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Ferromagnetic transition of a two-component Fermi gas of hard spheres
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We use microscopic many-body theory to analyze the problem of itinerant ferromagnetism in a repulsive
atomic Fermi gas of hard spheres. Using simple arguments we show that the available theoretical predictions for
the onset of the ferromagnetic transition predict a transition point at a density (kF a ∼ 1) that is too large to be
compatible with the universal low-density expansion of the energy. We present variational calculations for the
hard-sphere Fermi gas, in the framework of Fermi hypernetted chain theory, that shift the transition to higher
densities (kF a ∼ 1.8). Backflow correlations, which are mainly active in the unpolarized system, are essential
for this shift.
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I. INTRODUCTION

Experimental and theoretical progress over the last decade
has allowed for a deeper understanding of phenomena such
as superfluidity and pairing along the BEC-BCS crossover in
degenerate Fermi gases [1]. In these studies, the diluteness
condition of the system allows for a characterization of the
interaction by its s-wave scattering length a, a quantity that
is easily tuned by making the system approach a Feshbach
resonance. In most cases, however, the underlying interaction
between atoms is short ranged and attractive, while little
attention has been paid to the case of short-range repulsive
potentials.

The role played by short-range repulsive interactions has
been revived more recently with a series of experiments
discussing the possible onset of a phase transition to a
ferromagnetic state in two-component ultracold Fermi gases.
In an initial work, Jo et al. [2] describe an experiment
with 6Li atoms which is supposed to implement the Stoner
model [3,4] of magnetic interactions, and find clear signatures
of the ferromagnetic transition by monitoring the total and
kinetic energy of the gas and its volume. They conclude
from these measurements that a transition to the ferromagnetic
state occurs around x = kF a ≈ 1.9 ± 0.2 with kF the Fermi
momentum of the unpolarized system. In a second and
more recent experiment [5], the existence of a ferromagnetic
transition in the same system is ruled out, arguing that very
fast molecule formation leads to local heating and to a pairing
instability, destroying the ultracold nature of the gas. They even
conclude that short-range repulsive interactions with fermionic
species can possibly not be realized in nature.

The existence of a ferromagnetic phase in dilute, ultracold
Fermi gases interacting through short-range repulsive forces
has also been discussed in recent theoretical works, triggered
by the previous experiments [2,5]. Positive scattering lengths
can be achieved by moving along the upper branch of a

Feshbach resonance associated to an attractive short-range
interaction once a bound state is formed, or by increasing
the range of an overall repulsive potential. These two mech-
anisms lead to different physical situations, as pointed out in
Refs. [6,7], when a description based only on the scattering
length is not enough. However, in both cases it can be argued
that when the system is so dilute that the scattering length
and the range of the potential are small compared to the
interparticle distance, only s-wave scattering processes are
relevant. Under these conditions, all higher order partial waves
can be discarded in the description of the many-body system.
In any case and motivated by the previous experiments, the
question of whether a ferromagnetic transition takes place in
ultracold Fermi gases has achieved revived interest recently.
However, no consensus has been reached yet. For instance, in
Refs. [8–11] the authors find that a transition exists in different
systems of harmonically trapped repulsive fermions, while
similar conclusions regarding infinite systems are reported in
Refs. [6,12,13]. In other works, the existence of a transition is
either ruled out or argued to depend on the details of the system
analyzed [14,15]. In this work we address this problem again
and analyze the possible onset of a ferromagnetic transition
in a system of fermions interacting through purely repulsive,
short-ranged forces. We believe that the question of weather
a system of repulsive fermions can undergo a ferromagnetic
transition is still relevant even though in actual experiments
the high x limit is usually reached by moving along the upper
branch of a Feshbach resonance.

II. MODELS

In the case of a fully polarized Fermi system, s-wave
scattering is forbidden by the Pauli principle, and thus the
total energy equals the corresponding kinetic energy of the
underlying Fermi sea if the density is low enough. In a
nonpolarized medium, s-wave scattering between particles
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with the same spin orientation is also suppressed but not
between atoms of different spin. All that information can
be collected in the following, effective opposite-spin-channel
(OSC) Hamiltonian

HOSC = − h̄2

2m

⎛
⎝ N↑∑

i=1

∇2
i +

N↓∑
i ′=1

∇2
i ′

⎞
⎠ +

N↑,N↓∑
i,i ′

V (rii ′), (1)

with m the mass of each of the N = N↑ + N↓ atoms, N↑
and N↓ being the number of particles with spin up and spin
down, respectively. The Stoner model [3,4] corresponds to a
mean-field approach to this Hamiltonian when the interaction
is replaced by a two-body pseudopotential with a coupling
constant proportional to the s-wave scattering length a. As
commented above, this model has been taken as the starting
point in recent theoretical analysis of the ferromagnetic
transition. Contact interactions in standard Monte Carlo simu-
lations of dilute quantum gases are usually replaced by model
potentials of finite range tuned to reproduce the desired values
of scattering parameters. One of the fully repulsive potential
models commonly used to study low-density properties of
degenerate quantum gases is the hard-sphere interaction,

V (r) =
{+∞ r � R

0 otherwise
, (2)

with an s-wave scattering length a equal to the core diameter
R, which been used recently in Refs. [6,13,16].

When a finite range potential is explored, higher order
partial waves produce contributions that show up when the
diluteness condition of the gas is not fulfilled. In this case the
OSC model, which explicitly restricts this possibility, shows
its limitations. When applied to the experiment with 6Li atoms
of Ref. [2], all models predict a ferromagnetic transition at
a point where the system is clearly not dilute. With kF the
Fermi momentum of the paramagnetic phase, the Stoner model
predicts the transition at kF a = π/2, while the Monte Carlo
simulations of Refs. [6,13] lower that prediction to kF a ≈ 0.9,
with minor differences between the case of a fully repulsive
interaction and a short-ranged attractive one. With a transition
point at kF a ∼ 1, it is no longer evident that the OSC model
can still be used to describe the system. In this work we
study the possible onset of a ferromagnetic transition in a spin
1/2 Fermi gas of hard spheres (i.e., a two-component Fermi
gas) using existing low-density expansions of the energy per
particle and a variational approach in the framework of the
Fermi hypernetted chain equations (FHNC) [18,19]. As we do
not restrict the analysis to the weakly interacting regime, we
allow for the contribution of scattering in all partial waves by
adopting a more general Hamiltonian of the form

H = − h̄2

2m

⎛
⎝ N↑∑

i=1

∇2
i +

N↓∑
i ′=1

∇2
i ′

⎞
⎠

+
N↑∑
i<j

V (rij ) +
N↓∑

i ′<j ′
V (ri ′j ′ ) +

N↑,N↓∑
i,i ′

V (rii ′), (3)

where indexes i,j, . . . and i ′,j ′, . . . label spin-up and spin-
down particles, respectively. We stick to the case where the
two-body interaction does not distinguish between different

spin configurations, but explicitly include interactions between
spins with the same orientation, in contrast to the OSC model.
Since we are analyzing the gas of hard-sphere fermions, we
use (2) for V (r) in all three channels (up-up, down-down, and
up-down).

III. RESULTS

We are mainly interested in the comparison between the
energy per particle of the paramagnetic, unpolarized system
(N↑ = N↓ = N/2) and the ferromagnetic, fully polarized one
(N↑ = N ). The density determines the Fermi momentum,
which is different in each case due to the spin degeneracy. For
the polarized and unpolarized systems one has kP

F = (6π2ρ)1/3

and kNP
F = (3π2ρ)1/3, respectively, so kP

F = 21/3kNP
F . As in

previous works, we set kF = kNP
F as the momentum scale unit

and plot our results in terms of the dimensionless quantity
x = kF a. Due to the spin degeneracy, the paramagnetic
phase is preferred in the noninteracting a → 0 limit at zero
temperature. The stability of the system when the polarization
� = (N↑ − N↓)/N increases is determined by the inverse
magnetic susceptibility χ−1,

1

χ
= 1

ρ

(
∂2E/N

∂�2

)
�=0

. (4)

The critical density against spin fluctuations corresponds to
the point where χ−1(xc) = 0. On the other hand, a sufficient
condition indicating that the ferromagnetic phase is preferred is
given by the criteria EP(x ′

c) − ENP(x ′
c) = 0, with E the energy

of the system. This second estimation, which is the one we use
in the present work, is fulfilled at a slightly larger density
than the first one (xc � x ′

c). For instance, in the Stoner model
xc = π/2 
 1.57 while x ′

c = (9π/10) (22/3 − 1) 
 1.66.
Several expressions for the ground state energy per particle

of a system of interacting fermions at low densities have
been derived in the past [20–22]. All of them rely on
perturbation theory in terms of a renormalized, effective
interaction obtained from a G matrix which contains infor-
mation about the multiple scattering of particles moving on
the correlated medium. For a strong repulsive potential the
massive summation of selected terms is a convenient strategy
to get a rapidly convergent perturbation series, and becomes
absolutely mandatory for the extreme case of the hard-sphere
potential due to the divergent character of the matrix elements
of the bare potential. A very useful expansion containing terms
beyond s-wave contributions is the one derived by Bishop in
Ref. [22], which is expressed in terms of the s- and p-wave
scattering lengths a and ap, respectively, and r0, the s-wave
effective range, as

E

N
= h̄2k2

F

2m

[
3

5
+ (ν − 1)

(
2

3π
(kF a) + 4(11 − 2 ln 2)

35π2
(kF a)2

+ 1

10π
(kF r0)(kF a)2 + [0.076 + 0.057(ν − 3)](kF a)3

)

+ 1

5π
(ν + 1)(kF ap)3 + (ν − 1)(ν − 2)

16

27π3
(4π − 33/2)

× (kF a)4 ln(kF a) + · · ·
]
, (5)
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with ν = 1(2) the spin degeneracy of the polarized (unpo-
larized) system. In this expansion, the p-wave scattering
length is defined in terms of the p-wave phase shift δ1(k)
as ap = [−k3cotδ1(k)/3]−1/3|k→0. For the particular case of
the hard-sphere interaction, where ap = a and r0 = 2a/3, the
previous expression reduces to the one originally derived by
Efimov [20].

For an unpolarized system of hard spheres and with x =
kF a, the previous expression reduces to

ENP

N
= h̄2k2

F

2m

[
3

5
+ 2

3π
x + 4(11 − 2 ln 2)

35π2
x2 + 0.231x3

]
,

(6)

while for the polarized system one recovers

EP

N
= h̄2k2

F

2m

[
3

5
+ 2

5π
x3

]
. (7)

Notice that in these expressions and up to order x3, ENP/N

contains s- and p-wave contributions besides the kinetic
energy of the corresponding free Fermi sea, while s-wave
effects are suppressed in EP/N . However, there is still a
p-wave contribution of order x3 that becomes important when
the density increases. This can be seen in Fig. 1, where we
compare the FN-DMC results of Refs. [13] (black circles)
and [6] (red squares) for the unpolarized gas to different
instances of Eq. (6) obtained by keeping all terms (black solid
line), removing the p-wave contributions (violet dotted line),
or keeping only the universal terms (green dot-dashed line),
which are of order x2 and depend on the interaction only
through the s-wave scattering length

ENP
u

N
= h̄2k2

F

2m

[
3

5
+ 2

3π
x + 4

35π2
(11 − 2 ln 2)x2

]
. (8)
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FIG. 1. (Color online) Energy per particle of the polarized and
unpolarized hard-sphere Fermi gases. The black solid, violet dotted,
and green dot-dashed lines show the low-density expansion of Eq. (5)
for the unpolarized system, the same with the p-wave contribution
(proportional to a3

p) removed, and the universal prediction of Eq. (8).
The blue dashed line depicts the prediction for the polarized system
given in Eq. (7). The red dot-dot-dashed straight line is the constant
value assigned to the polarized system in the OSC model, while the
red squares and solid black circles stand for the DMC calculations of
Refs. [6,13] for the unpolarized system in the same approximation.

To this same order, EP/N reduces to the kinetic energy of the
underlaying polarized Fermi sea (red dot-dot-dashed line).

The previous expansions are asymptotic in nature and so
it is difficult to accurately determine its convergence radius.
However, in the particular case of a hard-sphere interaction,
they are known to reproduce the equation of state up to
relatively large values of x. Furthermore, they cannot be
directly compared to the OSC model as it is implicitly assumed
in their derivation that the Hamiltonian contains the same
interatomic potential in all channels. It is however possible to
obtain a prediction for the OSC model if the leading terms in
the expansion are renormalized accordingly. The OSC model
discards interactions between particles with the same spin
orientation, which in a first approximation can be thought as
forming pairs in a triplet state of total spin S = 1. The wave
function in configuration space for these pairs is therefore
totally antisymmetric and thus s-wave scattering processes
between them are suppressed. In this way and to leading order,
the s-wave contributions in Eq. (5) should be the same in the
two model Hamiltonians of Eqs. (1) and (3). For S = 1 states,
p-wave scattering is the leading contribution, but only the
symmetric combination of unparallel spins is allowed in the
OSC model. Assuming all three spin configurations contribute
the same to the triplet state in the Hamiltonian H in Eq. (3),
we conclude that the p-wave contribution to HOSC should
be one third of the p-wave contribution to H . Taking all these
facts into account, we can build an expansion of the energy per
particle of the OSC model by simply weighting with an extra
factor 1/3 the term proportional to a3

p in Eq. (5). Doing so leads
to the green dashed line in Fig. 1, which accurately reproduces
the Monte Carlo calculations of Refs. [6,13] which were
obtained from the model Hamiltonian HOSC. Accordingly, one
may conclude that the low-density expansions given above are
valid in the whole range of x values considered, and that both
s- and p-wave scattering processes contribute significantly to
the total energy per particle when x increases.

Assuming then that the above low-density expansions
provide a good description of the energy per particle of the
polarized and unpolarized systems at x ∼ 1, one can draw
several conclusions from the different curves in Fig. 1. For
instance, one sees from the figure that the x3 terms add
important contributions to ENP

u /N . Adding only x3 terms to
the s wave raises the energy per particle slightly, but the most
significant effect appears when the p-wave contributions are
added, bringing the violet dotted line into the black solid line
corresponding to the prediction for the full model of Eq. (3).
Therefore, adding p-wave effects is more important than
dressing the s-wave contributions by including the effective
range terms. Furthermore, the good agreement between the
Monte Carlo predictions and the properly modified low-
density expansion for the OSC model, indicates that while
p-wave contributions are important, no higher order partial
waves contribute significantly, as these are not included in the
expansion. We thus conclude that s- and p-wave processes are
the only ones that contribute significantly.

It is also apparent from Fig. 1 that the universal behavior,
where all predictions yield essentially the same, ceases to be
valid already at x0 ∼ 0.4, quite below the value x ∼ 1 where
the simulations based on the OSC model predict the transition
to the ferromagnetic phase. The figure also indicates that the
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energy per particle of the polarized gas starts to deviate from
the constant prediction, valid when only s-wave scattering is
considered, at about the same value x = x0. Once again, at
x ∼ 1 p-wave contributions introduce significant corrections
that cannot be neglected. We thus conclude that, at least for
the hard-sphere Fermi gas, the low-density expansions set the
limit of validity of the OSC model at x ∼ x0.

Knowing the limits of the OSC model, the next step in
our discussion is to analyze the results provided by the full
Hamiltonian H of Eq. (3) with the interaction acting in
all the spin channels. To this end we perform a variational
calculation in the framework of the Fermi hypernetted chain
equations (FHNC) [18,19,23]. Although not exact, this method
has been successfully used in the past to describe strongly
interacting liquids like pure 3He [24–26], 3He-4He mixtures
[27], and nuclear matter [28,29], and is therefore expected to
accurately describe the physics of the present problem, We use
a variational Slater-Jastrow wave function of the form

	B =
[ ∏

i<j

f (rij )

]
D↑(�r1,�r2, . . . , �rN↑)D↓(�r ′

1,�r ′
2, . . . , �rN↓ ),

(9)

where f (r) is a two-body correlation factor, while D↑ and D↓
are Slater determinants of spin-up and spin-down plane waves
filling momentum states up to the Fermi level, and including
backflow correlations [30]. In our FHNC calculations, the sum
of elementary diagrams is approximated using the interpolat-
ing equation approximation [24,25]. The results obtained with
this wave function (9) are compared with those obtained from
a less sophisticated version 	 where backflow correlations
are removed. In both cases we take the Jastrow factor f (r) to
be the same for all spin channels, and equal to the solution
of the optimal Euler-Lagrange hypernetted chain equations
(HNC/EL) [23,31] for the underlying Bose gas of atoms of the
same mass m interacting through the same potential and at the
same density. We have checked that by using the optimal f (r),
the energy per particle improves noticeably compared with
other, simpler forms containing few variational parameters,
specially in the case of the unpolarized gas. On the other
hand, backflow correlations enter exponentially in the Slater
determinants of plane waves through the renormalized position
coordinates [26]

ri → r̃i + λ

N∑
j �=i

η(rij )rij , (10)

where

η(r) = exp

[
−

(
r − r0

ω0

)2]
, (11)

with λ, r0, and ω0 variational parameters that are optimized
at each density. Backflow correlations are capital in an
accurate description of the energetics of strongly correlated
systems like 3He [32,33], and have been reported to have
also a nonnegligible impact in the problem considered
here at the densities where the ferromagnetic transition is
predicted [6].

Figure 2 shows our results for the total energy per particle
of the polarized and unpolarized systems in different approx-
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FIG. 2. (Color online) Energy per particle of the paramagnetic
and ferromagnetic phases in different approximations. Solid and open
diamonds: FHNC results for the unpolarized gas including or not
backflow correlations, respectively. Solid and open triangles: same
for the polarized system. The solid and dotted lines are the predictions
of the expansions in Eqs. (6) and (7), respectively.

imations. The solid and dotted lines show the low-density
expansions of Eqs. (6) and (7), respectively. The open triangles
and diamonds correspond to the predictions for the polarized
and unpolarized systems using the HNC/EL-optimized wave
function of Eq. (9) without backflow correlations, while
the solid symbols stand for the same predictions including
backflow. Several conclusions can be drawn from this figure.
On the one hand, it is remarkable the fact that while the low-
density expansion for the unpolarized system is everywhere
close to the full many-body calculations, this is not the case
for the polarized system, which overestimates the total energy
per particle of the gas when x � 0.6. On the other, while the
low-density expansion predictions do not cross in the range
of densities analyzed, our many-body calculations show that
the energy per particle of the polarized system decreases at
a higher rate than the corresponding one for the unpolarized
gas. It is also remarkable to notice that the total energy per
particle of both systems noticeably depends on the quality of
the wave function employed. As expected, the one including
backflow correlations provides lower variational estimations.
In any case, the inclusion of backflow correlations not only
lowers the energies but also pushes the ferromagnetic transition
to a higher density, identified by the point in the figure
where the energy of the paramagnetic state equals that of the
ferromagnetic phase (a sufficient condition that determines a
point x ′

c where the ferromagnetic phase is preferred). The open
symbols show that 	 predicts a transition at x ′

c ∼ 1.4, while
the solid symbols, corresponding to 	B , approach each other
but do not cross yet in the range of densities considered in
the figure. In any case, it is relevant to realize that the use
of a Hamiltonian allowing the interaction in all three spin
channels (up-up, down-down, and up-down), together with a
rich variational wave function, bring the transition point back
from x ′

c ∼ 1 to higher values closer to the prediction of the
Stoner model, x ′

c ∼ 1.66.
The precise density at which our fully correlated model

predicts the transition to the ferromagnetic state can be
determined by extending the range of x values considered. In
Fig. 3 we show our predictions for EP/N and ENP/N obtained

033615-4



FERROMAGNETIC TRANSITION OF A TWO-COMPONENT . . . PHYSICAL REVIEW A 85, 033615 (2012)

1.5

2.5

3.5

4.5

5.5

0.8 1.0 1.2 1.4 1.6 1.8 2.0

x

E
/N

 (
un

it
s 

of
 E

F
)

FIG. 3. (Color online) Energy per particle of the polarized (gray
triangles) and unpolarized (red diamonds) system obtained from the
HNC/EL-optimized wave function of Eq. (9) including backflow
correlations, in the framework of the FHNC theory. The solid and
dotted lines are a guide to the eye.

from the optimized wave function 	B of Eq. (9) including
backflow correlations. As it can be seen, there is a wide
range of densities where EP/N and ENP/N are fairly close
to each other, and thus establishing a clear prediction of the
transition point is delicate. Still, we clearly see that for x > 1.8
the polarized gas has lower energy than the unpolarized
one, showing that at this point (and higher densities) the
ferromagnetic phase is preferred. To the present accuracy we
find that both curves cross at x ′

c ∼ 1.8, which establishes our
prediction of the point where the ferromagnetic transition takes
place for the hard-sphere Fermi gas. This transition occurs at
a density that is close to the estimated freezing density of
quantum hard spheres (xf 
 1.95) [34] but slightly below. Our
result for x ′

c turns out to be surprisingly close to the original
predictions given in Ref. [2], although recent experiments [5]
with 6Li atoms seem to indicate that in nature a pairing

instability breaks the ultracold nature of the gas before the
transition takes place. In any case and as stated above, one
should recall that the mechanisms explored here are related
but not equal to those found in the experiments which exploit
the physical properties of the system close to a resonance.

IV. SUMMARY AND CONCLUSIONS

To summarize, in this work we have analyzed the possible
onset of a phase transition to a ferromagnetic phase for a
two-component Fermi gas interacting through a repulsive
hard sphere potential. Motivated by recent experimental and
theoretical works, we have compared our results with existing
predictions [6,13] for a simplified Hamiltonian where only
correlations between different spins are allowed. We have
shown that, when properly renormalized to correctly account
for p-wave scattering processes, already existing low-density
expansions accurately reproduce Monte Carlo simulations of
this simplified model. Based on that, we have shown that
p-wave terms contribute significantly to the total energy per
particle of the polarized and unpolarized systems at kF a ∼ 1,
and that therefore the simplified Hamiltonian for a fully
repulsive interaction cannot be used in this range. Finally, we
have also presented calculations in the framework of the FHNC
equations for a wave function including backflow correlations
and an optimized Jastrow factor, showing that a ferromagnetic
transition takes place at kF a ∼ 1.8, surprisingly close to the
original prediction of Ref. [2].
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