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We describe a model of dynamic Bose-Einstein condensates near a Feshbach resonance that is computationally
feasible under assumptions of spherical or cylindrical symmetry. Simulations in spherical symmetry approximate
the experimentally measured time to collapse of an unstably attractive condensate only when the molecular
binding energy in the model is correct, demonstrating that quantum fluctuations and coupling between atoms and
(un)bound pairs of atoms included in the model are the dominant mechanisms during collapse. Simulations of
condensates with repulsive interactions find some quantitative disagreement, suggesting that pairing and quantum
fluctuations are not the only significant factors for condensate loss or burst formation. Inclusion of three-body
recombination was found to be inconsequential in all of our simulations, although we do not consider recent
experiments [Phys. Rev. A 84, 033632 (2011)] conducted at over an order of magnitude higher density.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) which are suddenly sub-
jected to strong attractive interatomic interactions can undergo
exotic collapse that resembles supernovas [1]. Experiments
[2,3] performed in the seemingly opposite vein, using strong
repulsive interactions, exhibit some of the same features of
the collapse, namely, an energetic burst of atoms, a remnant
condensate, and a significant portion of the atoms escaping
detection. These particular experimental observations of col-
lapsing BECs have eluded satisfying quantitative explanation
for over a decade, with the time to collapse being particularly
difficult to reproduce in simulations.

The regime of strong interatomic interactions is reached by
using a Feshbach resonance, where an external magnetic field
allows for tuning the sign and strength of the scattering length.
We present a theory of BECs near a Feshbach resonance,
including lowest-order fluctuations. Since a collapse is a
highly local effect, it is crucial that we allow for strong
inhomogeneities during the simulation. This model is defined
over time and six spatial variables. Symmetry assumptions and
the restriction of our knowledge to only certain off-diagonal
correlations reduces the model to four or five spatial degrees
of freedom. Assuming spherical symmetry, our simulations
predict a collapse time of about 2 milliseconds for one of the
condensates described in Ref. [1], which agrees well with the
experiment. Simulations of experiments [2] on condensates
with repulsive interatomic interactions consistently overesti-
mate the number of atoms remaining after a brief period near
the Feshbach resonance. In these repulsive simulations, we
observe that bound atomic pairs attain high velocities (above
8 millimeters per second) immediately before dissociating. In
all simulations, inclusion of an empirically based model of
three-body recombination had no significant effect.

We address the experimentally measured time to collapse,
which has thus far not been accurately reproduced for the
particular experiments we model. We also explore elements
of the dynamics that have received little experimental or
theoretical attention, such as the kinetics of bound pairs during

collapse, and attempt to reproduce the results of experiments
with a single pulse near the resonance.

Section II describes the experiments and summarizes past
simulations. Section III derives the Hartree-Fock-Bogoliubov
model and performs the simplifications needed to make the
resulting equations practical for simulation. We present the
results of our simulations in Sec. IV and draw conclusions in
Sec. V.

II. OVERVIEW OF EXPERIMENT AND THEORY OF
COLLAPSE AND RELATED DYNAMICS

A. Experiment

By exploiting a Feshbach resonance [4], the interactions
between condensed atoms can be tuned from repulsive to
attractive values over only a few microseconds [3]. In an
often-examined set of experiments [1,5,6] conducted at JILA,
condensates of about 15 000 85Rb atoms were formed at a
temperature of 3 nanokelvin with slightly repulsive interac-
tions. The repulsion was balanced by a magnetic trap that was
well approximated by an axisymmetric harmonic potential, so
that an initial condensate was stable and neither expanding nor
collapsing. The interactions were then suddenly tuned to be
attractive. A condensate would appear stable for a short time
(the collapse time tcollapse) after this transition, then suddenly
lose atoms at an exponential rate. During collapse, a burst of
energetic atoms was emitted from the condensate. Between
experiments, the number of atoms in the bursts varied by as
much as a factor of two, even for identical sets of controlled
and observed experimental parameters. If the atom loss was
interrupted by changing the strength of the interactions a
second time, now to a slightly repulsive value, jets of atoms
having a lower energy than the bursts were emitted, almost
entirely in the radial direction. A stable, excited, and highly
anisotropic condensate remained after atom loss ceased.

A significant number of atoms lost from the condensate
went undetected; for example, about 8500 atoms out of an
initial condensate of 15 000 were missing after a collapse [6].
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Atoms with energies greater than about 20 μK, atoms in states
that were not influenced by the trapping potential, and pairs of
atoms bound to each other because of the Feshbach resonance
(henceforth referred to as molecules) could not be detected.

One set of related experiments [2,6] started from a stable,
noninteracting or weakly repulsive BEC, which was subjected
to a rapid magnetic field pulse. The field was linearly ramped
from its initial value to a value near the Feshbach resonance
in tens to hundreds of microseconds, held at a constant value
for one to hundreds of microseconds (called the hold time),
and then quickly and linearly ramped back to the initial value.
Likewise, the scattering length was ramped from zero or a
small positive value to a very large positive value and finally
back to its initial small value.

Following a pulse, it was observed that the number of
atoms remaining in the condensate increased for longer ramp
times, indicating that the dominant loss mechanism was not
the usual density-dependent loss partly responsible for the
rethermalization of a stable condensate. Varying the initial
density of the BEC did not appreciably alter the rate of loss,
further suggesting that the loss was not density dependent. As
expected, pulses which came closer to the resonance resulted
in more loss from the condensate. When the scattering length
was held at a large positive value during the hold time, small,
damped oscillations in atom number were apparent when the
hold time was varied.

A burst of atoms similar to that in the collapse experiments
appeared in these experiments with repulsive interactions.
For small positive values of the scattering length, no burst
atoms were observed. Varying the number of atoms in the
surrounding thermal cloud did not appreciably affect the
bursts, indicating that interactions with noncondensed atoms
are not responsible. The burst atoms remained in the same
spin state as the condensed atoms, suggesting that spin-flip
interactions were not involved.

These single-pulse experiments inspired experiments [3,6]
with two magnetic field pulses separated by a free precession
time during which the magnetic field was held constant and
below the initial value. As with the other scenarios, an energetic
burst of atoms emanated from the condensate. Again, between
8% and 50% of the atoms escaped detection.

B. Theory

BEC collapse has been studied theoretically for several
years. Most recently, Altin et al. [7] performed new collapse
measurements in an optical trap, with a 85Rb condensate that
was over an order of magnitude denser than those of the
JILA experiments. In this regime, they found that a mean-field
description in combination with three-body losses gave a good
description of their measured collapse time and atom-loss
curve. In our paper, we focus on the much less understood JILA
experiments, where three-body losses are shown to play an
inconsequential role: as three-body losses are strongly density
dependent, this result is not surprising.

Kagan et al. [8] predicted that collapse occurs on a time
scale tcollapse ∼ ω−1, where ω is the trap frequency. The
observations of [1] have shown this prediction to be incorrect.
Kagan and coworkers also supposed [9] that, during a collapse,
the condensate’s density increases until density-dependent

losses due to three-body recombination take over, eventually
causing expansion of the condensate. The cycle then repeats,
as the trap pushes the remaining condensate back toward the
trap center. The Gross-Pitaevskii equation (GPE) simulations
of Saito and Ueda and Bao et al. [10–13] clearly show such
behavior, leading to significant atom loss and the prevention
of the appearance of a singularity during collapse.

These and other [14–17] simulations qualitatively repro-
duce the collapse process, the delay before atom loss begins,
the condensate number decay constant τdecay, bursts, and
jets, but have achieved no solid quantitative agreement with
observation. Minor differences in these authors’ results, as well
as the lack of quantitative agreement with experiment, may be
due to their different choices of density-dependent loss rates.
These losses have been shown [18] to have a complicated
dependence on magnetic field, especially near a Feshbach
resonance, making them difficult to precisely characterize.

Recognizing the deficiency in atom-loss models, Bao and
coworkers [13] performed a GPE simulation with a loss
rate chosen so that their simulations correctly reproduced
the experimental values of tcollapse and condensate remnant
number. The atom-number decay constant τdecay is reasonably
well reproduced, but the simulated burst energies are much
lower than what is experimentally observed. This discrepancy
suggests that a Gross-Pitaevskii model with simple density-
dependent loss does not sufficiently describe the collapse.
Savage et al. [19], surveying the literature and performing their
own simulations with several different loss rate coefficients,
arrive at the same conclusion, noting that theoretical values
of tcollapse are consistently larger than the experimental values.
The authors mention that this is surprising, since the period
before collapse begins should be the time domain during which
the GPE applies.

Duine and Stoof [20] propose that two condensed atoms can
collide, scattering one atom out of the condensate. They use
a Gaussian variational technique to investigate this quantum
evaporation [21] as a possible player in the collapse, especially
concerning remnant number and burst formation. Their sim-
ulations show a considerable loss from the condensate but,
disagreeing with observation, this loss begins immediately
after the interatomic interactions become attractive.

Mackie and coworkers [22] suggest that pairs formed by the
Feshbach resonance may dissociate into noncondensed atoms
during the collapse, and the simulations of Milstein et al.
[23], which neglect three-body losses but include quantum
fluctuations and pair formation via the Feshbach resonance,
show an energetic burst of noncondensed atoms, although by
using parameters not taken from experiments.

Calzetta et al. [24] downplay the importance of such a
molecular component for the values of the scattering length
acollapse in the collapse experiments, which are far from
resonance. Like Yurovsky [25], they attribute loss from the
condensate to the growth of noncondensed modes. Calzetta
et al. suggest that a theory accounting for fluctuations would
have instabilities growing out of those fluctuations, which may
account for earlier collapse times, or that a loss of coherence
between atoms is largely responsible for atom loss [26].

Wüster and coworkers [27] use the same theory of fluc-
tuations as Milstein et al. but also regard the molecular
component as unimportant to collapse. Their simulations
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still find a tcollapse exceeding the observed value. Using an
alternate, truncated Wigner formulation and including initial
and dynamical noise, a background thermal component, and
cylindrical geometry with experimental parameters, Wüster
et al. [28] still overestimate the experimentally measured
tcollapse by about 40 percent.

Haldar et al. [29] summarize a correlated potential harmon-
ics expansion method that accounts for two-body correlations
and models interatomic interactions with the van der Waals
potential. They show that anharmonicity and a finite potential
barrier at the ends of the optical trap have a nontrivial effect on
the stability of attractive condensates. The same method is used
to demonstrate a variation of energies with effective scattering
length where mean-field theory predicts none [30] and predicts
the critical number of condensed atoms at which a condensate
collapses much more accurately than does mean-field theory
[31], highlighting the importance of beyond-mean-field effects
in collapsing condensates.

All these models have at least some qualitative agreement
with observation, and some provide insight into other aspects
of the collapse experiments [12,13,15]. Saito and Ueda [10]
suggest the bursts are atoms originally near the center of the
collapse that acquire kinetic energy when three-body losses
suddenly remove a large number of atoms from the center of
the collapse. In these simulations and others [12–17], the burst
atoms are distinguished from the condensate purely by their
location. In the simulations of Milstein et al. and Wüster et al.
the burst is assumed to be a distinct noncondensed field which
can occupy the same space as the condensate.

The magnetic field pulse experiments have stimulated
fewer simulations than the collapse experiments. Duine and
Stoof [32] use coupled mean fields, allowing for molecule
formation, quantum evaporation, and three-body losses in
modeling the one-pulse experiments. These simulations had
only general qualitative agreement with the experiments, but
with the observation that the inclusion of three-body losses
suppressed oscillations in numbers of atoms and molecules,
despite the belief that these density-dependent losses should
be unimportant under the experimental circumstances [6].
Mackie and coworkers [22] use a coupled mean-field model
that allows for dissociation of molecules into noncondensed
atom pairs but find only about five percent loss to the
noncondensed component, with very few molecules being
retained. The authors observe a larger loss in simulations of
the two-pulse experiments, but the oscillation envelopes have a
behavior markedly different from the slight damping observed
in the experiments. Kokkelmans and Holland [33] use the same
model as the Milstein et al. collapse simulation [23] but use
a Gaussian average over a homogeneous gas to simulate the
behavior of a trapped gas. These simulations agreed fairly well
with the two-pulse experiments, showing that the majority of
atoms lost from the condensate go into noncondensed modes,
and the missing atoms are identified as molecules. Köhler and
coworkers [34] model the two-pulse experiments with a theory
that includes molecule formation and quantum fluctuations
and find good qualitative agreement with the experiments.
They also find that the presence of the trap moves the means
of the oscillations of the condensate and burst numbers closer
together in a way not captured by a Gaussian average of
a homogeneous gas. They attribute this difference to the

presence of a length scale not found in the homogeneous gas
simulations.

Many of the questions posed by the experiments have
eluded a satisfying explanation. In the case of collapse,
the experimentally measured tcollapse has been particularly
difficult to simulate. Unsettled points of contention include
the mechanisms by which the jets and bursts operate, and
the importance of three-body losses to the collapse. The
counterintuitive behavior of the condensate after the collapse
has thus far received relatively little attention [35], as have the
experiments involving a single pulse of repulsive interactions.
There has also been little exploration of the various models’
implications for measurable quantities and phenomena that
have not yet been vigorously pursued in experiments.

III. HARTREE-FOCK-BOGOLIUBOV MODEL

To treat both collapse experiments and single- and double-
pulse purely repulsive experiments we will work with a
Hartree-Fock-Bogoliubov (HFB) model which explicitly takes
into account the two main channels involved with the Feshbach
resonance. Previous versions of this model exist [23,36],
including operator equations and factorized expectation values
of the HFB equations [27,37], but we present here adaptations
to spherical and cylindrical geometry in a complete and rigor-
ous derivation, as well as an application in Sec. IV using all real
experimental parameters for the 85Rb experiments at JILA.

We begin with a definition of the atomic field operator as

ψ̂a(x) = φa(x) + χ̂(x), (1)

where φa(x) ≡ 〈ψ̂a(x)〉, and all operators are taken to be in the
Heisenberg picture, although for brevity we do not explicitly
write the time dependence. We call a pair of atoms in a qua-
sibound state due to the Feshbach resonance a molecule. We
loosely assign the term “molecule” to the closed channel for the
purpose of this discussion. The actual observable molecule is a
superposition of open and closed channels. The field operator
for molecules is represented by ψ̂m(x), with expectation value
φm(x) ≡ 〈ψ̂m(x)〉. To keep the problem tractable, we assume
no fluctuations around the molecular condensate. The normal
and anomalous fluctuations are defined by

GN (x,x′) ≡ 〈χ̂ †(x′)χ̂(x)〉
= 〈ψ̂†

a (x′)ψ̂a(x)〉 − 〈ψ̂†
a (x′)〉〈ψ̂a(x)〉

= 〈ψ̂†
a (x′)ψ̂a(x)〉 − φ∗

a (x′)φa(x) (2)

and

GA(x,x′) ≡ 〈χ̂(x′)χ̂(x)〉
= 〈ψ̂a(x′)ψ̂a(x)〉 − 〈ψ̂a(x′)〉〈ψ̂a(x)〉
= 〈ψ̂a(x′)ψ̂a(x)〉 − φa(x′)φa(x), (3)

respectively. The diagonal elements (x = x′) of the normal
fluctuations give a number density of noncondensed atoms,
while the diagonal elements of the anomalous fluctuations
give the variance in the mean φa(x). Off-diagonal elements
of the normal and anomalous fluctuations are equal-time
correlation functions.

We obtain equations of motion for the atomic and molecular
mean fields and the normal and anomalous fluctuations by
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finding Heisenberg equations of motion for the atomic and
molecular field operators and for the products χ̂ †(x′)χ̂(x) and
χ̂(x′)χ̂(x). Taking the expectation value on both sides of the
resulting equations results in averages of products of atomic
and molecular field operators; by assuming that the atomic and
molecular field operators act in orthogonal subspaces of the
full Hilbert space, these expectation values factorize as, for
example,

〈ψ̂†
a (x)ψ̂m(x′)〉 = φ∗

a (x)φm(x′). (4)

Products of three or four atomic field operators, which do
appear in the equations of motion, require special care to be
expressed in terms only of the atomic mean field and normal
and anomalous fluctuations.

We may apply a manifestation of Wick’s theorem [38] if the
state of the system is an eigenstate of every Bogoliubov atomic
quasiparticle annihilation operator (a linear superposition
of the atomic momentum-space creation and annihilation
operators). This quasiparticle coherent state, which is not
generally a coherent state of the field operator ψ̂a(x), is a
squeezed state [39], and thus minimizes the number-phase
Heisenberg uncertainty relation. Then

〈ψ̂†
a (x)ψ̂a(x)ψ̂a(x)〉 = |φa(x)|2φa(x) + φ∗

a (x)GA(x,x)

+ 2φa(x)GN (x,x), (5)

for example, is exact.
We use the Hamiltonian

Ĥ =
∫

d3x ′′ψ̂†
a (x′′)

[
− h̄2

2m
∇2 + V (x′′)

]
ψ̂a(x′′)

+
∫

d3x ′′ψ̂†
m(x′′)

[
− h̄2

4m
∇2 + 2V (x′′) + ν

]
ψ̂†

m(x′′)

+ U

2

∫
d3x ′′ψ̂†

a (x′′)ψ̂†
a (x′′)ψ̂a(x′′)ψ̂a(x′′)

+ g

2

∫
d3x ′′[ψ̂†

m(x′′)ψ̂a(x′′)ψ̂a(x′′) + H.c.], (6)

which is often referred to as a two-channel Hamiltonian, where
m is the mass of an atom, V (x′′) is the external potential felt
by a single atom, ν is the detuning of the Feshbach resonance
in units of energy, U relates to the strength of the nonresonant
atom-atom interaction, and g relates to the strength of the atom-
molecule coupling which gives rise to the Feshbach resonance.
These interaction parameters are based on the assumption
of contact interactions between the particles. However, such
interactions give rise to an ultraviolet divergence in momentum
space which must be treated properly by renormalization. This
is done by the introduction of a momentum cutoff K while
making sure that, at the same time, the correct underlying
two-body resonance physics is maintained. Therefore, it is
necessary to consider the contact interactions as the zero-
range limits of the actual nonlocal interatomic potentials. The
properties of the contact potentials can then be chosen such
that the two-body physics around a Feshbach resonance are
correctly described [33,37]. This renormalization procedure
amounts to a K-dependent relationship between the interaction

TABLE I. Values of the fixed renormalization parameters that we
used in our code, where mproton is the mass of a proton, a0 is the Bohr
radius, and μB is the Bohr magneton.

Parameter Value

m 84.911794mproton

abg −450.0a0

�B 10.95 G
�μmag −2.2259μB

Bres 154.9 G

parameters in the Hamiltonian and the physical interaction
parameters, given by

U = 	U0,

g = 	g0, (7)

ν = ν0 + 1
2αgg0,

where

	 ≡ 1

1 − αU0
(8)

and

α ≡ mK

2π2h̄2 . (9)

The parameters with a subscript 0 are the unrenormalized
physical interaction parameters

U0 ≡ 4πh̄2abg

m
, (10)

g0 ≡
√

gcU0�B�μmag, (11)

ν0 ≡ (B − Bres) �μmag. (12)

In Eqs. (10)–(12) abg is the background scattering length; �B

is the width of the Feshbach resonance and is defined as the
distance from the resonance position to the point where the
effective scattering length is zero; �μmag is the difference in
magnetic moments between an uncoupled bound and unbound
pair of atoms; B is the external magnetic field; Bres is the
position of the resonance, defined as the value of the magnetic
field for which the effective scattering length diverges; and the
correction factor gc may be set to 1.816 to match the binding
energy of the contact potential model as closely as possible
to the field-dependent binding energy of the weakly bound
rubidium Feshbach state [33], or to 2 to match the mean-field
energy. The values of those parameters which are fixed are
summarized in Table I. The cutoff K is set to 6 × 108 inverse
meters, the largest wave number in our simulations. One may
combine the unrenormalized parameters of Eqs. (10)–(12) and
aeff = abg[1 − �B/(B − Bres)] to write

aeff = abg − m

4πh̄2

g2
0

gcν0
. (13)

Consistent with the two-body approximation, the Hamiltonian
(6) neglects all interactions between atoms and molecules that
do not involve molecule formation or dissociation and assumes
molecules do not interact with each other.
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FIG. 1. Coordinate axes for spherical symmetry. Since all fields
are independent of the orientation of R, we are free to rotate the axes
(keeping the origin fixed), and so we align the z axis with k. Then
the dependence of the correlation functions’ values on the relative
orientations of k and R (bold arrows) can be expressed in spherical
coordinates.

When we transform to the center-of-mass R ≡ (x + x′)/2
and relative r ≡ x − x′ coordinates, we can write

φ̄a(R) ≡ φa(x) = φa(x′),
φ̄m(R) ≡ φm(x) = φm(x′),

ḠN (R,r) ≡ GN (x,x′), (14)

ḠA(R,r) ≡ GA(x,x′),
V̄ (R) ≡ V (x) = V (x′).

These statements will be valid if, in the case of spherical
geometry, the external potential and the initial conditions on
all single-particle fields (diagonal elements of GN and GA

included) are rotationally invariant, and we only consider x
and x′ such that

|x| = |x′|. (15)

For cylindrical geometry, we assume the initial conditions on
single-particle fields and the external potential are invariant
with respect to rotation about a vertical axis (let it be the z

axis) and invariant with respect to reflections over a plane
normal to that axis (the x−y plane); we must also restrict x
and x′ such that

|xρ | = |x′
ρ |,

(16)
|xz| = |x′

z|,
where xρ is the component of x lying in the x−y plane and xz is
the component along the z axis. Note that the restrictions (15)
and (16) impose no additional approximations beyond those
that have already been made. They merely provide convenient
simplifications in the equations of motion.

The notation in Eq. (14) is general enough to handle the
spherical and cylindrical cases, although only the magnitude
of R is important to single-particle fields in the former, and

FIG. 2. Coordinate axes for cylindrical symmetry. Since all fields
are independent of the azimuthal angle of R, we are free to rotate the
axes so long as the z axis and origin remain fixed. We align the x axis
with the component of k lying in the x-y plane. Then the dependence
of the correlation functions’ values on the relative orientations of k
and R (bold arrows) can be expressed in cylindrical coordinates.

only the magnitudes of Rz and Rρ are important to single-
particle fields in the latter. For consistency, we make the same
assumptions about the dependence of off-diagonal correlations
on R for each symmetry. Following [23], we then Fourier
transform over the relative coordinate:

ḠN (R,r) → G̃N (R,k),
(17)

ḠA(R,r) → G̃A(R,k),

which are valid because ḠN and ḠA are each symmetric with
respect to r. This transform removes a Dirac delta function
appearing in the partial differential equation for the anomalous
fluctuations.

Next, we choose coordinate systems appropriate to the
geometry. In the spherically symmetric case, we choose
spherical coordinates, where k is aligned with the z axis,
as in Fig. 1. The assumption of spherical symmetry in R
permits this choice, since only the relative orientation of R
and k will be important. The angle between R and k is then
θ , and the azimuthal angle of R in this coordinate system is φ.
For cylindrical symmetry, we are only permitted to rotate the
coordinate axes about the z axis without changing the values of
each dependent variable, so we align the x axis with kρ , which
is the component of k lying in the x−y plane, as in Fig. 2.

The five spatial variables are then kz, kρ , Rz, Rρ , and φ,
the axial and radial components of the relative wave number
and center-of-mass coordinate, respectively, and the azimuthal
angle of R. The Laplacians and gradients involved are then
expressed in spherical or cylindrical coordinates, depending
on the geometry; in spherical symmetry, the radial parts of the
Laplacians may be simplified, as in the usual treatment of the
hydrogen atom, with the substitutions

ϕa(R) ≡ Rφ̄a(R),
(18)

GN (R,k,θ,φ) ≡ RG̃N (R,k,θ,φ),
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and likewise for the molecular field and anomalous fluctua-
tions. In cylindrical symmetry, we use

ϕa(Rz,Rρ) ≡ √
Rρφ̄a(Rz,Rρ),

GN (Rz,Rρ,kz,kρ,φ) ≡ √
RρG̃N (Rz,Rρ,kz,kρ,φ), (19)

and likewise for the molecular field and anomalous
fluctuations.

Note that, in the spherical case, we have not assumed
that the azimuthal angle φ is unimportant, making our model
more general than those used earlier [23,27]. Rather than the
Legendre polynomial expansions used by Milstein et al. [23]
and Wüster et al. [27], an appropriate basis for expanding
the normal and anomalous fluctuations is then the spherical
harmonics Y

q

l (θ,φ). We write

GN(A)(R,k,θ,φ) =
∞∑
l=0

l∑
q=−l

G l,q

N(A)(R,k)Y q

l (θ,φ), (20)

where the N (A) subscript means that the equation applies to
both GN and GA. Only one angle is present in the cylindrical
case. Therefore, we use trigonometric functions in φ to form
a complete angular basis, which is common for spectral
solutions to partial differential equations [40]. In this respect,
sine series are slightly more stringent in their criteria for
uniform convergence than cosine series. Accordingly, we
expand the normal and anomalous fluctuations as

GN(A)(Rz,Rρ,kz,kρ,φ) =
∞∑

n=0

Gn
N(A)(Rz,Rρ,kz,kρ) cos(nφ),

(21)

where a superscript n indexes a generally complex scalar
expansion coefficient and does not denote a power.

The HFB model for spherical symmetry in the center-of-
mass coordinate consists of the denumerably infinite set of
equations

ih̄
∂

∂t
ϕa(R) =

{
− h̄2

2m

∂2

∂R2
+ V̄a(R) + U

[ |ϕa(R)|2
R2

+ 2
GI

N (R)

R

]}
ϕa(R) +

[
U
GI

A(R)

R
+ g

ϕm(R)

R

]
ϕ∗

a (R), (22)

ih̄
∂

∂t
ϕm(R) =

[
− h̄2

4m

∂2

∂R2
+ V̄m(R) + ν

]
ϕm(R) + g

2

[
ϕ2

a(R)

R
+ GI

A(R)

]
, (23)

ih̄
∂

∂t
G l,q

N (R,k)

= −i
h̄2k

m

[√
(l − q + 1) (l + q + 1)

(2l + 1) (2l + 3)

(
∂

∂R
+ l + 1

R

)
G l+1,q

N (R,k) + u
q

−l+1

√
(l + q) (l − q)

(2l + 1) (2l − 1)

(
∂

∂R
− l

R

)
G l−1,q

N (R,k)

]

+ (−1)q
{
g

ϕm(R)

R
+ U

[
ϕ2

a(R)

R2
+ GI

A(R)

R

]}
G∗ l,−q

A (R,k) −
{
g

ϕ∗
m(R)

R
+ U

[
ϕ∗2

a (R)

R2
+ G∗I

A (R)

R

]}
G l,q

A (R,k), (24)

ih̄
∂

∂t
G l,q

A (R,k) =
{

− h̄2

4m

[
∂2

∂R2
− l (l + 1)

R2
− 4k2

]
+ 2V̄a(R) + 4U

[ |ϕa(R)|2
R2

+ GI
N (R)

R

]}
G l,q

A (R,k)

+
{
g

ϕm(R)

R
+ U

[
ϕ2

a(R)

R2
+ GI

A(R)

R

]} [
G l,q

N (R,k) + (−1)qG∗ l,−q

N (R,k) +
√

4πδ0,lδ0,qR
]
, (25)

where the diagonal elements GI
N(A) of the normal and anomalous fluctuations, respectively, are computed from

GI
N(A)(R) = 1

4π5/2

∫ ∞

0
dkk2G0,0

N(A) (R,k) . (26)

The discrete step function ub
a is 1 if a � b and 0 otherwise. In the cylindrical case, the denumerably infinite set of equations is

ih̄
∂

∂t
ϕa(Rρ,Rz) =

{
− h̄2

2m

(
1

4R2
ρ

+ ∂2

∂R2
ρ

+ ∂2

∂R2
z

)
+ V̄a(Rρ,Rz) + U

[∣∣ϕa(Rρ,Rz)
∣∣2

Rρ

+ 2
GI

N (Rρ,Rz)

R
1/2
ρ

] }

×ϕa(Rρ,Rz) +
[
U
GI

A(Rρ,Rz)

R
1/2
ρ

+ g
ϕm(Rρ,Rz)

R
1/2
ρ

]
ϕ∗

a (Rρ,Rz), (27)

ih̄
∂

∂t
ϕm(Rρ,Rz) =

[
− h̄2

4m

(
1

4R2
ρ

+ ∂2

∂R2
ρ

+ ∂2

∂R2
z

)
+ V̄m(Rρ,Rz) + ν

]
ϕm(Rρ,Rz) + g

2

[
ϕ2

a(Rρ,Rz)

R
1/2
ρ

+ GI
A(Rρ,Rz)

]
, (28)

h̄
∂

∂t
Gn

N (Rρ,Rz,kρ,kz) = − h̄2

2m

[
kρ

(
∂

∂Rρ

+ 2n + 1

2Rρ

)
Gn+1

N (Rρ,Rz,kρ,kz) + kρ

(
∂

∂Rρ

− 2n − 1

2Rρ

)
un

1Gn−1
N (Rρ,Rz,kρ,kz)

+kρ

(
∂

∂Rρ

− 1

2Rρ

)
δn,1G0

N (Rρ,Rz,kρ,kz) + 2kz

∂

∂Rz

Gn
N (Rρ,Rz,kρ,kz)

]

+2 Im

( {
g

ϕm(Rρ,Rz)

R
1/2
ρ

+ U

[
ϕ2

a(Rρ,Rz)

Rρ

+ GI
A(Rρ,Rz)

R
1/2
ρ

]}
Gn∗

A (Rρ,Rz,kρ,kz)

)
, (29)
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ih̄
∂

∂t
Gn

A(Rρ,Rz,kρ,kz)

=
{

− h̄2

4m

[
1 − 4n2

4R2
ρ

+ ∂2

∂R2
ρ

+ ∂2

∂R2
z

− 4
(
k2
ρ + k2

z

)] + 2V̄a(Rρ,Rz) + 4U

[∣∣ϕa(Rρ,Rz)
∣∣2

Rρ

+ GI
N (Rρ,Rz)

R
1/2
ρ

]}

×Gn
A(Rρ,Rz,kρ,kz) +

{
g

ϕm(Rρ,Rz)

R
1/2
ρ

+ U

[
ϕ2

a(Rρ,Rz)

Rρ

+ GI
A(Rρ,Rz)

R
1/2
ρ

]}

× [
Gn

N (Rρ,Rz,kρ,kz) + Gn∗
N (Rρ,Rz,kρ,kz) + R1/2

ρ δn,0
]
, (30)

with

GI
N(A)(Rρ,Rz) = 1

(2π )2

∫ ∞

−∞
dkz

∫ ∞

0
kρdkρ G0

N(A)(Rρ,Rz,kρ,kz). (31)

Note that the normal fluctuations will remain real in either
symmetry if they are initially real.

Where desired, we can incorporate a three-body loss
coefficient into our spherical model for the atoms inside the
atomic condensate by fitting the analytical model used by
Braaten and Hammer [41] and D’Incao et al. [42] to the
empirical data of Roberts et al. [18]. This model assumes

that universal Efimov physics, in combination with the weakly
bound Feshbach state and deeply bound dimer states, give rise
to the three-body recombination. The result is the addition of
the term

−1

2
ih̄K3 (aeff)

|ϕa(R)|4
R4

ϕa(R) (32)

to the right-hand side of Eq. (22), where

K3(aeff) = h̄

2m
a4

eff

{
67.1 × e−2η{cos2[s0 ln(aeff/apos)] + sinh2 η} + 16.8(1 − e−4η), if aeff > 0

4590(sinh 2η)/{sin2[s0 ln(aeff/aneg)] + sinh2 η}, if aeff < 0,
(33)

with s0 = 1.006 24, η = 0.016 597 1, apos = 236.743a0, and
aneg = −apos/0.96. Figure 3 compares this loss rate with
measured values [18]. The leading scaling goes as a4

eff , which
has been shown to be effective elsewhere [43]. In practice, we
impose an empirically based floor of 10−28 cm6/s on K3(aeff).
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FIG. 3. Comparison of measured [18] (circles) and analytical
(solid line) three-body loss rate of Eq. (33) as a function of magnetic
field. Equation (33) has been multiplied by a factor of 6 here, because
the measurements were done in a thermal gas. The dashed vertical
line marks B = 154.9 Gauss, where the effective scattering length
diverges.

IV. RESULTS OF HFB SIMULATIONS

Our simulations are performed in spherical symmetry using
the method of lines [44]. We do not perform more realistic
axisymmetric simulations, since they would require a larger
amount of time. The infinite sums over l in Eqs. (24) and
(25) are truncated at l = 1, which is the smallest value that
provides satisfactorily converged results. Truncating at l = 3
does not significantly affect the results (for example, atom
number during a collapse simulation changes by less than
0.002 percent and by less than 0.003 percent during the longest,
most repulsive pulse simulation), although computation time
is significantly larger. The expansion coefficients for any
nonzero q are coupled only to those for −q, and only q = 0
is necessary for calculation of the diagonal elements of the
fluctuations. Therefore, we only propagate q = 0 in our sim-
ulation, and forego whatever information about fluctuations is
present in the q �= 0 coefficients. A fifth-order Runge-Kutta
method provides time propagation, and we handle the spatial
derivatives by spectral collocation in a sinusoidal basis. We
neglect three-body effects unless noted otherwise: as we
will show, three-body effects do not significantly alter our
results.

We create initial states (non-interacting in attractive sim-
ulations and with aeff = 7a0 in repulsive simulations) using
imaginary time propagation with the Gross-Pitaevskii equa-
tion in the trap used in Ref. [1], using ω = 2π × 12.77
radians per second, which is the geometric mean of the
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experimental trapping frequencies. Imaginary time propaga-
tion is necessary because the simulation’s implementation
imposes infinite potential barriers at the end of the grid, so
that a closed-form solution for the Gross-Pitaevskii equation
is not available. We assume the molecular field’s initial
state is

φm = − g

2ν
φ2

a, (34)

which is the exact initial state for a uniform gas without
fluctuations. Noting the importance of the molecular binding
energy [33], we always choose gc = 1.816, except where
noted.

A. Attractive interactions

The collapse simulation begins with the effective scattering
length set to −12a0, where it remains for the duration of the
simulation. All simulation parameters are taken as the physical
parameters of the experiment of Ref. [1].

Figure 4 plots the number of atoms in the condensate as
a function of time, and Fig. 5 shows the condensate density.
The erratic oscillations around the general downward trend
visible in Fig. 4 are more clearly shown in Fig. 6. We interpret
2 milliseconds as our predicted collapse time, because the
condensate number begins to drop substantially and the density
grows increasingly concentrated near the origin at about this
time. This value can be directly compared to the nearest data
point in Fig. 2 of Donley et al. [1], which has a collapse
time of about 2 ± 1 milliseconds. Beyond 2.04 milliseconds,
negative noncondensed densities consistently start to appear
in our simulation, and the error in total number diverges.
Such instability may occur because the spatial grid is uniform
and non-adaptive, while most of the dynamics occur on the
innermost grid points once the collapse has begun. Thus,
an adaptive spatial grid would be required to be sure of
a tcollapse value more precise than 2 milliseconds. Including
three-body effects changes the results by less that 0.2 percent,
as Fig. 7 shows. The K3 factor in the collapses is at the
floor value of 10−28 cm6/s, which is twice the maximum
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FIG. 4. Number of condensed atoms in the collapse simulation.
The dashed vertical line marks t = 2.04 ms, the last sample point for
which the simulation is stable.

FIG. 5. (Color online) Condensed atom density in the collapse
simulation. In the simulation, R extends to 10 μm.

value that Altin et al. [7] find allowable. However, since
the loss term scales as the square of the density and the
condensates of Altin et al. are several times denser than those
of the JILA experiments, it seems likely that K3 would indeed
have to be much larger to have a noteworthy effect in our
simulations.

These results are compared to mean-field theoretic results in
Fig. 8, which plots atomic condensate density at the origin as
calculated from simulations using our model and the GPE.
A comparison of numbers of atoms would be pointless,
since the GPE only allows particles to be in the atomic
condensate. Characterizing collapse by density at the origin,
the GPE predicts a collapse time more than 5 milliseconds later
than our model predicts and than the experiments measure.
Figure 8 also shows the results obtained with our model
when B = Bres + �B. First, we use the nominal value of the
coupling correction factor gc = 2. According to Eq. (13), the
scattering length aeff = 0 for this field. Then, both the GPE
simulation and our model simulation result in a stationary
solution, as would be expected for the noninteracting case.
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FIG. 6. Number of condensed atoms during a brief period in
the middle of the collapse simulation. The plotted points are
0.5 nanoseconds apart, so the visible oscillations of period 1.1
microseconds are not aliased.
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FIG. 7. Difference over the average of the number of condensed
atoms between collapse simulations with and without three-body
effects. The dashed vertical line marks t = 2.04 ms, the last sample
point for which the simulation is stable. At no time does the average
difference exceed 0.2%, although it is consistently increasing.

When we set the scattering length to −12a0, our model gives
results nearly identical to the GPE for atom number and
condensate density at the origin (see Fig. 8), and a collapse
occurs in both simulations. These results are consistent with
the findings in Ref. [27]. However, when we tune the coupling
correction factor to the value gc = 1.816 to match the correct
molecular binding energy, the simulation results of our model
differ significantly from the nominal GPE results. Simulation
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C: gc = 1.816
S: gc = 1.816

S: gc = 2

FIG. 8. Density of atoms in the atomic condensate as predicted
by the Gross-Pitaevskii equation (solid line) during a simulated
collapse and by various configurations of our model. For readability,
the abscissa here is truncated before the GPE simulation ends; its
density at the origin climbs until instability terminated the simulation
at 7.35 milliseconds. Our model with gc = 1.816 (long dashed line)
collapses much earlier than the GPE for a given magnetic field, but
also collapses for B = Bres + �B (short dashed line). For gc = 2,
our model predicts a rise in density very similar to the GPE (a plot
would overlap the GPE result shown here), and no effective change in
density when B = Bres + �B (dotted line). The “C” and “S” labels in
the legend are reminders of which series are for nominally collapsing
and stationary values of aeff , respectively.
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FIG. 9. Atomic condensate density at the origin for simulations
with effective scattering lengths of 0 (solid line), −12a0 (long dashes),
−26.5a0 (short dashes), and −54.5a0 (dotted line). These simulations
become unstable after 2.31, 2.04, 1.88, and 1.6 milliseconds,
respectively. All simulations use gc = 1.816.

results are again shown in Fig. 8 for B = Bres + �B, but now
we observe a collapse. This can be understood again from
Eq. (13) since, at this field for gc = 1.816, we obtain the value
aeff = −41a0.

As we discussed before, it is not possible in our model
to have the binding energy and the mean-field energy both
correctly described, which leads to a trade-off in what is the
dominant effect causing the collapse. For our treatment of the
collapse problem, we argue that the collapse near a Feshbach
resonance is most sensitive to the binding energy; however,
since we have to set accordingly the value gc = 1.816, this
unfortunately leads to stability problems in the zero-crossing
region of the scattering length.

The molecular field is very sparsely populated, never
totalling more that 10% of a molecule, even though pair
formation is the primary mechanism in the model [37] of
interatomic interactions that we used. However, this does not
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FIG. 10. Number of condensed atoms in the two-pulse simula-
tion. The oscillations in the middle of the simulation occur during the
free precession time after the first pulse and before the second, when
the magnetic field is held constant.

033616-9



SNYDER, KOKKELMANS, AND CARR PHYSICAL REVIEW A 85, 033616 (2012)

FIG. 11. Time dependence of the magnetic field for simulations
with a single pulse that induces repulsive interatomic interactions. The
lowest value of the magnetic field is Bpulse, and the time to descend
from the initial value Bini ≈ 165.68 Gauss, where aeff = 7a0, to Bpulse

is called tramp. Our simulations had the magnetic field near resonance
for 1 microsecond, although experiments were conducted [2] with
many other values.

mean that the molecular field could simply be neglected: in
a two-channel model of a Feshbach resonance, the molecular
field often has very small occupation but plays a key role
in both static and dynamic descriptions of the physical
molecule, a superposition between the atomic (open) and
molecular (closed) channels. The oscillations between atoms
and molecules, especially visible in Fig. 6, have a period
of 1.1 microseconds, which is approximately equal to tU =
m3U 2/h̄5, a natural time scale arising from dimensional
analysis of the parameters of the model. Other analytically
deduced time scales are tg = h̄7/(m3g4) ≈ 0.57 nanoseconds,
and tν = h̄/ν ≈ 22 nanoseconds.

While most of our collapse results are for aeff = −12a0,
Fig. 9 shows atomic condensate density at the origin for
other values of aeff . We find that, for aeff = −26.5a0 and
aeff = −54.5a0, respectively, the simulations become unstable
after 1.88 milliseconds and 1.6 milliseconds, respectively.
These times are within the error bounds for the corresponding
experimental collapse times reported in Fig. 2 of Ref. [1],
and correctly capture the general trend of collapse time
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FIG. 12. Numbers of condensed atoms remaining at the ends
of simulations (glyphs connected by dashed lines) and experiments
[2,45] (glyphs connected by solid lines) as a function of tramp. Curves
are provided as a guide to the eye; actual data are represented by
glyphs.
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FIG. 13. Difference over the average of the number of condensed
atoms between simulations with and without three-body effects.
The scenario was a single pulse to B = 156 Gauss. At no time
does the average difference exceed 2.7%, although it increases most
dramatically when the magnetic field is near resonance.

decreasing nontrivially as effective scattering length becomes
more negative.

B. Repulsive interactions

It is interesting to compare our nonhomogeneous model
with the double-pulse experiment of Donley et al. [3],
which has been described successfully earlier with a similar
but homogeneous model [33] by applying the local-density
approximation. In this experiment, a condensate is subjected
to two magnetic field pulses with interatomic interactions
that become very repulsive. Although we do not expect
inhomogeneity effects as large as in the attractive situation
where a collapse occurs, it is useful to compare the results
between the models as it indicates the validity of the local-
density approximation. The results are indeed different. With
an initial state having 16 600 atoms, all in the condensate, and
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FIG. 14. Density of atoms in the atomic condensate as predicted
by our model (solid line) and the Gross-Pitaevskii equation (dashed
line) during a simulation of a pulse to Bpulse = 156 Gauss.
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FIG. 15. (Color online) Velocities of molecules during a portion
of a simulation involving a pulse to 156 G.

a free evolution time of 10 microseconds (the left-most set
of data points in Fig. 5 of Ref. [33]), we find about 12 000
condensed atoms and slightly over 4500 noncondensed atoms
at the end of the simulation. Kokkelmans and Holland [33] find
about 9500 and 6300, respectively, while the experiment [3]
ends with just over 10 000 condensed atoms and slightly under
5000 noncondensed atoms. Figure 10 shows the number of
condensed atoms over the course of our simulation. It should
be noted that a homogeneous version of our code exactly
reproduced the results of the code used in Ref. [33].

In comparison with a second type of experiment, we
conducted simulations using the same parameters as those
used to create the left-most three sets of data points in Fig. 4
of Ref. [2], in which a condensate is subjected to a single
brief magnetic field pulse of strength Bpulse. Both the pulse
strength and the time tramp to reach that value of magnetic
field are varied between experiments. Figure 11 shows the
time dependence of the magnetic field used in the simulations.
The results are plotted alongside those of Claussen et al. [45]
in Fig. 12, which includes experimental error bars. Error
bars on the simulated data points, which would reflect the
differences between different grid resolutions, are too small to

FIG. 16. (Color online) Condensed atom density during a pulse to
Bres. The inset magnifies the region where the oscillations in density
are most pronounced.

FIG. 17. (Color online) Molecule density during a pulse to Bres.
The inset magnifies the same region as the inset in Fig. 16.

see in the figure. Our simulations consistently end with higher
numbers of condensed atoms than the experiments did, and
the condensed atom number decreased monotonically with
longer ramp times. However, the experimental results are not
easy to interpret. For instance, there is a local minimum in the
158 Gauss series which is not observed in the simulations.
Moreover, the experimental data have a larger number of
atoms remaining for the 156.7 Gauss pulse than the 157.2
Gauss pulse for the shortest ramp time; our simulations do not
reproduce this effect, either. Including three-body effects does
not significantly change our results, as Fig. 13 shows. Again,
the K3 term in these simulations is larger than what Altin et al.
predict, but note that these simulations are for relatively short
times, and for condensates that are over an order of magnitude
sparser than those of Altin et al. and expanding further.

Our model’s results for atomic condensate density at the
origin are compared to those of the GPE in Fig. 14 for the
Bpulse = 156 Gauss case. Not only does the GPE predict an
invariant number of condensed atoms, but it also predicts a
nearly invariant density. This comparison is representative of
all of our simulations with repulsive interactions.

Figure 15 shows the molecular velocities during a small
portion of the Bpulse = 156 Gauss simulation, calculated as the

FIG. 18. (Color online) Noncondensed atom density during a
pulse to Bres. The inset magnifies the same region as the inset in
Fig. 16.
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gradient of the phase. Such instances of very high velocities
appear periodically, when the molecular field declines. We
infer that the molecular binding energies are transformed to
kinetic energy as the molecules dissociate.

We also performed simulations with Bpulse = Bres. Note
that the effective scattering length diverges for this value
of the magnetic field, and the Gross-Pitaevskii equation
becomes undefined. The results follow the trend established in
Fig. 12, with fewer than 10 000 condensed atoms remaining
when tramp = 50 microseconds. Figures 16, 17, and 18 show
the number densities of condensed atoms, molecules, and
noncondensed atoms, respectively, for the simulation with
Bpulse = Bres and tramp = 12.5 microseconds.

V. CONCLUSION

We have derived a two-channel model of BECs in which
the constituent atoms interact via a Feshbach resonance. The
model includes first-order fluctuations around the atomic mean
field and is computationally feasible in spherical or cylindrical
symmetry. We compare our model to the results of the collapse
experiments at JILA, which so far always have been difficult
to explain by theory.

The model, which accounts for interactions using a
mean field of bound pairs, approximates the experimentally
measured time to collapse in a simulation of a BEC with
attractive interactions, but only when the renormalization
incorporates the correct molecular binding energy at the cost of
incorporating an incorrect mean-field energy. It is important to
note that our model cannot simulate the whole regime between
an unstably attractive gas and a noninteracting gas with a single
value of the parameter gc.

The inclusion of three-body effects does not significantly
affect the condensate’s dynamics leading up to collapse, in
contrast to recent experimental findings at the Australian
National University [7], which operated at over an order of
magnitude higher densities. Three-body effects may increase
the magnitude of atom loss, especially near and after tcollapse,
when the condensate’s density is very high. Near and after the

collapse time, the density is strongly localized at the origin,
and our simulations cease to be numerically tractable due to
our choice of a regular grid. A finite element approach or
other alternative grid may allow post-collapse simulations in
the future. Such an approach could be particularly effective if
utilized in the center-of-mass coordinate.

The model does not quantitatively reproduce the results of
experiments with a single brief period of repulsive interactions.
In our simulations of these experiments, a significant number
of molecules are formed, concurring with expectations [2,3,33]
that a nontrivial molecular condensate is formed and coexists
with the atomic condensate under these circumstances. We
found that the use of three-body recombination did not
improve matters. However, the large number of molecules
strains the assumption in our model that fluctuations around
the molecular field are negligible. Incorporating normal and
anomalous molecular fluctuations would add considerably
to the computational requirements. Interactions of molecules
with atoms and with each other, such as collisions, may temper
the high velocities observed in our simulations, possibly
resulting in a larger noncondensed component and smaller
condensed fields.
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