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We present a finite-temperature analysis of a quasi-two-dimensional (Q2D) dipolar gas. To do this, we use the
Hartree-Fock-Bogoliubov method within the Popov approximation. This formalism is a set of nonlocal equations
containing the dipole-dipole interaction and the condensate and thermal correlation functions, which are solved
self-consistently. We detail the numerical method used to implement the scheme. We present density profiles for
a finite-temperature dipolar gas in Q2D and compare these results to those for a gas with zero-range interactions.
Additionally, we analyze the excitation spectrum and study the impact of the thermal exchange.
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I. INTRODUCTION

Two popular topics in ultracold physics are two-
dimensional (2D) gases and dipolar gases. Reduced dimen-
sionality enhances the quantum-mechanical character of the
system. In a homogeneous 2D system, quantum phase fluctu-
ations are so strong that at finite temperature phase coherence
cannot be established and condensation does not occur.
There is, however, an intriguing phase transition called the
Berezinskii-Kosterlitz-Thouless (BKT) transition [1] which
occurs when the temperature is lowered and there is no longer
enough thermal energy to unbind vortex and antivortex pairs.
This binding of vortices reduces phase fluctuations so that
quasi-long-range order can form [2]. Interestingly, a trapped
2D gas can form a Bose-Einstein condensate (BEC) at finite
temperature [2,3]. The BKT and BEC transitions have been
studied in trapped ultracold gases, first by observations of
phase defects [4] and direct observation of vortices [5], and
then by changes in the density profile due to the onset of
superfluidity [6]. Additionally, universality has been observed
near the BKT transition [7]. Successful methods used to study
such systems are Monte Carlo simulation [8,9] and mean-field
[10–12] and classical-field [13–15] methods.

In dipolar systems the interactions are nonlocal and the
possibility of creating strongly correlated gases is tantalizing,
especially in quasi-2D (Q2D) where zero-point motion in the
axial direction is included. For example, some studies have
used Monte Carlo methods to study phase transitions such
as crystallization [16]. This study included temperature as
a variable and observed melting of the dipolar crystal. The
BKT transition of a homogeneous dipolar gas has been studied
with Monte Carlo methods to examine the superfluid fraction
and excitation spectra [17]. Other studies have looked at the
structure of the dipolar gas and the impact of temperature on
the phase of the gas [18,19]. Such studies have focused on
strongly interacting dipolar systems. However, the bulk of the
work on Q2D gases has been at zero temperature. For example,
phonon instability [20] and anisotropic superfluidity [21] have
been predicted.

Recently, chromium (Cr) and dysprosium (Dy) have been
Bose-Einstein condensed and exhibited strong dipolar effects
[22,23]. Additionally, progress toward a Q2D dipolar gas has
been made with a layered dipolar system for Cr atoms in a
one-dimensional optical lattice [24]. With such progress on
dipolar gases, direct study of Q2D dipolar systems has begun.

An important question is how dipolar interactions impact the
quantum behavior of a Q2D gas. The long-range nature of
the dipolar interaction may lead to interesting physics for the
thermal system, especially relating the BKT transition and
phase coherence. Additionally, little work studying the impact
of temperature on Q2D dipolar gases has been conducted for
reasonable experimental parameters.

With an eye toward this unexplored physics and aiding
experiments, we study the finite-temperature physics of Q2D
trapped dipolar gases. We use the standard beyond-mean-field
method: the Hartree-Fock-Bogoliubov method within the
Popov (HFBP) approximation [25]. The HFBP approximation
has been successful in studying ultracold atoms; for example,
it has been used to explain the temperature dependence of
collective excitations in a 3D BEC [26]. In the case of
3D dipolar gases, the authors of Refs. [27] used the HFBP
method to study temperature effects on the biconcave structure
dipolar gases can have [28]. This study neglected the thermal
exchange. Other recent work used mean-field methods to study
the stability of finite-temperature dipolar gases [29].

The aim of this paper is twofold. First, we develop a
numerical method to solve the nonlocal HFBP problem. This
method includes the nonlocal interaction and exchange effects.
We show in detail how the interaction and thermal exchange
effects are included; this relies on a parallel implementation
of the method. The method can also be applied to dipolar
fermions. Second, we compare the contact gas and the dipolar
gas with the HFBP method. In the comparison of the two
gases, we look at the condensate number as a function of
temperature. We also articulate the role of thermal exchange
in the gas by solving the system with and without thermal
exchange. We compare the density profiles of the gas at various
temperatures. We look at the excitation spectrum as a function
of both temperature and total particle number. We also classify
the lowest excitation modes. We present results for a Q2D
trapped finite-temperature dipolar gas with thermal exchange
effects.

II. EQUATIONS OF MOTION

We study a quasi-2D dipolar system at finite temperature.
To do this, we will employ the Hartree-Fock-Bogoliubov
method within the Popov approximation with nonlocal inter-
actions [25,30]. The HFB method breaks the second-quantized
bosonic field operator into condensate and noncondensate
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(thermal) components: �̂ = [
√

N0φ0(x) + θ̂ (x)] where we
have replaced â0 → √

N0. Here x represents all required
coordinates; for the 2D case it will be �ρ. We will use
the Bogoliubov transformation for the thermal part: θ̂ (x) =∑

α[uα(x)âαe−iωαt − v∗
α(x)â∗

αeiωαt ] where â (â∗) is the bosonic
annihilation (creation) operator for a quasiparticle (quasihole).
They obey the bosonic commutation relations: [âα,â∗

β] = δαβ

and [âα,âβ] = [â∗
α,â∗

β ] = 0. To derive the equations of motion
we start with the Heisenberg equation of motion with a
nonlocal interaction [30]. We find for our system that the
modified non-local Gross-Pitaevskii equation (GPE) is

μφ0(x) =
(

H0 +
∫

dx ′n(x ′)V
)

φ0(x)

+
∫

dx ′[ñ(x,x ′) − m̃(x,x ′)]V φ0(x ′), (1)

where H0 is the kinetic energy and trapping potential. The
interaction potential V (x − x ′) has been written as V for
simplicity. The total density n(x) = n0(x) + ñ(x) is made
up of the condensate density and thermal density. The
nonlocal correlation functions are n0(x,x ′) = N0φ

∗
0 (x)φ0(x ′)

and n0(x) = n0(x,x); ñ(x,x ′) = 〈θ̂∗(x)θ (x ′)〉 is the thermal
correlation function and the local thermal density is ñ(x) =
ñ(x,x). m̃(x,x ′) = 〈θ̂ (x)θ̂ (x ′)〉 is the anomalous thermal cor-
relation function, and in the Popov approximation it is
neglected. The quasiparticle wave functions are required to
construct the thermal and anomalous correlation functions.
At equilibrium, these wave functions can be found from a
nonlocal Bogoliubov–de Gennes equation:

ωαuα(x) =
(

H0 − μ +
∫

dx ′n(x ′)V
)

uα(x)

+
∫

dx ′[n0(x,x ′) + ñ(x,x ′)]V uα(x ′)

+
∫

dx ′m̃(x,x ′)V vα(x ′) −
∫

dx ′m0(x,x ′)V vα(x ′),

−ωαvα =
(
H0 − μ+

∫
dx ′n(x ′)V

)
vα(x)

+
∫

dx ′[n0(x,x ′) + ñ(x,x ′)]V vα(x ′)

+
∫

dx ′m̃∗(x,x ′)Vuα(x ′) −
∫

dx ′m∗
0(x,x ′)Vuα(x ′).

(2)

The total number of atoms is N = N0 + Ñ and Ñ = ∫
dxñ(x).

The normalization of the quasiparticle wave function is 1 =∫
dx(|uα|2 − |vα|2). The anomalous condensate correlation

function is m0(x,x ′) = N0φ(x)φ(x ′). The thermal correlation
functions are defined in terms of the quasiparticles:

ñ(x,x ′) =
∑

α

[u∗
α(x ′)uα(x) + vα(x ′)v∗

α(x)]Nα
BE

+ vα(x ′)v∗
α(x), (3)

m̃(x,x ′) =
∑

α

[uα(x ′)v∗
α(x) + v∗

α(x ′)uα(x)]Nα
BE

+uα(x ′)v∗
α(x). (4)

Here Nα
BE = (Zeh̄ωα/kT − 1)−1 = 〈â∗

αâα〉, where k is Boltz-
mann’s constant, T is the temperature, and Z = 1 + 1/N0.
This relation is simply the bosonic occupation of thermal
modes. These equations are consistent with Refs. [27,30,31]
when the appropriate simplification is made.

To make the discussion of Eqs. (1) and (2) simpler, we
introduce a compact notation:

(H0 + D + X̃ + M̃)φ0 = μφ0, (5)

(H0 − μ + D + X)uα + Mvα = ωαuα,
(6)

(H0 − μ + D + X)vα + Muα = −ωαvα.

The first term is the standard kinetic and potential energy,
H0. For the remaining interaction terms, we use the capital
letters to indicate the inclusion of the x ′ integral, so the
direct interaction is D = D0 + D̃ (condensate and thermal),
and for example D0(x) = ∫

dx ′[n0(x ′)]V (x − x ′). The ex-
change interaction is X = X0 + X̃ (condensate and thermal),
and for example X̃(x,x ′) = ∫

dx ′[ñ(x,x ′)]V (x − x ′). Finally,
the anomalous correlation function is M = M̃ − M0, and
for example M(x,x ′) = ∫

dx ′[m̃(x,x ′) − m0(x,x ′)]V (x − x ′).
We will use the Popov approximation, which assumes M̃ = 0,
leading to M = −X0 if φ0 is real. This approximation keeps
the spectrum gapless.

We project out the condensate mode from the quasiparticles,
as was done in Refs. [32,33], which use Q = 1 − |0〉〈0|
and 〈x|0〉 = φ0(x). The projection operator is applied to all
operators that are not in HGP = H0 − μ + D + X̃, such as
M0 and X0, and for example, M0 → QM0Q. This projection
method keeps the spectrum gapless.

III. THE INTERACTION

We are interested in the Q2D dipolar system assuming no
axis of symmetry, so we take the dipole moment to be �d =
d[ẑ cos(α) + x̂ sin(α)], and we assume harmonic confinement
and that ωz 	 ωρ where the ωi are the trapping frequencies
(ωx = ωy = ωρ). This allows us to assume that only one
transverse mode is occupied in the z direction. We can then
evaluate the interaction by factoring the wave function as
ψ(�r) = χ0(z)ψ( �ρ), where ψ is either φ0, uα , or uα and χ0

is an eigenstate of H0 in the z direction. We are then able
to integrate out z and obtain an effective interaction. We
will also consider a contact interaction. The interaction we
use is

V ( �ρ) = gδ( �ρ) + gdVdd ( �ρ), (7)

where g = √
8πh̄2as/mlz is the strength of the contact

interaction, as is the s-wave scattering length (as 
 lz),
lz = √

h̄/mωz is the axial harmonic-oscillator length, gd =
d2/

√
2πlz, and d is the dipole moment of the particles. This

interaction leads to the dipolar length scale: ld = md2/h̄2. In
practice, we rescale the equations of motion into oscillator
units, where the units of energy and length are h̄ωρ and lρ =√

h̄/mωρ . After this rescaling, the dipolar interaction strength
becomes gd = ld/(lz

√
2π ). Finally, the dipolar interaction
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in Q2D is

Vdd ( �ρ − �ρ ′) =
∫

dzχ2
0 (z)

∫
dz′χ2

0 (z′)V 3D
d (�r − �r ′),

V 3D
dd (�r) = d2(1 − 3(d̂ · r̂)2)/r3. (8)

The interaction is evaluated in momentum space. As an
example, the direct interaction is

D( �ρ) = F−1[n(�k)Ṽ (�k)],
(9)

Ṽ (�k) = gd

4π

3
F

( �klz√
2

)
,

whereF is the Fourier transform operator and n(�k) = F[n( �ρ)].
Ṽk is the momentum representation of the interaction. The
function F (�k) is the k-space dipolar interaction for the Q2D
geometry. It has two contributions coming from polarization
perpendicular to and in the direction of the dipole tilt,
F (�k) = cos2(α)F⊥(�k) + sin2(α)F‖(�k) where α is the angle
between ẑ and the polarization vector d̂. Its contributions
are F‖(�k) = −1 + 3

√
π (k2

d/k)ek2
erfc(k), where �kd is the wave

vector along the polarization direction in the x-y plane,
erfc is the complementary error function, and F⊥(�k) = 2 −
3
√

πkek2
erfc(k) [20,21,34].

To evaluate the exchange interaction, we use a simple,
yet memory-intensive, solution: we explicitly construct the
interaction on the same space-space grid as the correlation
functions. We put n( �ρ, �ρ ′) on a grid specified by the indices s

and t , representing �ρ and �ρ ′. Each grid has ns spatial points,
and a correlation function has n2

s grid points.
To evaluate the interaction, we work in momentum space.

The interaction on the space-space grid is

Vst = WT
skṼkWkt , (10)

where Wks is the operator that transforms between the space
(s) and k-space (k) representations via the spectral basis
set [35]. The operator takes the place of the Fourier operator
in our algorithm. An important aspect of the method is
that it regularizes the interaction and avoids the logarithmic
divergence as �ρ → �ρ ′ encountered by directly evaluating
Eq. (8) because Wkt involves a projection onto the Gauss-
Hermite basis set [35]. Construction of the interaction involves
the most costly step, requiring n3

s operations per node. This is
performed only once for a set of interaction parameters (lz and
α) and basis set size.

We have constructed a parallel implementation of the
method. We distribute the s index ( �ρ grid) across the
computing nodes (p); we will denote this distributed index
as sp. In this way, each core handles only a fraction of
the correlation functions and interaction. In the future, we
will construct the interaction in the partial wave expansion:
V ( �ρ) = ∑

m Vm(ρ,φ). This expansion will be necessary to
handle an interaction which depends on quantum numbers
such as nz (confinement in z) or spin.

IV. NUMERICAL IMPLEMENTATION

We solve Eqs. (5) and (6) by expanding the wave functions
on the basis that diagonalizes H0. We will focus on the
harmonically trapped case where H0χα = εαχα ,

∫
d �ρχ∗

α ( �ρ)χβ( �ρ) = δαβ , and εα = h̄ωρ(mx + my + 1) where
mα is an integer. In a basis set, the evaluation of
the direct interaction term Dαβ is straightforward:∫

d �ρχα( �ρ)[
∫

dx ′V ( �ρ − �ρ ′)n( �ρ ′)]χβ( �ρ), where the quantity
in the square brackets is the effective potential from the
interaction. The more complicated terms are the nonlocal
exchange terms, such as the thermal exchange X̃αβ , which is∫

d �ρχ∗
α ( �ρ)

∫
d �ρ ′ñ( �ρ, �ρ ′)V ( �ρ − �ρ ′)χβ( �ρ ′).

The nonlocal exchange term in the spectral basis is Xασ =
UT

αsVstnstUtσ , where Usσ is the transformation between the
spectral basis (σ ) and space basis (s). The numerical procedure
to evaluate this on node p is as follows: (1) Yspt = Vsptnspt ,
multiply the interaction and correlation function; (2) hspσ =
YsptUtσ , project the t spatial basis onto the σ spectral basis;
(3) X

p
ασ = ∑

sp
UT

spαhspσ , project the sp spatial basis onto the

α spectral basis; and (4) Xασ = ∑
p X

p
ασ , collect and sum. In

comparison, the direct terms are straightforward and evaluated
in momentum space at each step. �s = WskṼkWktnt , where �s

is the effective potential. Then we must project onto the basis
Dασ = UT

αs�sUsσ , and this is done in parallel.
The procedure to find the full solution is as follows. Set the

temperature T and N0 and pick a targeted value for the total
number of particles in the system Ntarget, and set ñ = 0 and
m̃ = 0:

(1) Solve Eq. (1) for φ0 and μ (in the basis set).
(2) Construct the condensate exchange term X0 with

n0( �ρ, �ρ ′) and put in the basis set.
(3) Solve Eq. (2) for uα and vα .
(4) Construct ñ( �ρ, �ρ ′) and m̃( �ρ, �ρ ′).
(5) Use the semiclassical local-density approximation

(LDA) to supplement the thermal tail (see below), which gives
Ñ and therefore N = N0 + Ñ .

(6) Construct thermal and anomalous exchange terms X̃

and M̃ (if not using the Popov approximation) and put them
in the basis set representation.

(7) Adjust N0 to get the desired Ntarget of atoms. We require
N to be within 1% of Ntarget.

(8) Go back to step 1 until self-consistency is reached. We
converge the number of thermal atoms, so that |ñi − ñi−1| <

5 × 10−5, when we are near enough Ntarget.
With the numerical method in hand, we are ready to proceed

to the physical examples and the results.
The semiclassical LDA is very important for large- �ρ and

high-momentum states on the grid. At high temperature with
a manageable grid size (much bigger than the condensate), we
find that there can be an appreciable number of atoms outside
the quadrature grid. For the large- �ρ contributions, the density
is low enough that the analytical, noninteracting solution can
be used to account for these off-grid particles. We integrate
the analytical solution over a large region outside the grid.
We have tested that this does not impact the convergence of
the end result. We include the impact of higher transverse
modes in the same analytical manner on and off the grid.
We also assume that these particles in the higher-z modes are
noninteracting. This is reasonable, especially because symme-
try prevents the first excited transverse mode from colliding
with the condensate with m = 0 symmetry. Additionally, a
noticeable number of thermal particles are in momentum
states beyond the calculated quantum spectrum [36,37].
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To include these thermal atoms we use the method from
Ref. [27].

V. PHYSICAL EXAMPLES

We will study Cr and Dy atoms. These atoms have been
Bose-Einstein condensed and shown to exhibit strong dipolar
effects [22,23]. The first example we choose is 2 × 103 Cr
atoms with ld = 45a0, where a0 is the Bohr radius. This gives
gd = 0.0028 and g = 0 in trap units. Additionally, we pick
lz/ lρ = 0.1; this is from using (ωρ,ωz) = 2π × (16,1600) Hz.
We have found that our numerical procedure converges using
465 basis states with an energy cut of 30h̄ωρ . To compare
this to a contact gas, we match the chemical potential at zero
temperature by varying g. We will consider only α = 0 here,
that is, perpendicular polarization where the dipolar interaction
is isotropic and repulsive. We also study Dy with a trapping
potential of (ωρ,ωz) = 2π × (10,1000) Hz. With ld = 400a0,
this gives gd = 0.034 in trap units. This is strongly interacting,
and to maintain the Kohn mode (center-of-mass slosh mode),
we have used a low atom number, and for our example we use
300 atoms [22]. It is important to note that the Cr example
is very similar to recent experiments [24]. In that work, the
authors were able to vary lz/ lρ between 0.1 and 0.17 and have
up to 2000 atoms in a layer [24]. However, this is a layered
system and interlayer dipolar interactions are important.

In contrast to a homogeneous system, a trapped ideal 2D
gas can have Bose-Einstein condensation [3]. In this case, the
critical temperature is at Tc0/h̄ω = √

6N/π ∼ 0.78
√

N . We
will use this temperature to rescale our findings so that, to first
order, we remove the number dependence of the results. This
is important because, as we vary the temperature, we do not
have exactly the same number of particles in every calculation.
In the thermodynamic limit, the population of the condensate
is N0/N = 1 − (T/Tc0)2 [3].

For reference, we give several specific numerical examples
in Table I. For two temperatures, we report μ, N0/N , N ,
and the Kohn mode energy (which should be 1h̄ωρ). For the
Dy (gd = 0.034) example, at T/Tc0 = 0.5, the Kohn mode
has noticably deviated from 1 by about 2.5%; this is about
the worst the convergence of this mode gets as a function
of temperature. For both dipolar examples, we show the
results when thermal exchange is negelected (X̃ = 0). The

TABLE I. Numerical examples of the HFBP for the Q2D
dipolar gas and contact gas.

(Kohn-mode
T/Tc0 μ/h̄ω N0/N N energy)/h̄ω

gd = 0.0028 0.05 3.822 0.994 2004 0.9992
0.5 3.457 0.658 1994 0.995

gd = 0.0028 0.05 3.814 0.994 2004 0.9996
X̃ = 0 0.5 3.341 0.660 1994 0.997
g = 0.021 0.05 3.829 0.993 2004 0.9991

0.5 3.541 0.662 1993 0.9995
gd = 0.034 0.05 5.124 0.983 300 0.991

0.5 4.919 0.525 298 0.976
gd = 0.034 0.05 5.094 0.983 300 0.996
X̃ = 0 0.5 4.524 0.5500 303 0.987

lower-temperature solutions are similar to the GPE solutions at
T = 0.

VI. PROPERTIES OF A Q2D DIPOLAR GAS AT FINITE
TEMPERATURE

In this section we study the properties of a Q2D dipolar
gas at finite temperature, and compare it to a contact gas and
a dipolar system without the thermal exchange. We look at
several different aspects of these systems. First, we look at
the condensate number as a function of temperature. Then we
compare the interaction contributions to the total energy. Third,
we compare the density profiles of the contact and dipolar
gases, at various temperatures. Fourth, we look at the impact
of including the thermal exchange on the density profile of the
gas. Finally, we look at the excitation spectrum as a function
of temperature and total particle number. We also classify the
lowest excitation modes.

Figure 1 shows the condensate fraction for the Cr dipolar
gas (black line with circles), the contact gas (green dash-dotted
line), for 2000 ideal particles (solid black line), 300 Dy
particles (dashed red line), and 300 ideal particles (red open
squares). The condensate fractions for the dipolar gas and
contact gas are shifted down from the ideal gas (black line),
with the dipolar gas being slightly lower than the contact gas.
For the Dy example, it is clear that the interaction strongly
depletes the condensate mode.

In Fig. 2 we look at the chemical potential and its contribu-
tions from Eq. (1), as a function of temperature. The examples
shown are dipolar (solid black), contact (dashed red), and
dipolar without thermal exchange (dash-dotted blue). We show
the direct condensate interaction (〈φ0|D0|φ0〉/μ, triangles),
the direct thermal interaction (〈φ0|D̃|φ0〉/μ, circles), and the
thermal exchange interaction (〈φ0|X̃/|φ0〉/μ, squares). For the
contact interaction, the thermal exchange is equal to thermal
direct interaction, so we show only one. For each example, the
remaining contribution to the chemical potential is from H0 or
the potential and kinetic energy contributions.

0 0.2 0.4 0.6 0.8 1
T/T

c0

0

0.2

0.4

0.6

0.8

1

N
0/N

2000 ideal particles
Dipolar
Contact
Dy, N=300
300 ideal particles

FIG. 1. (Color online) N0/N as a function of temperature for the
Cr dipolar gas (thick black line with circles), the contact gas (green
dash-dotted line), and for 2000 ideal trapped particles (solid black
line). Additionally, a gas of 300 Dy particles (dashed red with + )
and one of 300 ideal particles (red open squares) are shown.
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FIG. 2. (Color online) The chemical potential for three systems:
dipolar (solid black), contact (dashed red), and dipolar without ex-
change (dash-dotted blue) and the interaction terms for each system in
the Hamiltonian as a function of temperature. The contributing terms
are the direct condensate (〈φ0|D0|φ0〉/μ, triangles), the direct thermal
(〈φ0|D̃|φ0〉/μ, circles), and the thermal exchange (〈φ0|X̃/|φ0〉/μ,
squares) interactions.

For the dipolar gas, the thermal exchange term is about
half as strong as the direct contribution. The importance of
the interaction with the thermal particles is more important
as the temperature is increased. Comparing the dipolar
calculation with and without the thermal exchange, we see
that the chemical potentials agree reasonably well; the full
calculation has a larger μ at high temperature. Looking at the
interaction contributions, we see that the direct condensate
(black triangles) and thermal interaction (black circles) make
up a smaller portion of the chemical potential for the full
calculation than the one with X̃ = 0 (blue triangles and open
circles).

In Fig. 3 we show both the total and condensate density for
(a) a Cr system of 2000 particles and (b) an analogous contact

system (near equal chemical potentials). We then compare the
total density profiles in Fig. 3(c). The total density is in blue
(black) for the dipolar (contact) systems, and the condensate
density is shown in red. The temperatures from top to bottom
are T/Tc0 = 0.25 (dashed), 0.55 (dotted), 0.75 (dash-dotted),
and 0.90 (solid). For both the contact and dipolar gases at
large ρ, the thermal density behaves as the analytical solution
predicts.

An important point is that the dipolar gas has a higher
density in the middle of the trap than the contact gas. It is hard
to see in the figure, but the contact condensate atoms have been
shifted to the shoulders of the condensate or near to the trap
edge. This has implications for the temperature at which the
superfluid phase transition will occur in a dipolar gas.

In Fig. 4 we compare both the total and condensate densities
with and without the thermal exchange. We look at four
temperatures; from top to bottom they are T/Tc0 = 0.25
(dashed), 0.55 (dotted), 0.75 (dash-dotted), and 0.90 (solid).
In Fig. 4(a), a Cr gas with (blue) and without (black) the
thermal exchange is shown. Additionally, the corresponding
condensate density is with (red) and without (green) thermal
exchange. This example with the thermal exchange is the same
as Fig. 3(a). In Fig. 4(b) a Dy gas with (blue) and without
(black) the thermal exchange is shown. The corresponding
condensate density is shown with (red) and without (green)
thermal exchange. Figure 4(c) shows a comparison of Dy
and Cr with a large number of atoms (3700), when the
chemical potentials are nearly the same at zero temperature.
The densities are normalized to the maximum density at zero
temperature.

In Fig. 4(a) the impact of the thermal exchange is not
too pronounced. It slightly increases the condensate central
density, which is most obvious at high temperature. This is
significantly different from the Dy example shown in Fig. 4(b).
There is a noticeable difference between the density profiles
with and without the thermal exchange. The effect is most
clearly seen in the condensate by looking at the increased
central density and reduced extent of the red curve (with)
versus green (without). At the highest temperature, where the

FIG. 3. (Color online) The total and condensate density of (a) a Cr dipolar gas and (b) a contact gas, and the comparison of the total
densities (c). The total density is in blue (black) for the dipolar (contact) gas, and the condensate density is in red. The temperatures from top
to bottom are T/Tc0 = 0.25 (dashed), 0.55 (dotted), 0.75 (dash-dotted), and 0.90 (solid). (c) The dipolar gas is more dense in the center of the
trap at all temperatures.
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FIG. 4. (Color online) Comparison of densities with and without thermal exchange. Both the total and condensate densities are shown at
four temperatures; from top to bottom, T/Tc0 = 0.25 (dashed), 0.55 (dotted), 0.75 (dash-dotted), and 0.90 (solid). (a) A Cr gas with (blue)
and without (black) the thermal exchange; the corresponding condensate density with (red) and without (green) thermal exchange is shown.
(b) For a Dy gas, the total density with (blue) and without (black) the thermal exchange; the corresponding condensate density with (red) and
without (green) thermal exchange is shown. Both the condensate and total densities without thermal exchange have a lower central density. (c)
A comparison of Dy (black) and Cr (blue) with a large number of atoms (3700) when the chemical potentials are the same at zero temperature.

validity of the HFBP approximation is questionable, we see a
significant reduction in the condensate density and occupation.
In fact the condensate repels the thermal cloud so strongly that
in the center of the trap there is a local minimum in the total
density. Furthermore, the thermal exchange has significantly
lowered the condensate occupation. Thus the inclusion of the
thermal exchange clearly lowers the critical temperature of the
dipolar gas.

In Fig. 4(c) we show that, by varying gd and N while
holding Ngd constant, the HFBP approximation does not
give identical results as the T = 0 GPE would. For gd =
0.034,N = 300 (Dy, black) and gd = 0.0028,N = 3700 (Cr,
blue) at low temperatures the density profiles are slightly
different. More importantly, at high temperature the profiles
are very different; this has to do with the strong depletion of
the condensate.

In Fig. 5 we show the excitation spectra of the dipolar
gas (blue circles), a dipolar gas without the thermal exchange
(red triangles), and the contact gas (black pluses) as functions
of temperature. We have also characterized the excitations by
their azimuthal symmetry. In a 2D contact gas, there is a hidden
symmetry which makes the breathing mode (m = 0) have an
energy of 2h̄ω [38]. This mode has very little temperature
dependence. This hidden symmetry is removed by the dipolar
interaction; however, if lz goes to zero, the breathing mode
goes to 2h̄ω. In the example we have picked (gd = 0.0028
and N = 2000), the |m| = 3 mode is near 2h̄ω, but this is
not the breathing mode (m = 0). Rather, the mode just below
this is the breathing mode. The contact gas excitation spectrum
(black pluses) agrees well with that in Ref. [39]. Those authors
used g ∼ 0.002, which accounts for the differences. It is
a general feature that the dipolar gas has lower excitation
energies than the contact gas. In Ref. [27], the 3D excitation
spectrum as a function of temperature showed that for an
oblate geometry the dipolar excitations are lower than in
the contact system. It is worth pointing out that the dipolar
calculations with and without the thermal exchange agree

well at low temperature. As the temperature is increased
there is some disagreement between the two (blue circles and
red triangles), but mostly for more highly excitated modes.
The calculations without the exchange become higher in
energy.

The modes that have strong temperature dependence are
those with higher azimuthal symmetry. In contrast, the full-
bodied modes (large central amplitude) have a more constant
excitation frequency as the temperature is varied. The reason
for this is discussed below.

In Fig. 6 we show the excitation spectrum as a function of
N for the dipolar gas (blue circles) at T/Tc0 = 0.05. The plots
on the right are contour plots of the quasiparticle modes (uα)
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FIG. 5. (Color online) The excitation spectra of the dipolar gas
(blue circles), dipolar gas without exchange (red triangles), and
contact gas (black pluses) as functions of temperature for N = 2000.
The azimuthal symmetry of the excitations is shown next to each
curve.
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FIG. 6. (Color online) The excitation spectrum as a function of N for the dipolar gas (blue circles) at T/Tc0 = 0.05. The plots on the right
are contour plots of the quasiparticle, uα , modes for N = 5000 dipolar atoms. The contour lines are in 0.25 increments of the maximum value
of uα (i.e., 0.75,0.5,. . . , −0.75). Additionally, the negative regions are shaded blue. The condensate density contours (dashed black) are on the
same scale.

for N = 5000 dipolar atoms. The contour lines are in 0.25
increments of the maximum value of uα (i.e., 0.75,0.5,. . . ,
− 0.75). Additionally, the negative regions are shaded blue.
The condensate density contours are shown as dashed black
lines. The azimuthal symmetries are (a) m = 2 quadruple
mode, (b) m = 3, (c) m = 0, breathing mode, (d) m = 4,
(e) m = 1, and (g) m = 5. We have shown one of the two
degenerate modes (±m) at each energy when m �= 0. If the
contact system were plotted, we would see that the excitations
are always higher in energy for all N shown.

The modes that are not strongly dependent on number or
temperature are the modes that have a full-bodied motion or
large amplitude in the middle of the condensate; see Figs. 6(c)
and 6(e). These modes are mildly impacted by the total number
of atoms in the system. The modes with higher azimuthal
symmetries are more like surface modes and are strongly
affected by the number or temperature; see Figs. 6(a), 6(b),
6(d), and 6(f).

In fact the strong number dependence leads to excitations
crossing paths as N is increased. The m = 3 mode [Fig. 6(b)]
becomes lower than the breathing mode [Fig. 6(c)]; and
the m = 4 mode [Fig. 6(d) becomes lower than the m = 1
[Fig. 6(e)]. The fact that surface modes move relative to
full-body excitations as a function of N is related to the size
of the condensate. Both as the atom number is increased and
as the temperature is decreased, the size of the condensate
becomes larger. Naively, one might consider the surface of
the condensate a ring with a restoring force. We consider the
surface excitations as displacements of the ring from equilib-
rium and find an excitation spectrum which behaves as m/R

where R is the radius of the ring [40]. When we look at m over
the radius at which the density equals 0.25n0(0) (the furthest
out contour of the condensate in Fig. 6), we find a similar
number dependence to the excitation spectra in Fig. 6. This is
too simplistic, but gives a physical reason for such behavior in
the excitation spectrum. The important point of this analysis
is that the size of the condensate grows quickly at small N and
slows down at larger N . Thus we see a rapid change in the
excitation spectrum at low N and less so at large N .

VII. CONCLUSION

This paper studied a trapped Q2D dipolar gases at finite
temperature. We presented the numerical method used to solve
the Hartree-Fock-Bogoliubov-Popov equations for a gas with
nonlocal interactions including thermal exchange effects. It is
worth noting that the thermal tail of this gas has the standard
form for a 2D gas and could therefore be used for accurate
thermometry [2,7]. This is not surprising, but still worth
noting for experiments and using as a convergence test for
theory.

In Fig. 1 we showed the condensate fraction as a function
of temperature for both the Cr and Dy examples. The critical
temperature of the Dy is greatly reduced by the interactions.
In Fig. 2 we looked at the chemical potential and the total
interaction energy as functions of temperature for the various
terms in Eq. (1). We compared the contact example with the
Cr example with and without thermal exchange. In Fig. 3 we
studied the impact of temperature on the density profiles and
saw that the dipolar gas is more dense in the center of the trap.

Next, in Fig. 4 we explored the impact of the thermal
exchange on both the Cr and Dy examples. We found that,
in the strongly interacting Dy example, the thermal exchange
strongly reduces the condensate fraction at high temperature.
This figure also presented a prediction of this study: when
the dipolar interactions are strong and the temperature is
near the transition temperature, the total density has a local
minimum in the center of the trap where a small condensate
strongly expels the thermal atoms. In Fig. 5 we studied the
impact of temperature on the excitation spectra. We compared
the contact example with the Cr example with and without
thermal exchange. Finally, in Fig. 6 we looked at the excitation
spectrum of a Cr gas as a function of atom number and the
quasiparticles uα for N = 5000. Here we illustrated the strong
number or size dependence of the high azimuthal symmetries.

This work has set the stage for studying the phase coherence
of a dipolar gas as a function of temperature, as has been done
for contact gases [39]. We seek to understand how the nonlocal
interaction will alter the correlations at the BKT transition. We
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already saw an increased phase-space density in the middle of
the cloud from the dipolar interaction. How does the dipolar
interaction impact the phase coherence of the gas? Second,
we wish to study roton physics in Q2D [28,41,42]. In Q2D,
a roton can emerge as the field is tilted into the plane of
motion, and leads to anisotropic density profiles [21]. The
numerical method presented has been developed to handle
this configuration.

This method could be applied to other momentum-
dependent interactions, for instance those with renormalized
contact interactions, such as g → (g + g2/k2) [25]. Addition-

ally, we could improve the scattering model to include more
dipolar scattering physics [43].
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