2(k)k2dk. (58)

In the last equation of (58), the first part in the square brackets
is the kinetic energy of excess single atoms including the
marginal interference effect between the single atoms and
molecules of two atoms. The second term is the total binding
energy of the bound pairs. The last term characterizes the total
energy of the molecules of two atoms. We now calculate the
Fermi momenta Q1 and Q2 and the energy of the molecules
of two atoms. For our convenience, we denote

E = Eu
0 + Eb

0 + n↓εb (59)

with

Eu
0 = Q3

1

3π

[
1 − 4n↓

|c| + 48Q2
1n↓

5|c|3 + 32Q3
2

3π |c|3
]

,

Eb
0 = 2

∫ Q2

−Q2

ρ2(k)k2dk, εb = −c2

2
. (60)

We calculate Q1 from (11) with the density (9):

n↑ − n↓ =
∫ Q1

−Q1

(
1

2π
−

∫ Q2

−Q2

K1(k − k′)ρ2(k′)
)

dk

≈ Q1

π

[
1 − 4n↓

|c| + 16Q2
1n↓

3|c|3 + 32Q3
2

3π |c|3
]

.

Then we obtain the Fermi momentum

Q1 ≈ (n − n↓)π

[
1 + 4n↓

|c| + 16n2
↓

c2

− 16

3|c|3
(

(n↑ − n↓)2π2n↓ + n3
↓π2

4
− 12n3

↓

)]
. (61)

Similarly, we calculate Q2 from (11) with the distributions (9)
and (10),

Q2 ≈ n↓π

2

(
1 + 2n↑ − n↓

|c| + (2n↑ − n↓)2

c2
+ (2n↑ − n↓)3

|c|3

−n2
↓π2(8n↑ − 7n↓)

12|c|3 − π2
[
n3

↓ + 32(n↑ − n↓)3
]

12|c|3
)

.

(62)
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We observe that the kernels in the Fredholm equations (9) and
(10) converge quickly with the distribution functions as the
interaction strength |c| increases. This allows one to make a
proper Taylor series expansion in the distribution functions. In
this way, from Eq. (10) we may obtain

ρ2(k) ≈ 1

π

[
1− n↓|c|

c2 + k2
+ |c|Eb

0

2(c2 + k2)2

]
− 1

2π

[
|c|(n↑ − n↓)

c2

4 + k2

+ |c|(
c2

4 + k2
)2

∫ Q1

−Q1

ρ1(k′)k′2dk′
]

= 1

π
+ 2Q3

2

3π2|c|3 + 8Q3
1

3π2|c|3 − n↓
π

|c|
c2 + k2

−n↑ − n↓
2π

|c|
c2

4 + k2
. (63)

Substituting (63) into the energy Eb
0 (60),

Eb
0 ≈ 4Q3

2

3π
+ 8Q6

2

9π2|c|3 + 32Q3
1Q

3
2

9π2|c|3

−2n↓
π

∫ Q2

−Q2

|c|k2dk

c2 + k2
− (n↑ − n↓)

π

∫ Q2

−Q2

|c|k2dk

c2

4 + k2

≈ 4Q3
2

3π

(
1 − 2n↑ − n↓

|c| + 2
(
Q3

2 + 4Q3
1

)
3π |c|3

+3(8n↑ − 7n↓)Q2
2

5|c|3
)

. (64)

Substituting Eqs. (61) and (62) into the ground-state energy
(58) and (64), we obtain the ground-state energy of the gas
with a strongly attractive interaction and with an arbitrary
polarization:

Eu
0 ≈ (n↑ − n↓)3π2

3

[
1 + 8n↓

|c| + 48n2
↓

c2

− 8n↓
15|c|3 [12π2(n↑ − n↓)2 − 480n2

↓ + 5n2
↓π2]

]
, (65)

Eb
0 ≈ n3

↓π2

6

[
1 + 2(2n↑ − n↓)

|c| + 3(2n↑ − n↓)2

c2

− 4

15|c|3
(
180n↓n2

↑ + 20π2n3
↑ − 90n↑n2

↓ − 22π2n3
↓

+15n3
↓ − 120n3

↑ + 63π2n2
↓n↑ − 60π2n↓n2

↑
)]

. (66)

We define the polarization P = (N↑ − N↓)/N = (n↑ −
n↓)/n; then the energy in terms of polarization is given by

E ≈ h̄2n3

2m

{
− (1 − P )γ 2

4
+ π2(1 − 3P + 3P 2 + 15P 3)

48

+π2(1 − P )(1 + P − 5P 2 + 67P 3)

48|γ |

+π2(1 − P )2(1 + 5P + 3P 2 + 247P 3)

64γ 2

−π2(1 − P )

1440|γ |3
[−15 + 31 125P 4 + 1861π2P 5

−15 765P 5 − 659π2P 4 + 346π2P 3 − 14π2P 2

+π2P + π2 − 105P − 150P 2 − 15 090P 3
]}

, (67)

which agrees with the result derived from dressed-energy
equations [10,11]. This result is highly accurate as can be seen
in Figs. 1 and 2. From the energies (65) and (66), we see that
the bound pairs have tails and they interfere with each other.
But it is impossible to separate the intermolecular forces from
the interference between molecules and single fermions. If we
consider n↓ 	 x = n↑ − n↓, the single atoms are repelled by
the molecules, i.e.,

E(n↓,x) ≈ E(n↓,0)

L
+ 1

6
n3

↓π2

[
4x

|c| + 12x(x + n↓)

c2

]
,

where

E(n↓,0) ≈ 1

6
n3

↓π2

(
1 + 2n↓

|c| + 3n2
↓

c2

)
+ εb.

In addition, the phase diagram and magnetism can be
worked out directly from the relations (8) with the ground-state
energy for the four regimes. The phase boundaries of the full
phase diagrams may be analytically and numerically obtained
by imposing the conditions sz = 0,0.5 in the conditions (8), as
has been discussed in the literature [8–10,18].

IV. CONCLUSION

In conclusion, we have presented a systematic method
to derived the first few terms of the asymptotic expansion
of the Fredholm equations for the spin-1/2 Fermi gas with
repulsive and attractive δ-function interactions in four regimes:
the strongly repulsive, weakly repulsive, weakly attractive,
and strongly attractive regimes. We have obtained explicitly
the ground-state energy of the Fermi gas with polarization
in these regimes; see the key results (18), (22), (34), (47),
(65), and (66). By numerical checking, these asymptotic
ground-state energies are seen to be highly accurate in the
four regimes. In the weakly attractive and repulsive regimes,
the ground-state energies, integration boundary relations, and
associated two sets of Fredholm equations have been unified.
The two sets of Fredholm equations can be identical as long
as the associated integration boundaries match each other
between the two cases. This suggests that the asymptotic
expansions of the energies of the repulsive and attractive
fermions are identical to all orders in this region as c → 0.
The identity of the asymptotic expansions may not mean that
the energy analytically connects, due to the divergence of the
two sets of Fredholm equations in the limit c → i0 and the
mismatch of the associated integration boundaries between
the two cases at some intervals, e.g., B1 < B2 and Q1 < Q2.

Moreover, the explicit results obtained for the ground-state
energy provides facilities to study the universal nature of many-
body phenomena. The local pair correlation for opposite spins
can be calculated directly from the ground-state energy by

g
(2)
↑,↓(0) = 1

2n↑n↓
∂E(n,sz)/∂c.
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This naturally gives the 1D analog of Tan’s adiabatic theorem
[24] through the relation

C = 4

a2
1D

n↑n↓g
(2)
↑,↓(0),

where C is called the universal contact, measuring the
probability that two fermions with opposite spin stay together.
It was shown [24] that the momentum distribution exhibits
universal C/k4 decay as the momentum tends to infinity. The
significant feature of Tan’s universal contact is that it can be
applied to any many-body system of interacting bosons and
fermions in 1D, 2D, and 3D [24,25]. In addition, the explicit
forms of the ground-state energies in the four regimes can
be used to determine the magnetism and phase diagram of the
system in the grand-canonical ensemble. It can help to evaluate
quantum-statistical effects by a comparison between the

ground-state energies of 1D δ-function-interacting fermions
and spinless bosons. These provide a precise understanding of
many-body correlations and quantum magnetism in the context
of cold atoms. The method which we have developed in this
paper can be generalized to study ground-state properties of
1D multicomponent Fermi and Bose gases with δ-function
interaction. We consider this in the companion paper [19].
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