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Shear viscosity and damping of collective modes in a two-dimensional Fermi gas

Thomas Schäfer
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The shear viscosity of a two-dimensional Fermi gas interacting via a short-range potential with scattering
length a2d in kinetic theory is computed. It is found that classical kinetic theory predicts that the shear viscosity to
entropy density ratio of a strongly interacting two-dimensional gas is comparable to that of the three-dimensional
unitary gas. Results are applied to the damping of collective modes of a trapped Fermi gas, and compared to
experimental data recently obtained by Vogt et al. [Phys. Rev. Lett. 108, 070404 (2012)].
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I. INTRODUCTION

The study of transport properties of strongly interacting,
scale invariant or approximately scale invariant fluids has
led to many recent discoveries that connect the physics of
cold atomic gases, properties of the quark gluon plasma, and
quantum gravity [1]. Nearly ideal hydrodynamic flow in cold
atomic gases was observed in the expansion of a dilute Fermi
at unitarity [2], and similar results were observed in heavy
ion collisions at the relativistic heavy ion collider (RHIC) [3].
Recent analyses show that both the quark gluon plasma and
the dilute Fermi gas at unitarity are characterized by a shear
viscosity to entropy density ratio η/s ∼< 0.5 h̄/kB [4–7]. This
result is close to the value η/s = h̄/(4πkB), which was found
in the strong coupling limit of a large class of field theories
that can be analyzed using the anti–de Sitter and conformal
field theory (AdS/CFT) correspondence [8,9].

The AdS/CFT result is independent of the dimensionality
of the fluid, and it is interesting to study whether nearly
perfect fluidity can be observed in two-dimensional fluids. It
was suggested, for example, that electrons in graphene might
behave as a nearly perfect fluid [10]. Recently, a group at the
Cavendish Laboratory investigated the damping of collective
modes in a cold atomic Fermi gas tightly confined in one
direction [11]. Vogt et al. determined the damping constant
as a function of T/TF in the range T/TF = (0.3−0.8), and
for different interaction strengths ln(kF a2d) = (2.7−42). Here,
T/TF is the temperature in units of the Fermi temperature, kF

is the Fermi momentum, and a2d is the two-dimensional scat-
tering length. In the present work these results are compared
with the predictions of kinetic theory. Formally, kinetic theory
is reliable in the limit of high temperature, T � TF , or in
the case of weak interactions, KF a2d � 1. In the case of the
three-dimensional (3D) Fermi gas at unitarity it was observed
that the range of applicability of kinetic theory is larger than
one might expect, extending down to T ∼ 0.4 TF [12–14].

II. KINETIC THEORY

The viscous stress tensor in hydrodynamics is given by
δ�ij = −ησij − ζ δij 〈σ 〉 with

σij = ∂ivj + ∂jvi − 2

d
δij ∂kvk, (1)

and 〈σ 〉 = ∂kvk . Here, vi is the flow velocity and d = 2,3, . . .

is the number of spatial dimensions. We will determine η by

matching the hydrodynamic result to kinetic theory. The stress
tensor in kinetic theory is given by

δ�ij = ν

∫
d
p

pipj

m
δfp, (2)

where ν is the number of degrees of freedom (ν = 2 for a
two-component Fermi gas), d
p = ddp

(2π)d is the volume element
in momentum space, and δfp is the off-equilibrium correction
to the distribution function. We will use the ansatz

δfp = f 0
p − f 0

p

T
χij (p)σij , χij (p) = pijχ

(
p2

2mT

)
, (3)

where f 0
p is the classical equilibrium distribution function and

pij = pipj − 1
d
δijp

2. We will study the role of quantum statis-
tics below. We compute δfp by solving the Boltzmann equation

for fermions with dispersion relation Ep = p2

2m
subject to

elastic two-body scattering. At this level of approximation
the bulk viscosity vanishes. This is the correct result for 3D
fermions at unitarity [15–17], but the bulk viscosity is expected
to be nonzero for 3D fermions away from unitarity, and for 2D
fermions at any value of the scattering length. The dependence
of the integral

∫
dω ζ (ω) on (kF a)−1 is constrained by sum

rules [18–20], but the bulk viscosity at zero frequency has not
been determined. Vogt et al. measured the damping of a 2D
quadrupole mode [11], which is not sensitive to bulk viscosity.

Matching the kinetic theory expression for δ�ij to hydro-
dynamics we get

η = 2ν

(d − 1)(d + 2)

1

mT
〈pij |χij 〉, (4)

where we have defined the inner product 〈a|b〉 =∫
d
p f 0

pa(p)b(p). The function χij (p) is determined by the
linearized Boltzmann equation

1

2m
|pij 〉 = C|χij 〉. (5)

Here C is the linearized collision operator C|χij 〉 = |C[χij ]〉
with

C[χij (p1)] =
4∏

i=2

(∫
d
i

)
f 0(p2)(2π )d+1δd (P − P ′)

× δ(E − E′)|T |2[χij (p1) + χij (p2) − χij (p3)

−χij (p4)], (6)
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where T is the T matrix for elastic two-body scattering
12 → 34. We have also defined p1,2 = P

2 ± q, p3,4 = P ′
2 ± q ′,

E = Ep1 + Ep2 , and E′ = Ep3 + Ep4 . Given the T matrix we
can determine χij from Eq. (5) and then compute the shear
viscosity using Eq. (4). In practice it is useful to reformulate
the calculation as a variational problem. The shear viscosity
can be written as

η = ν

(d − 1)(d + 2)

1

m2T

〈χij |pij 〉2

〈χij |C|χij 〉 . (7)

The equivalence of this result and the previous expression
given in Eq. (4) follows from the linearized Boltzmann
equation. The result is variational in the sense that for a trial
function χvar

ij Eq. (7) provides a lower bound on the shear
viscosity. The exact solution of the linearized Boltzmann
equation can be found by maximizing Eq. (7). In the three-
dimensional case it is known that the quadratic ansatz χij = pij

is an excellent solution, providing results for the shear viscosity
that are accurate to 2% [21]. We will see that despite the
different structure of the scattering amplitudes in two and three
dimensions the matrix elements of the collision operator are
very similar. We will therefore use the trial function χij = pij .

In two dimensions the scattering matrix for elastic scatter-
ing mediated by a short-range potential is given by [22]

T = 4π

m

1

− ln
(
q2a2

2d

) + iπ
, (8)

where a2d is the two-dimensional scattering length. The cross
section is dσ

d
= m2

4q
|T |2. The matrix element of the linearized

collision operator can be reduced to a one-dimensional
integral. We find

〈χij |C|χij 〉 = 4T (mT )3
∫ ∞

0
dx

x5e−x2

ln2(x2T/Ta,2d) + π2
, (9)

where we have defined Ta,2d = 1/(ma2
2d). The integral in

Eq. (9) can be computed using the saddle point approximating.
This amounts to replacing the term x2 in the denominator by
5/2. The final result for the shear viscosity is

η2d = mT

2π2

([
ln

(
5T

2Ta,2d

)]2

+ π2

)
, (10)

where we have set ν, the number of spin states, equal to two.
We can use this results to compute the dimensionless quantities
η/n and η/s. We find

η2d

n
= π

2

(
T

T loc
F

)(
1 + 1

π2

[
ln

(
5T

2Ta,2d

)]2)
, (11)

where T loc
F = (kloc

F )2/(2m) is a function of the local Fermi
momentum, kloc

F = (2πn)1/2. The entropy per particle is s/n =
ln(T/T loc

F ) + 2.
It is instructive to compare these expressions to the

analogous formulas in three dimensions. The T matrix is

T = 4π

m

1

−a−1
3d + iq

, (12)

and the cross section is dσ
d

= m2

16π2 |T |2. The collision integral
is

〈χij |C|χij 〉 = 16m7/2T 9/2

3π5/2

∫ ∞

0
dx

x5e−x2

1 + Ta,3d/(x2T )
, (13)

where Ta,3d = 1/(ma2
3d). At unitarity, T3d → ∞, the integrand

differs from the result in two dimensions only by logarithmic
terms. The shear viscosity at unitarity is

η3d = 15

32
√

π
(mT )3/2. (14)

In the limit Ta,3d/T � 1 we find η3d = 5(mT )1/2/(32
√

πa2).
In three dimensions the density is n = (kloc

F )3/(3π2), and the
shear viscosity to density ratio is

η3d

n
= 45π3/2

64
√

2

(
T

T loc
F

)3/2

. (15)

Finally, the entropy per particle is s/n = 3
2 ln(πT/T loc

F ) +
ln(3/4) + 5/2.

The results in two dimensions are plotted as the blue dashed
lines in Fig. 1. We have chosen (kF a2d)2 = 2, which means that
the two-body binding energy EB = 1/(ma2

2d) is equal to the
Fermi energy. This corresponds to the BEC-BCS crossover
regime. We observe that for T/T loc

F ∼< 0.5 the shear viscosity
to entropy density ratio reaches η2d/s 
 0.5, comparable to the
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FIG. 1. (Color online) The left panel shows the viscosity to density ratio η/n as a function of T/TF for a two-dimensional Fermi gas with
(kF a)2 = 2. Here, TF = k2

F /(2m) and kF = (2πn)1/2 characterize the homogeneous Fermi gas. The solid line includes the effects of quantum
statistics, the dashed line shows the high temperature limit given in Eq. (11), and the dotted line shows the low temperature limit. The right
panel displays the shear viscosity to entropy density ratio. The dash-dotted line shows the proposed bound η/s = 1/(4π ).
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result for the three-dimensional Fermi gas at unitarity. In this
regime kinetic theory is not reliable; effects due to quantum
statistics, correlations and fluctuations are likely to play a role.
Quantum statistics can be included straightforwardly in the
kinetic theory calculation by including appropriate statistical
factors in Eqs. (2), (3) and (6). The result is shown as the
solid line in Fig. 1. Pauli blocking suppresses the scattering
matrix element and leads to η2d/n ∼ (T loc

F /T )2[ln(T loc
F /T )]2

as T → 0. This result is expected from Landau Fermi liquid
theory [23]. We observe that in two dimensions the effect
of Pauli blocking is quite large, but we also emphasize that
at strong coupling the inclusion of quantum statistics is not
necessarily an improvement over the classical calculation. In
the case of thermodynamic quantities, like the second Virial
coefficient, it is well known that effects of quantum statistics
appear at the same order in T/TF as higher-order interaction
terms. A similar effect is seen in the many-body T -matrix
calculation of the shear viscosity of the three-dimensional gas
at unitarity by Enss et al. [16]. These authors include pairing
correlations and vertex corrections in addition to the effects of
quantum statistics. They find that the shear viscosity to entropy
density ratio remains very close to the classical result even in
the very degenerate regime T ∼ (0.2−0.5) TF .

III. DAMPING OF COLLECTIVE MODES
IN A TRAPPED GAS

In hydrodynamics the damping of collective modes is
governed by the rate of energy dissipation

Ė = −1

2

∫
d3x η(x)(σij )2, (16)

where we have neglected bulk viscosity and assumed that the
system remains isothermal (so that heat conductivity can be
neglected). For simple modes like the quadrupole oscillation
studied by Vogt et al. the velocity field is linear in the
coordinates and the stress tensor is spatially constant. In this
case the decay rate is sensitive to the spatial integral of η(x).
On dimensional ground we can write the viscosity of the
homogeneous system as η = nαn(T/T loc

F ,kloc
F a). The spatial

integral over η(x) can then be written as N〈αn〉, where N

is the total number of particles and 〈αn〉 is the value of αn

averaged over the density distribution of the cloud. In the hy-
drodynamic regime measurements of the damping constant of
collective modes can therefore be interpreted as measurements
of 〈αn〉.

The difficulty with this approach is that in kinetic theory
η = nαn is independent of the density and the spatial average
〈αn〉 is formally infinite. Physically, this problem is related
to the fact that for any finite collective mode frequency
hydrodynamics cannot be applicable in the dilute corona of
the cloud, so that the integral in Eq. (16) has to be cut off
at low density [14]. In kinetic theory this can be done by
taking into account the frequency dependence of the shear
viscosity

η(ω) = η(0)

1 + τ 2
Rω2

, (17)

where τR is the viscous relaxation time, which is the time
it takes for the stress tensor to relax to the Navier-Stokes

form δ�ij = −η(0)σij . We will see that the relaxation time
is inversely proportional to the density, and that the spatial
integral over η(ω) is therefore finite [13,14].

The relaxation time can be determined in various ways,
for example, by solving the linearized Boltzmann equation
in a time-dependent velocity field [24,25], by computing the
viscosity spectral function [26], or by evaluating the relaxation
time in second-order hydrodynamics [27]. The relaxation time
is also constrained by viscosity sum rules [18–20]. Using the
methods described in Ref. [26] we can show that in kinetic
theory η(ω) satisfies the sum rule

1

π

∫
dω η(ω) = P

2
, (18)

where P is the pressure. This sum rule is valid in both two and
three dimensions. Combining Eq. (17) with the viscosity sum
rule Eq. (18) we get τR = η/P 
 η/(nT ).

We note that the sum rule in Eq. (18) follows from the
definition of the stress tensor in kinetic theory [see Eq. (2)]. If
the stress tensor is defined as an operator in the quantum theory
one finds that the spectral function in two dimensions has a
1/ω tail at high frequency [20]. The corresponding behavior
in three dimension is ρ(ω) ∼ 1/

√
ω. This tail does not appear

in kinetic theory because kinetic theory is an effective theory
for energies ω ∼< T . In the quantum mechanical sum rule the
high frequency has to be subtracted. In the high temperature
regime, T ∼> TF , the conclusion is the same as before: the
high-frequency tail does not contribute to the sum rule, and
the width of the transport peak is controlled by the relaxation
time τR = η/(nT ) [16].

We can now compute the trap average of η(ω). We will
use the high-temperature approximation for the cloud density.
This is consistent with the classical kinetic calculation of η,
and is expected to be a good approximation in the regime
T/TF � 0.3 studied by Vogt et al. In this limit the density
profile of a two-dimensional cloud is

n(x) = mT

2π

(
TF

T

)2

exp

(
−mω2

⊥x2

2T

)
, (19)

where TF = ω⊥N1/2 is the Fermi temperature of the trapped
gas. For the two-dimensional quadrupole mode the frequency
is given by ω = √

2ω⊥ [28–30]. We note that the quadrupole
mode is volume conserving, and the frequency is independent
of the equation of state. We get

〈αn〉 = 1

2π
R

(
T

TF

)2

ln

[
1 + Nπ2

2R2

(
TF

T

)2]
,

(20)

R =
[

ln

(
5T

2Ta,2d

)]2

+ π2.

This result is plotted in Fig. 2. We observe that for small
values of ln(kF a2d) and T/TF the trap average 〈αn〉 grows
approximately as T 2. This power law can be understood as
one factor of T arising from the temperature scaling of η, and
one factor of T from the inverse density at the center of the
trap. For larger values of ln(kF a2d) the growth of the relaxation
time compensates the growth in η and the trap average 〈αn〉 is
only weakly temperature dependent.
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THOMAS SCHÄFER PHYSICAL REVIEW A 85, 033623 (2012)

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20
αn

T/TF

ln(kFa)

2.7

5.3

9.7

18

42

FIG. 2. (Color online) This figure shows the trap average of the
shear viscosity to density ratio αn as a function of T/TF for different
values of ln(kF a2d), where ln is the natural logarithm. TF ≡ ω⊥N 1/2 is
the Fermi temperature and kF = (2mTF )1/2 is the Fermi momentum
in the trap. The scale is set by ω⊥, the transverse (two-dimensional)
confinement frequency. We have used N = 4 × 103. We compare our
results to the data from Vogt et al. [11].

In Fig. 2 we also compare our results to the data obtained by
Vogt et al. [11]. We observe that the predicted dependence of
〈αn〉 on T/TF and ln(kF a2d) is in qualitative agreement with the
data. The theoretical predictions are in quantitative agreement
with the data for ln(kF a2d) = 5.3 and 9.7. The disagreement
between theory and data for ln(kF a2d) = 2.7 is somewhat
puzzling, because this value of ln(kF a2d) corresponds to a more
strongly interacting fluid, and we would expect hydrodynamics
to work better. Of course, the kinetic theory calculation of
the shear viscosity might break down at strong coupling and
T/TF ∼< 1. Another possible issue is that the experimental
analysis used a free Fermi gas model to estimate the energy
of the mode. At strong coupling this approach will tend
to overestimate the energy, and the extracted trap average
〈αn〉 is too large. The theory also underpredicts the data for
large values of ln(kF a2d). This is less surprising, because
hydrodynamics is expected to break down in this regime.

IV. CONCLUSION

The observed qualitative agreement between experiment
and the predictions of kinetic theory suggest that the shear
viscosity of the two-dimensional Fermi gas can be extracted
from measurements of the damping of collective modes. In
order to do this quantitatively a number of effects will have
to be studied more carefully. In particular, it is observed that
for ln(kF a2d) ∼> 5 the measured collective mode frequencies
are not close to the hydrodynamic predictions. This implies
that dissipative effects are not accurately described by the hy-
drodynamic expression given in Eq. (16). A more appropriate
approach is to treat the collective mode itself in kinetic theory.
This calculation will also provide an indication whether the
observed damping at large ln(kF a2d) is related to collisions,
or other effects that are not taken into account in a kinetic or
hydrodynamic treatment.

It is noted that even though the observed trap averaged
values of 〈αn〉 are on the order of 1 or larger the corresponding
value of η/s at the center of the trap could be quite small,
on the order of η/s ∼ 0.5 (see Fig. 1). In the interesting
regime T ∼< 0.5 TF classical kinetic theory is not reliable. In
two dimensions, in particular, correlations and fluctuations are
likely to play an important role. An important example of a
correlation effect is the pseudogap phenomenon, which was
argued to play an important role in the transport behavior of the
three-dimensional gas [31]. A pseudogap has been observed
in the two-dimensional gas in the regime ln(kF a2d) ∼< 1 [32].
The phase transition in two dimensions is of Berezinsky-
Kosterlitz-Thouless (BKT) type, and the two-dimensional
Fermi gas may provide a very clean system to study transport
properties near the BKT transition. It is also known that in
two dimensions hydrodynamic fluctuations lead to a slow,
logarithmic divergence of the shear viscosity with the system
size [33].
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