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Mapping the Berry curvature from semiclassical dynamics in optical lattices
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We propose a general method by which experiments on ultracold gases can be used to determine the topological
properties of the energy bands of optical lattices, as represented by the map of the Berry curvature across the
Brillouin zone. The Berry curvature modifies the semiclassical dynamics and hence the trajectory of a wave packet
undergoing Bloch oscillations. However, in two dimensions these trajectories may be complicated Lissajous-like
figures, making it difficult to extract the effects of Berry curvature in general. We propose how this can be
done using a “time-reversal” protocol. This compares the velocity of a wave packet under positive and negative
external force, and allows a clean measurement of the Berry curvature over the Brillouin zone. We discuss
how this protocol may be implemented and explore the semiclassical dynamics for three specific systems: the
asymmetric hexagonal lattice and two “optical flux” lattices in which the Chern number is nonzero. Finally, we
discuss general experimental considerations for observing Berry curvature effects in ultracold gases.
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I. INTRODUCTION

One of the most interesting and surprising developments in
the band theory of solids was the realization that the physical
properties of any resulting energy band are not only encoded
in its energy spectrum, ε(k), for all wave vectors k in the
Brillouin zone (the “band structure” in the usual sense). In
addition, there are important physical consequences related to
the topology of the eigenstates that form the band [1,2].

The importance of topological features of the energy
eigenstates was first pointed out in the seminal work of
Thouless et al. [3] in the context of the integer quantum
Hall effect. This work showed that, for two-dimensional (2D)
lattices, the set of energy eigenstates that form an isolated band
are characterized by an integer-valued Chern number, C, which
can be nonzero when time-reversal symmetry is broken. The
Chern number is a topological invariant of the band: its value
cannot be changed by continuous evolution of the physical
system without closing the gap to another band. Furthermore
Ref. [3] showed that the Chern number has direct physical
consequences: a filled band has a quantized Hall conductance
equal to C times the quantum of conductance, corresponding
to the existence of C chiral edge modes.

Soon after the work of Thouless et al. [3], the concept of
the Berry phase was formulated [4]. The integer invariant of
Ref. [3] was quickly interpreted [5] in terms of the integral
of the Berry curvature in momentum space, �(k), over the
Brillouin zone. This Berry curvature, �(k) (defined below),
is a gauge-invariant property of the band structure which is
predicted to have direct physical consequences when the band
is partially filled [6,7]. A full description of the properties of a
nondegenerate energy band therefore requires a specification
of both the spectrum, ε(k), and the Berry curvature, �(k).
For systems with additional global symmetries (time-reversal,
particle-hole, or chiral) other forms of topological invariant
can appear [1,2].

These considerations have become of immediate impor-
tance in the field of ultracold gases in optical lattices. While
the Berry curvature vanishes for the simplest forms of optical
lattice, recent experiments have studied more complicated 2D
optical lattices [8–10] for which simple variants exist in which

the (local) Berry curvature is nonzero. Furthermore, there exist
several theoretical proposals for forms of optical lattice in
which the neutral atoms feel an effective magnetic field with
high flux density [11–17]. These proposals are of great interest,
as they offer the opportunity to study ultracold atoms in strong
effective magnetic fields. These lattices break time-reversal
symmetry in a way that leads to bands with nonzero Chern
numbers [11,15–17]. A key motivation of this work is to
propose how the band structures of these lattices might be
characterized experimentally. We shall focus on the “optical
flux lattices” proposed in Refs. [16,17].

A particle picks up a Berry phase when it travels adiabat-
ically around a closed contour. Here, we are concerned with
contours in two-dimensional momentum space, with k in the
Brillouin zone. As usual, the Berry phase can be expressed as
the integral of the Berry curvature, �(k), over the surface
bounded by the contour. If the integral is over the entire
Brillouin zone, the periodicity in k space means that the closed
contour is equivalent to a point, and the Berry phase must
be quantized as 2πC, where C is the integer-valued Chern
number. This is the topological invariant described above that
underlies the remarkable quantization of the quantum Hall
effect [3,18]. The Chern number has previously been measured
through the conductance and chiral edge states of quantum Hall
systems, and the total Berry phase associated with a Dirac
point in graphene has been detected from transport [19,20]
and ARPES [21] measurements. To our knowledge, the local
Berry curvature has not been measured directly, although its
influence has been detected on a number of physical quantities
[22]. It also plays an important role in the anomalous quantum
Hall effect [7,23,24] and in semiclassical dynamics [6,25,26].

Ultracold gases present an excellent opportunity to study
the Chern number and the topology of bands directly. Optical
lattices can impose periodic potentials, and ultracold gas
experiments are highly controllable, tunable, and clean. Recent
theoretical papers have shown how to detect the Chern
number for certain tight-binding models in time-of-flight
measurements [27,28]. In this paper, we propose a much more
general method, based on semiclassical dynamics, that can be
used to directly map out the Berry curvature over the Brillouin
zone for any form of underlying lattice.
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In the absence of Berry curvature, a wave packet subjected
to a constant external force will execute Bloch oscillations.
These have not been observed for bulk crystalline electrons
due to electronic scattering off lattice defects, but Bloch
oscillations have been seen in other physical systems including
semiconductor superlattices [29] and ultracold gases [30,31].

In the presence of Berry curvature, the wave-packet dynam-
ics will be strongly modified. In principle, these effects may be
measured directly from the real-space trajectory of such a wave
packet, as has been previously proposed [32,33]. However, in
two dimensions, Bloch oscillations are complicated [34–36],
and it can be difficult to disentangle the effects of Berry
curvature from the usual effects arising from the group
velocity. We propose how this may be overcome using a
“time-reversal” protocol. This will allow experiments to map
the Berry curvature over the entire Brillouin zone.

The structure of the paper is the following. First, we
introduce the Berry curvature and describe its effects on the
semiclassical dynamics. We then discuss the complications
of 2D Bloch oscillations and outline a protocol for how the
Berry curvature may be mapped experimentally. We illustrate
this discussion with numerical results for the Berry curvature
and semiclassical dynamics for three interesting specific
models: the asymmetric honeycomb lattice and two optical
flux lattices [16,17]. Finally we discuss general experimental
considerations and time-of-flight experiments.

II. THE BERRY CURVATURE AND SEMICLASSICAL
DYNAMICS

From Bloch’s theorem, the eigenfunctions of a periodic
potential can be expressed as ψn,k(r) = un,k(r)eik·r, where the
Bloch function, un,k(r), has the periodicity of the underlying
lattice and n is the band index. We confine our discussion
to the 2D xy plane, where the band structure is characterized
by the energy, εn(k), and the scalar Berry curvature, �n(k).
All the concepts can be extended to three dimensions, where
the Berry curvature must be treated vectorially.

The Berry phase, γn, for adiabatic transport in k space
around a closed curve C bounding a region S is

γn =
∮
C
dk · An(k) =

∫
S

dS · ẑ�n(k), (1)

An(k) ≡ i〈un,k| ∂

∂k
|un,k〉, (2)

�n(k) ≡ ∇k × An(k) · ẑ, (3)

where An(k) is the Berry connection, a gauge-dependent
vector potential, and �n(k) is the Berry curvature. The Berry
curvature is a gauge-invariant, local property of the band
structure. It vanishes when both time-reversal and inversion
symmetries are present. The Berry phase is geometrical and
similar to the Aharonov-Bohm phase, with the Berry curvature
playing the role of a magnetic field. When integrated over the
whole Brillouin zone, the resultant Berry phase is quantized
and equal to 2π times the Chern number. The Chern number
is thus a global topological property of the band, and underlies
phenomena such as the integer quantum Hall effect [3].
However, the local Berry curvature also has important physical

consequences, for instance, on the semiclassical motion of a
wave packet [6,22,25,26].

To describe the semiclassical dynamics, we consider a gas
of noninteracting fermions or bosons that is prepared in a wave
packet with a center of mass at position rc and momentum kc

[30,37]. For atoms initially prepared in the bottom of the lowest
band, the temperature contributes to the initial momentum
spread of the atoms. We therefore assume that the temperature
is less than the bandwidth so that the wave packet does not
cover the whole Brillouin zone. We then consider a constant
external force F, which in a solid state system would usually be
due to an electric field. However, ultracold gases are neutral,
and this force instead may come from linearly accelerating the
lattice [30,38] or from gravity [31,39–41]. It is assumed that
the force is sufficiently small that the motion is adiabatic such
that Landau-Zener tunneling [42] is negligible and the wave
packet remains in a single band; henceforward we drop the
band subscript n. The semiclassical equations of motion are
then [25]

ṙc = 1

h̄

∂ε(kc)

∂kc

− (k̇c × ẑ)�(kc), (4)

h̄k̇c = F. (5)

We shall refer to the first term in (4) as the group velocity
and to the second as the Berry velocity. We note that these
semiclassical equations are further modified if there is an
external “magnetic” field [25] in addition to the external
force F. We shall not discuss this further here, assuming that
any magnetic field has the periodicity of the lattice and is
incorporated into the band structure through the (magnetic)
Bloch states uk(r) (see Sec. V B). The effect of a magnetic
field on Bloch oscillations has also been analyzed directly
from the tight-binding Hamiltonian in Refs. [43,44].

To theoretically simulate the semiclassical dynamics, we
must be able to calculate the Berry curvature. In general,
a simple analytic expression is not possible and the Berry
curvature is calculated numerically. This requires a discretized
version of (3), as eigenfunctions are found computationally
over a grid in k-space. There is an inherent phase ambiguity in
the Bloch states, and so a gauge must be chosen to calculate the
Berry connection. The Berry curvature is gauge invariant, and
can be found on this grid by the method of Fukui et al. [45],
which applies a geometrical formulation of topological charges
in lattice gauge theory, where the Berry curvature is calculated
from the winding of U(1) link variables around each plaquette
in the Brillouin zone. We have used this method throughout
this work for the numerical calculations.

It is of interest to note that effects of Berry curvature
also arise in the semiclassical dynamics of a wave packet in
a time-dependent one-dimensional optical lattice [22,46,47].
The Berry curvature is then defined over a 2D parameter space
made up of the one-dimensional quasimomentum and time.
The Bloch oscillations of a wave packet in such a potential
were theoretically studied in Ref. [47].

III. 2D BLOCH OSCILLATIONS

The pioneering experiments on Bloch oscillations in ultra-
cold gases were (quasi-) one dimensional [30,31], and only
recently has the extension to 2D been investigated [10]. In 2D,
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FIG. 1. An example of a Lissajous-like figure for the square
optical flux lattice (Sec. V B 1). The ratio Fx : Fy is 9 : 10, and a
low force of |F| = 0.05FR is used to minimize the effects of Berry
curvature over one oscillation (FR = h2/2mλ3, where λ is the optical
wavelength and m is the mass of the atomic species; see Sec. V).
The Lissajous-like figure is approximately bounded by the Bloch
oscillation lengths, and so it obscures the effects of Berry curvature
within this box.

Bloch oscillations have various interesting features in their
own right, even before the Berry curvature is considered.

One important consequence of dimensionality is that the
real-space Bloch oscillations in 2D become Lissajous-like
[34–36]. For separable potentials, 1D Bloch oscillations along
the x and y axes are simply superposed. For an arbitrary
force F = (Fx,Fy), the wave packet’s motion is periodic along
ki with periods τBi = h/|Fi |a (where i runs over x,y). The
ensuing motion depends on the ratio Fx : Fy . For nonseparable
potentials, studies show that similar behavior can be expected
when the force applied is weak and Landau-Zener tunneling
is negligible [34,35].

The real-space Lissajous-like figures can be compli-
cated two-dimensional oscillations, bounded by xBi ∝ vBiτBi

(Fig. 1). For the Berry curvature to change this trajectory
significantly, it would be necessary to wait until the wave
packet drifts outside of the bounding box. As a result,
experiments would measure only the net Berry curvature
encountered along a path. Information would be lost about
how the Berry curvature is distributed in momentum space
and notably whether its sign changes.

Furthermore, in 2D there can be an additional drift in the
wave packet’s position, independent of the Berry curvature, if
the wave packet does not start at high symmetry points such as
the zone center k0 = (0,0) [36,48]. Thus, merely observing a
transverse drift is not, by itself, conclusive evidence of nonzero
Berry curvature.

IV. A “TIME-REVERSAL” PROTOCOL TO EXTRACT THE
BERRY CURVATURE

Berry curvature effects can be isolated by considering the
dynamics under a reversal of “time.” In doing so, it is important
to be able to measure the velocity of the wave packet. We shall
discuss in Sec. VI how this may be done in experiments: for
instance, through tracking the position of the wave packet in
real space or through the momentum distribution, as in the
seminal paper of Ben Dahan et al. [30].

We consider first measuring the velocity for a given force,
F, at a particular point, k, in the Brillouin zone. This can
be achieved in an experiment in which the wave packet has
evolved according to k(t) = k(0) + Ft/h̄. This velocity is

ky

kx

ky

kx

(a) (b)

FIG. 2. Two methods for mapping the Brillouin zone. (a) Rotating
the force with respect to the lattice between experiments allows each
wave packet to travel a different path. (b) With a large ratio Fx :
Fy , a single wave packet successively travels many paths within the
Brillouin zone.

uniquely defined (within the single band approximation) at
each point k along the trajectory and we denote it as vk(+F).
We now consider measuring the velocity in an experiment in
which the wave packet passes through the same point k, but
with opposite direction of the force, −F, which we denote
vk(−F). This can be achieved, for example, by evolving the
wavepacket along the line k(0) + Ft/h̄ for a time T that
moves it past the point of interest (e.g., to the Brillouin zone
boundary), and then retracing this path using the reversed force
−F. From (4), we can see that the Berry velocity changes sign,
while the group velocity remains invariant. The two effects
can then be separated:

vk (+F) − vk (−F) = −2

h̄
(F × ẑ)�(k), (6)

vk (+F) + vk (−F) = 2

h̄

∂ε(k)

∂k
. (7)

This transformation is equivalent to a time-reversal operation,
and it cleanly removes the effects of the complex Lissajous-like
figures in 2D.

The Berry curvature can now be found at each point
along the wave packet’s path. By varying the path across the
whole Brillouin zone, the Berry curvature is mapped out and
the Chern number is directly measured. The path of the wave
packet may be chosen in various ways, two of which are
illustrated in Fig. 2. First, the alignment of the force with
the lattice may be rotated so that different trajectories are
successively explored. In such a scheme, the measurement
time can be short, corresponding to the time taken for the
wave packet to travel once across the Brillouin zone. However,
it would be important to align the force precisely each time.
An alternative scheme would be to make the ratio Fx : Fy

large. The wave packet will cover a large area of the Brillouin
zone during a single Bloch oscillation. The force needs to be
aligned only twice (for +F and −F) but longer measurement
times would be required. A combination of these methods may
be most suitable.

A. Relation to the Chern number

By this approach measurements of the velocity of the
wave packet can be used to extract the Berry curvature.
Measurements of the net drift of the wave packet in position
space can be used to measure the Chern number of the band.
To illustrate the idea, it is convenient to consider a Brillouin
zone (BZ) of rectangular symmetry, and the set of paths
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k = (0,ky) → (Kx,ky) that are traced out by a force +F in
the x direction, for different values of the initial wave vector
ky . Here Kx denotes the size of the reciprocal lattice vector
in the x direction, so the path traverses the full width of the
Brillouin zone once. The net drift of the wave packet in the y

direction, 
y = ∫
vy dt , is


y(ky, + F ) =
∫ Kx

0

1

F

∂ε

∂ky

dkx +
∫ Kx

0
�(kx,ky)dkx. (8)

Note that, for general ky , there is a transverse displacement
not only from the Berry curvature but also from the group
velocity [36,48]. Reversing the force, such that the set of paths
run in the opposite direction, over k = (0,ky) → (−Kx,ky),
the displacement becomes


y(ky, − F ) =
∫ Kx

0

1

F

∂ε

∂ky

dkx −
∫ Kx

0
�(kx,ky)dkx. (9)

Thus, the contribution from the group velocity stays the same,
but the contribution from the Berry curvature changes sign.
Averaging the difference,


y(ky, + F ) − 
y(ky, + F )

2
=

∫ Kx

0
�(kx,ky)dkx (10)

extracts the part that depends on the Berry curvature. It is
interesting to note that this contribution is independent of the
magnitude of the force. The size of the transverse displacement
is just set by the length scale of the underlying lattice (the lattice
constant), and a numerical factor that involves the average
Berry curvature along the trajectory. Furthermore, the total
Chern number can be found by summing over the set of
trajectories with different values of ky , which can be used
to represent an evaluation of the integral:

C = 1

2π

∫ Ky

0
dky

∫ Kx

0
dkx �(kx,ky) (11)

at discrete points in ky . (Clearly this approach can be readily
adapted to a lattice of any symmetry, provided the set of paths
spans the entire Brillouin zone once.)

Note that, if instead of a wave packet, the band is filled
(e.g., by noninteracting fermions) the Chern number may be
measured from the net current density when a force, F, is
applied:

J = 1

2πh

∫ Ky

0
dky

∫ Kx

0
dkx �(kx,ky)(F × ẑ) = C

h
(F × ẑ).

(12)
For a trapped gas, this result can be applied locally, with F set
by the local potential gradient to give equilibrium currents.

V. EXAMPLE SYSTEMS

In this section, we illustrate our proposed method for
measuring the Berry curvature for three example systems
that are of experimental interest: the asymmetric hexagonal
lattice and two optical flux lattices [16,17] for which the Chern
number is nonzero.

In optical lattices, the natural energy scale is set by the recoil
energy, ER = h2/2mλ2, where λ is the optical wavelength.
Similarly, we can define a recoil velocity, vR = h/mλ, and a

unit of force, FR = h2/2mλ3. Henceforward, we express all
quantities in these units.

The magnitude of the external force significantly affects
the dynamics, as discussed further in Sec. VI. In previous
experiments, the force has been introduced by linearly ac-
celerating the lattice [30,38], where the magnitude can be
varied, or by gravity [31,39–41]. In our units, |mg| = 0.7FR

for 174Yb and for λ = λ0 ≈ 578 nm, the resonance wavelength
coupling the ground and excited state in 174Yb [14]. This
choice of parameters is especially relevant to the optical flux
lattices discussed below. We therefore primarily focus on the
representative case |F| = 1FR .

For the evolution of the wave packet to be adiabatic, the
rate of Landau-Zener tunneling to the next lowest band must
be small. The probability of a Landau-Zener transition where
the bands almost touch is given by [42]

p = e−ac/a, (13)

where a is the acceleration of the atoms moving under the
external force, ac = (δε)2λ/8h̄2, and δε is the band gap. This
can therefore be neglected when the force is small or the band
gap is large.

A. The asymmetric hexagonal lattice

The tight-binding hexagonal lattice has long been studied
in condensed matter physics as a simple model for graphene
[49]. Thanks to recent advances, optical lattices of hexagonal
symmetry (or closely related forms) can be imposed on
ultracold gases and phenomena associated with the interesting
band topology can be directly studied [10,50,51].

In the presence of both inversion and time-reversal sym-
metry, the bands touch at two Dirac points in the corners of
the hexagonal Brillouin zone. If either of these symmetries
is broken, band gaps open and Berry curvature appears at
these points, as in the Haldane model where time-reversal
symmetry is broken [52]. The Chern number has also been
observed experimentally for time-reversal symmetry breaking
in graphene [19,20].

The asymmetric hexagonal lattice instead breaks inversion
symmetry by introducing an on-site energy difference between
the two lattice sites, A and B. The opening of band gaps
with asymmetry has already been studied experimentally in
graphene [53], but Berry curvature effects have not been
observed directly. Theoretically, the Berry curvature can lead
to a quantum valley Hall effect, which may be useful for valley-
based electronic applications [22,49,54]. It would therefore be
of great interest to study this system in ultracold gases.

The honeycomb lattice can be viewed as two interpenetrat-
ing triangular sublattices, for A and B, each with one site per
unit cell (Fig. 3). With on-site energies of ±W on A/B sites,
and including only nearest neighbor hoppings, the Hamiltonian
is

H (k) =
(

W V (k)
V ∗(k) −W

)
, (14)

where V (k) = −J [eik·R1 + eik·R2 + eik·R3 ]. The two energy
bands are then

ε(k) = ±
√

W 2 + |V (k)|2. (15)
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FIG. 3. The asymmetric hexagonal lattice in real space (on the
left) and reciprocal space (on the right). The real-space lattice
vectors are a1 = a(

√
3/2, − 1/2) and a2 = a(0,1), where a is the

lattice spacing (and for this geometry, a = 2λ/3). The sublattices
are connected by R1 = a(1/2

√
3,1/2), R2 = a(1/2

√
3, − 1/2), and

R3 = a(−1/
√

3,0). The dotted lines indicate the unit cell. The
reciprocal lattice vectors are then K1 = (4π/

√
3a)(1,0) and K2 =

(4π/
√

3a)(1/2,
√

3/2).

For W = 0, the energy bands have two Dirac points at
which |V (k)| = 0: these are at k = (4π/

√
3a)(1/2,1/2

√
3)

and k = (4π/
√

3a)(0,1/
√

3), which we label as K and K ′.
Near each of the Dirac points, the effective Hamiltonian
takes a simple form. Close to the Dirac point K , writing
k = (4π/

√
3a)(1/2,1/2

√
3) + q, the effective Hamiltonian is

H (q) =
(

W −h̄vF (qx − iqy)
−h̄vF (qx + iqy) −W

)
, (16)

where h̄vF = (
√

3/2)aJ : a Dirac equation with mass. The
band structure is shown in Fig. 4(a) for W = 0.5ER and t =
1.0ER . For this value of W , the band gap at the Dirac points is
1.0ER and the Landau-Zener tunneling probability is less than
0.09 for |F| = 1FR . Near the Dirac point, the Berry curvature
is [22]

�(q) = h̄2v2
F W

2
(
W 2 + h̄2v2

F q2
)3/2 . (17)

For the Dirac point K ′, writing k = (4π/
√

3a)(0,1/
√

3) + q,
the Berry curvature has the same form but opposite sign.

The resulting map of Berry curvature for the asymmetric
hexagonal lattice is displayed in Fig. 4(b). This was previously
found analytically in Ref. [55]. The Berry curvature around

(a) (b)

FIG. 4. (Color online) (a) Band structure of the lowest band of
the asymmetric hexagonal lattice for W = 0.5ER and t = 1.0ER , and
the energy in units of ER (for this geometry, a = 2λ/3). Due to the
asymmetry, gaps have opened at the Dirac points at the corners of the
Brillouin zone. (b) The Berry curvature mapped out for W = 0.5ER ,
using the method of Ref. [45]. Light shading indicates � > 0 and
dark shading indicates � < 0. Positive and negative regions cancel,
giving a net Chern number of zero.

(a) (b)
20
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FIG. 5. (a) The trajectory of a semiclassical wave packet through
the Brillouin zone, starting from k = (0,0) with F = (0.0,1.0FR).
The numbers indicate the order in which the path is traveled. (b) The
corresponding real-space trajectory of the wave packet, starting from
the origin, for W = 0.5ER . This result was previously obtained in
Ref. [33]. The motion along x is due to the Berry curvature, while
that along y is due to the band structure.

points K and K ′ has opposite signs such that the net Chern
number of the band is zero. This vanishing Chern number is
required by the fact that the system is time-reversal invariant.

From the Berry curvature and band structure, we can now
calculate the semiclassical motion of a wave packet in this
system (Fig. 5). To illustrate clearly the effects of Berry
curvature, we start the wave packet at k = (0,0) and consider
a force aligned along the y direction, so that the 2D Bloch
oscillation is also simply directed along y. This real-space
trajectory was previously obtained in Ref. [33], where the
effects of a perturbing magnetic field were also discussed.

The velocities along x and y are shown in Fig. 6. As the
wave packet passes through K ′, the negative Berry curvature
gives it a positive velocity in the x direction. In between K ′ and

(a)

-4 40
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y
 a
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v x / 
v R

+F
-F

(b)

-4 40
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y
 a
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Both +F and -F

(c)
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(d)
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/ v
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v
x
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x
(-F)

v
y
(+F)+v

y
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FIG. 6. (a) Velocity along x of a wave packet moving under
the force F = ±(0.0,1.0FR) with W = 0.5ER . ky is measured
along the path traveled (which is periodic in 4π ). (b) Velocity
along y. (c) Applying the time-reversal protocol to extract the
Berry velocity: v(+F) − v(−F) = −2/h̄(F × ẑ)�(k). (d) Applying
the time-reversal protocol to extract the group velocity: v(+F) +
v(−F) = (2/h̄)∂ε(k)/∂k.
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K , there is no curvature and it moves with a group velocity
along y. When it passes through K , the positive curvature
gives it negative x velocity. As the regions of curvature have
the same magnitude, the effects cancel and there is no net drift.

For F = (0,F ) it is simple to determine the Berry curvature
because the group and Berry velocities are perpendicular. For
more general directions of the force, Lissajous-like oscillations
will make it difficult to extract any information about the Berry
curvature from the real-space motion.

As proposed above, the Berry curvature may be cleanly
mapped from the velocities using a time-reversal protocol.
This is illustrated in Figs. 6(c) and 6(d). Here the velocities
along x and y for +F and −F are combined to show the Berry
velocity and the group velocity, respectively.

B. Optical flux lattices

One of our main motivations for mapping the Berry
curvature is to find a way of experimentally characterizing
optical flux lattices. These have lately been proposed as
schemes to access fractional quantum Hall physics in ultracold
gases [16,17]. The optical flux lattices have bands with a
nonzero Chern number. They consist of a state dependent
potential in register with an interspecies coupling, and lead
to effective magnetic flux with a high nonzero average (with
a nonzero integer number of magnetic flux quanta per unit
cell). The specific optical coupling depends on the geometry
and atomic species chosen. For atoms with a ground state
and long-lived metastable excited state, such as an alkaline
earth atom or ytterbium, a simple one-photon coupling scheme
can be implemented [16]. For more commonly used atomic
species, such as alkali atoms, two hyperfine states can be used
with coupling via two photon processes [17]. Here, we discuss
an example of each: the square one-photon optical flux lattice
and the F = 1/2 two-photon optical flux lattice. The lowest
energy band in both lattices can have a Chern number of one
and hence is topologically equivalent to the lowest Landau
level, allowing quantum Hall physics to be accessed.

1. One-photon square optical flux lattice

In this scheme, the electronic ground state and a long-lived
excited state are coupled via a single photon process [14]. The
Hamiltonian in the rotating wave approximation is

Ĥ = p2

2m
1̂ + V̂ (r), (18)

where 1̂ and V̂ are 2 × 2 matrices acting on the two internal
states of the atom. We neglect interactions, an assumption that
is discussed further in Sec. VI. The square optical flux lattice
is generated when [16]

V̂sq = V [cos(κx)σ̂x + cos(κy)σ̂y + sin(κx) sin(κy)σ̂z],
(19)

where V sets the energy scale of the potential, σ̂i are the Pauli
matrices, κ = 2π/a, and the lattice vectors are a1 = (a,0),
a2 = (0,a). The flux density is everywhere of the same sign,
and leads to a total flux per unit cell of Nφ = 2 [16].

We consider the regime where V � h̄2κ2/2m = 4ER (for
this geometry a = λ/2). We expand the periodic Bloch

(a) (b) (c)

FIG. 7. (Color online) Band structure of the lowest band in the
magnetic Brillouin zone for the one-photon square optical flux lattice
with (a) V = 0.0ER , (b) V = 1.0ER , and (c) V = 3.0ER , and the
energy in units of ER . At V = 0.0ER , the lowest band touches the
second lowest band at k = (π/a, ± π/a). As V is turned on, band
gaps open at these points and Berry curvature is formed.

functions over a set of reciprocal lattice vectors K,

un,k(r) = 1√
N

∑
K

e−iK·r
(

c
1(n,k)
K

c
2(n,k)
K

)
, (20)

and diagonalize the resulting Hamiltonian to find the band
structure. As we consider low V , a small, finite set of K vectors
will give the eigenfunctions and values to within the required
numerical accuracy.

The eigenfunctions are everywhere twofold degenerate,
corresponding to two magnetic subbands. To distinguish
between these states, we reinterpret the system within the mag-
netic Brillouin zone (MBZ) [16,18,25]. The optical coupling
is invariant under the magnetic translation operators:

T̂1 ≡ σ̂ye
(1/2)a1·∇, T̂2 ≡ σ̂xe

(1/2)a2·∇, (21)

which do not commute but satisfy T̂2T̂1 = −T̂1T̂2. These
operators represent rotations in spin space and translations
by 1

2 a1,2, which enclose half a flux quantum (as Nφ = 2)
[16,18]. The magnetic Brillouin zone is defined by a unit
cell containing an integer number of flux [18]; we choose
a cell containing a single flux with vectors a1 and a2/2.
The corresponding commuting operators are T̂ 2

1 and T̂2,
with eigenvalues eik·a1 and eik·a2/2. This defines the Bloch
wave vector k, and the associated magnetic Brillouin zone
[16]. Now the first Brillouin zone covers −π/a < kx � π/a

and −2π/a < ky � 2π/a, doubling in size. Thanks to this
unfolding, the lowest band is nondegenerate at each Bloch
wave vector k. The resulting band structure is shown in Fig. 7
for V = 0.0ER , V = 1.0ER , and V = 3.0ER .

The Berry curvature is shown over the magnetic Brillouin
zone for the lowest band in Fig. 8, for V = 1.0ER and V =
3.0ER . For nonzero V , the Chern number of this band is one,
so it is analogous to the lowest Landau level. For small V the
Berry curvature � is highly peaked at positions k = (π/a, ±
π/a); as V increases, � spreads out while remaining centered
on these two points.

In Fig. 9(b) we illustrate the real-space trajectory for
semiclassical motion of a wave packet in this optical flux
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(a) (b)

FIG. 8. (Color online) Contour maps of the Berry curvature, �(k),
for the square optical flux lattice when (a) V = 1.0ER and (b) V =
3.0ER . � is in units of 1/(MBZ area) = a2/8π 2. � is concentrated
at points k = (π/a, ± π/a), spreading out with increasing V .

lattice, for V = 0.4ER and V = 3.0ER . As discussed above,
we take |F| = 1.0FR , which is representative of the gravita-
tional force |F| = mg for 174Yb and λ = 578 nm, parameters
which are particularly relevant for this scheme [14,16]. As
shown in Fig. 9(a), in momentum space the wave packet
starts at k = (0,0) and moves under a force F parallel to
the (1,1) direction such that it passes through the points
k = (π/a, ± π/a) at which there is large positive Berry
curvature. With F aligned along (1,1), the group velocity is
parallel to the force, while the Berry velocity is perpendicular
(Fig. 10). As the Berry curvature is everywhere positive, there
is a net drift as successive regions of high � are traversed. For
low potentials such as V = 0.4ER and V = 3.0ER , the band
gap is small and the probability of Landau-Zener transitions
on crossing the Brillouin zone boundaries is large. In an
experiment where |F| = mg, this probability can be reduced
below 0.1 by increasing the potential above V = 3.2ER .
With higher V , the Berry curvature spreads out and hence
the trajectory bends along more of its length. For clarity,
we therefore discuss V = 0.4ER where the effects of Berry
curvature and the group velocity are easiest to understand.
The dynamics will be qualitatively the same for higher V , and

(a) (b)
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FIG. 9. (a) The trajectory of a semiclassical wave packet through
the magnetic Brillouin zone, starting from k = (0,0) with |F| =
1.0FR directed along (1,1). The numbers indicate the order in which
the path is traveled. The dotted line indicates the simple Brillouin
zone, while the dashed lines show the extension into the magnetic
Brillouin zone. (b) The corresponding real-space trajectory of the
wave packet starting from the origin, for V = 0.4ER and V = 3.0ER .
The motion perpendicular to F is due to the Berry curvature, while
that parallel is due to the band structure.
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FIG. 10. The velocity of the wave packet (a) perpendicular and (b)
parallel to the applied force for |F| = 1.0FR directed along (1,1) and
V = 0.4ER . k is measured along the path traveled. For this simple
alignment of the force, (a) contains the effects of Berry curvature
along the path, while (b) shows the group velocity.

we discuss the dependence of the motion on both V and |F| in
more detail in Sec. VI.

As before, the simplicity of the trajectories and velocities
relies on the alignment of F along a special direction. More
generally in 2D, the Bloch velocity will not be parallel to the
force and complex Lissajous-like figures will be observed;
an example of this was previously shown in Fig. 1 for one
oscillation at a low force, |F| = 0.05FR , where the effects of
Berry curvature are small.

Here we demonstrate the effect of Lissajous-like figures on
the motion for parameter ranges of interest. Figure 11 shows
the real-space trajectories for (a) |F| = 1.0FR and (b) 5.0FR ,
when the force is aligned such that Fx : Fy = 1 : 16. The Bloch
motion is no longer purely parallel to the force and while an
average drift may be measured, the details of the motion due
to Berry curvature have been lost.

We illustrate how our time-reversal protocol may be used to
extract the local Berry curvature. Figures 12 and 13 show the
velocities along x and y over the path through the Brillouin
zone. By comparing the time-reversed velocities, quantities
proportional to the Berry velocity and the group velocity
are extracted. Figure 14 shows the resulting map of Berry
curvature over the Brillouin zone for |F| = 1.0FR . The same

(a)
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y 
/ a
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(b)
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x / a 

-1.5

1.5

0
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FIG. 11. Trajectory for a wave packet traveling with (a) |F| =
1.0FR and (b) |F| = 5.0FR where the force is aligned such that Fx :
Fy = 1 : 16 and V = 0.4ER . The Bloch motion is no longer purely
along the direction of the force, and the resultant trajectory is complex.
The net drift between Bloch oscillations is a measure of the total
Berry curvature along a path, but other information is obscured. The
trajectory due to the group velocity increases in size relative to the
trajectory due to the Berry curvature with decreasing force (Sec. VI),
leading to more complicated motion in (a) than (b).
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FIG. 12. (a) Velocity along x of a wave packet moving under
the force |F| = 1.0FR with Fx : Fy = 1 : 16 and V = 0.4ER . k is
measured along the path traveled. (b) Velocity along y. (c) Applying
the time-reversal protocol to extract the Berry velocity. The Berry
velocity calculated from vx and vy differ by a factor of 16 from
the ratio of the forces, and by a sign, due to the cross product. (d)
Applying the time-reversal protocol to extract the group velocity. As
expected, there are 16 oscillations from vy for every one from vx .

result is obtained (up to a scale factor) from either of these two
cases of different magnitude of the force.

2. Two-photon optical flux lattice for F = 1/2

To generate optical flux lattices for the more commonly
used alkali atoms one must employ dressed states involving
a two-photon coupling [17]. We consider the representative
case of a lattice with triangular symmetry where the hyperfine
states coupled have angular momentum F = 1/2, as for 171Yb.
Qualitatively similar semiclassical dynamics are expected for
other values of F , such as the experimentally common case of
F = 1 for 87Rb [17]. The two-photon optical flux lattice we
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FIG. 13. As in Fig. 12 but now for |F| = 5.0FR .

FIG. 14. (Color online) |vx(+F) − vx(−F)|/2 = 1/h̄(Fy�) plot-
ted along the path taken by the wave packet in the Brillouin zone for
|F| = 1.0FR with Fx : Fy = 1 : 16 and V = 0.4ER . This technique
will enable experiments to directly map out the Berry curvature.

study leads to a net effective magnetic field in real space in
which there is one flux quantum per unit cell. Semiclassical
motion within a similar scheme has previously been studied
in Ref. [32]. In that scheme, the artificial magnetic field is still
locally nonzero, but the flux per unit cell vanishes [17,32] and
the Chern number of each band is zero. For the optical flux
lattice described here, the energy bands may have nonzero
Chern numbers.

For the F = 1/2 optical flux lattice, two hyperfine ground
states, g±, with angular momentum Jg = 1/2, are coupled to
an excited state, e, also with angular momentum Je = 1/2,
via an off-resonance excitation that ensures the population
of e remains negligible. The Hamiltonian then acts in the
g± manifold, with the form of (18). The details of the
optical coupling and the resulting Hamiltonian are discussed
in Ref. [17] and in the Appendix.

The final Hamiltonian can be written as

Ĥ ′ = Û †Ĥ Û = (p − σ̂zh̄k3/2)2

2m
+ V̂ ′, (22)

where k3 = k(0,1,0), and Û is a unitary transformation that
is applied to expose the full symmetry of the system. The
transformed optical potential V̂ ′ has the maximal translational
symmetry, causing p̂/h̄ to be conserved up to the addition
of the reciprocal lattice vectors K1/2 = −k/2(±√

3,3,0) (Ap-
pendix). The resulting Brillouin zone, defined by K1/2, is
equivalent to the asymmetric hexagonal lattice in Sec. V A. As
can be seen, an important feature of the two-photon optical flux
lattice is that, under this unitary transformation, the momenta
of g± are offset by ±h̄k3/2. This offset does not affect the
semiclassical equations of motion, which determine the rate
of change of (crystal) momentum under an applied force (5),
and which still apply for the bands formed from the eigenstates
of Ĥ ′.

The optical coupling, V̂ ′, is characterized by parameters
ε and θ as well as the overall strength of the potential V

(Appendix). When θ = ε = 0, the optical potential does not
couple the states g+ and g−, and acts on each simply as a scalar
potential, with the same symmetries as the hexagonal lattice
discussed above when inversion symmetry is unbroken. The
offsets of the momenta of g± shift the Dirac points of these
two states relative to each other. A small nonzero θ breaks
inversion symmetry and opens up gaps at the Dirac points in
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(a) (b)

FIG. 15. (Color online) (a) The energy (measured in ER) of
the lowest band for V = 1.8ER , θ = 0.3, and ε = 0.4. For these
parameters, the lowest band has a Chern number of one. (b) The
corresponding Berry curvature. �(k) is in units of 1/(BZ area). In
this case, the Berry curvature is significant over much of the Brillouin
zone and has regions of both positive and negative sign.

such a way that the pairs of bands are topologically trivial, i.e.,
have a net Chern number of zero. Nonzero ε and θ together
break time-reversal symmetry and lead to bands with nonzero
Chern number.

We have numerically calculated the band structure and
Berry curvature of the lowest band for a case of large coupling,
when V = 1.8ER , θ = 0.3, and ε = 0.4, for which this band
has a Chern number of one (Fig. 15). Note that in this case,
the energy minimum of the band is not at k = (0,0). Applying
the force along (0,1), the wave packet will follow the same
path as in the asymmetric hexagonal lattice (Fig. 5). We
choose |F| = 0.1FR to ensure that the Landau-Zener tunneling
probability is small (below 0.1). The resulting real-space
trajectory is shown in Fig. 16. Due to the simple alignment
of the force, we can again associate the y motion with the
group velocity and the x motion with the effects of the Berry
curvature.

As the Berry curvature is substantially spread out through
the Brillouin zone (Fig. 15), there is now a continual drift along
x over the trajectory. Since the Chern number is one, the Berry
curvature is (largely) of the same sign along the trajectory,
leading to a net drift of the wave packet over one period of
the Bloch oscillation. In this lattice, there are also regions of
both positive and negative Berry curvature. When the Berry
curvature is positive, the wave packet travels in the negative x

direction, while when � is negative, the wave packet moves
along the positive x axis. The sign change will therefore not
be detected if only the total drift is measured. Instead, the
time-reversal procedure described above can again be applied
to cleanly map out the local Berry curvature.

-3 -2 -1 0
x / a

-1

0

y 
/ a

F

FIG. 16. The real-space trajectory of a wave packet under a force
F = (0.0,0.1FR) over one period, for V = 1.8ER , θ = 0.3, and ε =
0.4. The wave packet follows the path described in Fig. 5. While the
group velocity is again purely along y, the motion due to the Berry
curvature is more complicated due to the varying sign of �.

VI. EXPERIMENTAL CONSIDERATIONS

We now consider how the velocity may be measured and
how feasible it will be to observe the Berry curvature effects
experimentally.

The mean atomic velocity may be extracted from the
time-of-flight expansion image. This measures the momentum
distribution [56], from which the mean momentum 〈p〉 may be
deduced by the weighted average. The mean atomic velocity
of the initial wave packet then follows from Ehrenfest’s
theorem as 〈v〉 = 〈p〉/m. This approach was successfully
experimentally applied by Ben Dahan et al. [30] to detect
Bloch oscillations in a one-dimensional lattice. The same
approach applies for dressed states of internal atomic states,
governed by (18); in this case the mean velocity can be obtained
from the average momentum over all internal states.

Alternatively, it is possible to extract the velocity directly
from measurements of the center of mass motion in real space.
Thanks to recent experimental advances, the position of the
wave packet’s center of mass may be imaged with a high
resolution, on the order of a lattice spacing [57]. For bands
with nonzero Chern number, the Berry curvature can cause the
wave packet to have a net drift in space over each period of the
Bloch oscillation; this leads to large cumulative effects on the
position of the wave packet over many oscillation periods. As
described in Sec. IV, measurements of the position of the wave
packet therefore offer a sensitive way to show that the Chern
number of the band is nonzero. Indeed measurements of these
drifting trajectories in constant applied force are equivalent to
measurements of the edge states that must arise for a band
with nonzero Chern number.

To this end, we consider how to maximize the importance
of the effects of the Berry curvature relative to those of
the group velocity. In the cases described above where the
bands almost touch, we can consider the band gap, δε, as a
small parameter. This applies to the hexagonal lattice when
asymmetry is small and to the square one-photon optical flux
lattice for small potential, V . (Note that the two-photon optical
flux lattice is considered far from the band closing regime.) In
the small band-gap limit, the momentum width δk, over which
the band is changed will be δk � δε/(h̄vR), where vR is the
typical group velocity at the zone boundary for vanishing band
gap. The Berry curvature is therefore nonzero over the area,
A � (δk)2. Assuming the Berry curvature is uniform within
this, the invariance of the Chern number means � � 1/A �
1/(δk)2. The Berry velocity is v� = (k̇ × ẑ)� so, as the wave
packet traverses this region in one Bloch oscillation, the Berry
curvature leads to a displacement of size

∫
v� dt � δk� �

1/δk � h̄vR/δε. Conversely, the typical group velocity is �vR

so over the period of one Bloch oscillation, τB � h/(Fa), the
typical amplitude of displacement is vRτB � hvR/(Fa). Thus,
these contributions to the real-space trajectory have different
dependences on δε: the Berry curvature contribution scales
as 1/δε, while the contribution from the group velocity is
independent of δε. This is found in our numerical results,
but is shown only qualitatively in the results presented in
Fig. 9, as in this case δε is not that small. The effects of Berry
curvature can therefore be maximized with respect to those of
the group velocity by choosing a small band gap. Note also
that the two contributions have different dependences on the
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size of the force: the displacement due to the Berry curvature
is independent of force, while that due to the group velocity
is inversely proportional to it. Therefore, the effects of Berry
curvature will be most evident for a high external force. Note,
however, that there are some practical limitations on both the
choice of force and band gap. To ensure that the evolution of the
wave packet is adiabatic, the rate of Landau-Zener tunneling
to the next lowest band should be negligible [Eq. (13)]. The
assumption of adiabatic evolution is therefore violated when
the applied force is too high and the band gap is too small. Also,
for small δε, when the bands nearly touch, the Berry curvature
becomes concentrated in small regions, of area (δk)2. This then
requires the momentum of the wave packet and the alignment
of the force to be precisely controlled in order to direct the
wave packet through this region. For intermediate band gaps,
the curvature is spread out. A natural compromise is to choose
the band gap such that δk is as small as the momentum
uncertainty 1/w with which a wave packet can be prepared
(here w is the spatial width of the wave packet); one then
expects the displacement due to the Berry curvature to be
1/δk � w on the order of the spatial extent of the wave packet.

From our numerical calculations, we can quantitatively
estimate the length scales of the dynamics. For example,
we consider the dynamics of 174Yb atoms in the one-photon
optical flux lattice, with F = mg along (1,1), λ = 578 nm, and
V = 3.2ER . For this choice of parameters, the Landau-Zener
tunneling probability given by (13) is approximately 0.1. The
wave packet follows the Brillouin zone path in Fig. 9(a)
and has a real-space trajectory similar to that of the dashed
line in Fig. 9(b). As the wave packet moves along section
I of its path [from k = (0,0) to k = (π/a,π/a)], it moves
with an average group velocity of 1.0 mm s−1, traveling
approximately 0.6 μm in the direction of the force in real
space. For V = 3.2ER , the Berry curvature is substantially
spread out over the Brillouin zone, and so the wave packet’s
trajectory bends as it travels, moving it 0.3 μm perpendic-
ular to the force. As the wave packet continues from k =
(−π/a,π/a) to k = (0,2π/a), the group velocity changes sign
and the wave packet travels 0.6 μm in the opposite direction
to the force. The Berry velocity does not change sign, and
so the wave packet moves a further 0.3 μm perpendicular
to the force. This behavior repeats for sections III and IV
of its path. The average Berry velocity over one complete
oscillation is therefore approximately 0.3 mm s−1. If the
force is slightly misaligned, the trajectory will instead be a
Lissajous-like oscillation, approximately bounded by a box
of diagonal length 0.6 μm. For the same Berry velocity, the
wave packet would then take approximately 2.0 ms to drift
this distance. These length and time scales are within current
experimental capabilities.

Two additional practical considerations are the effects of
dispersion and interactions. The wave packet will spread as
it travels, and this dispersion could obscure the dynamics
described. However, provided the center of mass of the wave
packet can be measured to an accuracy greater than its width,
this should not prevent the observation of Berry curvature
effects.

Interactions destroy the coherence of a wave packet over
time and can have a strong dephasing effect on Bloch
oscillations [31,39,58]. Nonlinearity can also lead to the
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FIG. 17. (a) Oscillation in expectation value of σ̂x for the one-
photon optical flux lattice, as the wave packet travels along (1,1). The
dashed line is for V = 0.04ER , while the smooth line is V = 0.4ER .
The area over which the transfer occurs decreases with potential in a
similar way to how the Berry curvature area decreases. k is measured
along the path of the wave packet. (b) Oscillation in population in
the two states for the two-photon optical flux lattice as the wave
packet travels along (0,1) for V = 1.8ER , θ = 0.3, and ε = 0.4. The
maximum population imbalance appears to be around points K and
K ′. ky is measured along the path of the wave packet.

collapse of the wave packet into discrete solitons [58,59].
We have ignored the effects of interactions in our analysis,
an approximation suitable over these time scales for fermionic
atoms [39], for species with low scattering lengths [41], or
where the interaction strength can be tuned to zero by means
of a Feshbach resonance [40,60].

One can also look for distinct features in the momentum
distributions of atoms undergoing Bloch oscillations in the op-
tical flux lattices discussed above (Fig. 17). In the two-photon
optical flux lattice, the population of atoms oscillates between
the two internal states as the wave packet moves through the
Brillouin zone. Near the points K and K ′, the population
imbalance is maximum but of opposite sign, reflecting the
characteristics of the Berry curvature. In the one-photon optical
flux lattice, the unfolding into the full magnetic Brillouin zone
means the Bloch states are eigenstates of σ̂x . As a result, the
oscillation takes place between those superpositions of the
internal states that are eigenstates of σ̂x . The transfer between
eigenstates occurs over an area which decreases with potential,
in a similar way to how the Berry curvature area decreases.

VII. CONCLUSIONS

In summary, we have proposed a general method for
mapping the local Berry curvature over the Brillouin zone
in ultracold gas experiments. The Berry curvature crucially
modifies the semiclassical dynamics and so affects the Bloch
oscillations of a wave packet under a constant external force.
In particular, the Berry curvature may lead to a net drift of
the wave packet with time. However, two-dimensional Bloch
oscillations are interesting in their own right, and one may lose
information about the Berry curvature due to the complicated
Lissajous-like figures that may arise.

We have shown that this information can be recovered via
a time-reversal protocol. The group velocity at a point in the
Brillouin zone is invariant under a reversal of force, while
the Berry velocity changes sign. As a result, the velocities
under positive and negative force can be compared to extract
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either one or the other. This protocol will allow the local Berry
curvature to be cleanly mapped out over the path of the wave
packet through the Brillouin zone.

We have demonstrated this protocol using the semiclassical
dynamics of three model systems which are currently of
experimental interest: the asymmetric honeycomb lattice and
two optical flux lattices. Finally, we have discussed various
experimental considerations, including how the velocity may
be measured and how to maximize the magnitude of the
Berry curvature effects on the dynamics. These methods can
be used to characterize the topological character of band
structures of complex optical lattices including optical flux
lattices.
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APPENDIX A: HAMILTONIAN FOR THE TWO-PHOTON
OPTICAL FLUX LATTICE FOR F = 1/2

The Hamiltonian acts in the g± manifold, with the form
of (18). The optical potential V̂ (r) is characterized by the
Rabi frequencies κm, m = 0, ± 1, where mh̄ is the angular
momentum along z gained by the atom when it absorbs a
photon [17].

The potential is formed from laser beams at two frequen-
cies: ωL and ωL + δ where δ is the Zeeman splitting of the
ground states. The laser beams at ωL are linearly polarized
and traveling in the xy plane, while the laser at ωL + δ gives a
plane wave propagating along the z axis with σz polarization.

The resulting potential takes the form

V̂ = h̄κ2
tot

3

1̂ + h̄

3


( |κ−|2 − |κ+|2 Eκ0

Eκ∗
0 |κ+|2 − |κ−|2

)
, (A1)

where κ2
tot = ∑

m |κm|2, 
 = ωL − ωA, with ωA as the atomic
resonance frequency, and it is assumed that |
| 
 |δ|,|κm|.
The field of the laser at frequency ωL + δ is characterized by
E, which serves as a uniform, adjustable coupling.

The laser field at frequency ωL is formed from the
superposition of three traveling plane waves of equal intensity
and wave vectors ki in the xy plane. The setup discussed in
Ref. [17] has triangular symmetry, with an angle of 2π/3
between the beams. The wave vectors are then k1 =
−k/2(

√
3,1,0), k2 = k/2(

√
3, − 1,0), and k3 = k(0,1,0). Up

to a scale factor and rotation, this is the same geometry as the
asymmetric hexagonal lattice in Sec. V A.

Each beam is linearly polarized at an angle θ to the z axis,
giving

κ = κ

3∑
i=1

eiki ·r[cos θ ẑ + sin θ (ẑ × k̂i)], (A2)

where κ is the Rabi frequency of a single beam. The relative
strength of the laser fields at frequencies ωL and ωL + δ will
henceforth be denoted as ε = E/κ .

To define the unit cell, we consider a unitary transformation:
Û ≡ exp(−ik3 · rσ̂z/2). This gauge transformation is state
dependent and leads to the Hamiltonian in Eq. (22), where
V̂ ′ = Û †V̂ Û has the same form as V̂ , with κ0 replaced by
κ ′

0 = e−ik3·rκ0. The coupling then only includes the momentum
transfers K1,2 ≡ k1,2 − k3. These define the reciprocal lattice
vectors of the largest possible Brillouin zone, and the smallest
possible real-space unit cell. This unit cell is that of the
hexagonal lattice discussed in Sec. V A.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs,

Phys. Rev. Lett. 49, 405 (1982).
[4] M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).
[5] B. Simon, Phys. Rev. Lett. 51, 2167 (1983).
[6] M.-C. Chang and Q. Niu, Phys. Rev. Lett. 75, 1348 (1995).
[7] F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).
[8] G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath,

and D. M. Stamper-Kurn, Phys. Rev. Lett. 108, 045305 (2012).
[9] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A.

Chen, and I. Bloch, Phys. Rev. Lett. 107, 255301 (2011).
[10] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger,

e-print arXiv:1111.5020.
[11] D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003).
[12] E. J. Mueller, Phys. Rev. A 70, 041603 (2004).
[13] A. S. Sørensen, E. Demler, and M. D. Lukin, Phys. Rev. Lett.

94, 086803 (2005).
[14] F. Gerbier and J. Dalibard, New J. Phys. 12, 033007 (2010).
[15] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod.
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