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When a two-component Bose-Einstein condensate is placed into rotation, a lattice of vortices and cores appear.
The geometry of this lattice (triangular or square) varies according to the rotational value and the intercomponent
coupling strengths. In this paper, assuming a Thomas-Fermi regime, we derive a point energy that allows us
to determine for which values of the parameters the lattice goes from triangular to square. It turns out that the
separating curve in the phase diagram agrees fully with the complete numerical simulations of the Gross-Pitaevskii
equations. We also derive a formula for the critical velocity of appearance of the first vortex and prove that the
first vortex always appears first in the component with largest support in the case of two disks, and we give a
criterion in the case of disk and annulus.
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I. INTRODUCTION

When a two-component condensate is set into rotation,
topological defects of both order parameters are created,
which lead to more exotic defects than in a single-component
condensate. Experiments on two-component condensates have
shown how the condensates can exhibit either triangular or
square vortex lattices [1]. According to the values of the
interaction strengths, the defect patterns can vary a lot, as
illustrated in the numerical simulations [2,3]. One specific
feature is the appearance of coreless vortices: the existence of
a vortex in component-1 corresponds to a peak in component-2
and vice versa. The interaction between vortices and peaks
leads to changes in the geometry of the vortex lattice.
We are interested in determining the equations governing
this vortex peak behavior in the Thomas-Fermi regime and
estimating the interaction energy between the lattices of
the two components. Indeed, for a single condensate, the
vortex lattice is triangular, while for a two-component, the
vortex-peak interaction can lead to a square lattice. In Ref. [4]
an asymptotic interaction between two half-quantized vortices
is derived for two-component homogeneous condensates. In
this paper we want to take into account the nonhomogeneity of
the condensate due to the trapping potential and estimate the
vortex-peak energy according to the parameters of the system.
We derive an energy depending on the location of vortices
and peaks and determine for which values of the experimental
parameters the lattice goes from triangular to square. These
critical values agree well with the ones found from the
numerical computations of the full Gross-Pitaevskii equations
of Ref. [3]. We note that in the rapid rotation regime, using
the lowest Landau-level approximation, several papers [5,6]
(see also Refs. [2,7] for a review) have analyzed the transition
between triangular to square lattices. We point out that Ref.
[8] found a point energy with an interaction term e−|pi−qj |2 ,
which is different from ours and from Ref. [4]. We first
review relevant results for a single condensate (see Ref. [9]),
before moving to the derivation of homogeneous equations
and the computation of the interaction term in two-component
condensates.

For a single-component condensate, the wave function
minimizes the energy

Eg,�(ψ) =
∫

1

2
|∇ψ − i� × rψ |2 + 1

2
[V (r) − �2r2]|ψ |2

+ g

2
|ψ |4 (1)

under
∫ |ψ |2 = 1, where � = �ez is the rotation, V (r) is

the trapping potential, and in most cases V (r) = r2. We will
denote by ∇� the operator ∇ − i� × r . For g large, at � = 0,
the ground state η of Eg,0 approaches the inverted parabola

1

2g
(λ − r2)

in the disk of radius R2 = λ = 2
√

g/π and goes to 0 outside
the disk. If the problem is rescaled on a disk of size 1, then
the analysis of the vortex cores leads to a vortex of size 1/

√
g,

and, close to the core, the wave function behaves like f (r)eiθ ,
where f is the solution tending to 1 at infinity of

f ′′ + f ′

r
− f

r2
+ f (1 − f 2) = 0. (2)

This is the equation of a vortex core in a uniform system.
In the case of a single condensate, from the equation of the
vortex core, one can estimate the energy of vortices, the critical
velocity for the nucleation of the first vortex, and the interaction
energy between vortices [9–12], which is

−
∑
i �=j

log|pi − pj | +
∑

i

|pi |2, (3)

where pi are the location of the vortex cores and log is the
logarithm in basis 10. Numerically, the minimization of (3)
yields an almost triangular lattice for a large number of vortex
points.

The aim of this paper is to describe the equivalent of (2)–(3)
in the case of two-component condensates. We define gi to be
the intracomponent coupling strength for component i and g12

to be the intercomponent coupling strength. For simplicity, we
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assume equal masses for the atoms in each component and
equal trapping potentials, but a general case could be handled.
The ground state of a two-component condensate is given by
the infimum of

Eg1,g2,g12,�(ψ1,ψ2)

= Eg1,�(ψ1) + Eg2,�(ψ2) + g12

∫
|ψ1|2|ψ2|2 (4)

under
∫ |ψ1|2 = N1,

∫ |ψ2|2 = N2. We set g1 = α1g, g2 =
α2g, g12 = α0g, where g is large, so that ε = 1/

√
g is small.

We change wave functions to ψ1(x,y) = √
εu1(x

√
ε,y

√
ε),

ψ2(x,y) = √
εu2(x

√
ε,y

√
ε). Calling α = (α0,α1,α2), the en-

ergy we want to minimize is

Eα,�(u1,u2) =
∫

ε2

2
|∇u1|2 + 1

2
r2|u1|2 + α1

2
|u1|4

− ε(� × r) · (iu1,∇u1)

+ ε2

2
|∇u2|2 + 1

2
r2|u2|2 + α2

2
|u2|4

− ε(� × r) · (iu2,∇u2) + α0|u1|2|u2|2, (5)

where (iu,∇u) = iu∇ū − iū∇u. For � = 0, the ground state
is real valued, and we denote it by (η1,η2). It is a solution of

−ε2
η1 + r2η1 + 2α1η
3
1 + 2α0η

2
2η1 = μ1η1, (6)

−ε2
η2 + r2η2 + 2α2η
3
2 + 2α0η

2
1η2 = μ2η2. (7)

The shape of the ground state varies according to α and,
when α2

0 − α1α2 � 0, can be either two disks or a disk and
an annulus, as we will see below.

II. REDUCTION TO THE CORE EQUATIONS

We recall that (η1,η2) is the ground state for � = 0, and
we consider (u1,u2) a ground state of Eα,�. We call (f1,f2)
such that u1 = η1f1 and u2 = η2f2. We expect ηi to include
the slow-varying profile and fi to include the vortex or peak
contribution, so that fi is 1 almost everywhere except close
to the vortex and peak cores. We want to write the energy of
(u1,u2) as the energy of (η1,η2) plus a rest, which is the energy
that we are going to study. This follows a trick introduced
in Ref. [13] and used for single Bose Einstein condensates
in Refs. [9,10]. We multiply (6) by η1(|f1|2 − 1) and (7) by
η2(|f2|2 − 1), and integrate and add the two equations, which
yields the identity∫

ε2

2
|∇η1|2(|f1|2 − 1) + ε2η1f1∇η1 · ∇f1

+ 1

2
r2η2

1(|f1|2 − 1) + α1η
4
1(|f1|2 − 1)

+α0η
2
2η

2
1(|f1|2 − 1) + ε2

2
|∇η2|2(|f2|2 − 1)

+ ε2η2f2∇η2 · ∇f2 + 1

2
r2η2

2(|f2|2 − 1)

+α2η
4
2(|f2|2 − 1) + α0η

2
2η

2
1(|f2|2 − 1) = 0. (8)

Note that the Lagrange multiplier term has disappeared
because ui and ηi are normalized similarly. We replace (u1,u2)

by (f1η1,f2η2) into the energy (5), use the identity (8), and find

Eα,�(u1,u2) = Eα,0(η1,η2) + Fα,�(f1,f2)

where

Fα,�(f1,f2) =
∫

ε2

2
η2

1|∇f1|2 − εη2
1(� × r) · (if1,∇f1)

+ 1

2
α1η

4
1(|f1|2 − 1)2 + ε2

2
η2

2|∇f2|2

− εη2
2(� × r) · (if2,∇f2) + 1

2
α2η

4
2(|f2|2 − 1)2

+α0η
2
1η

2
2(1 − |f1|2)(1 − |f2|2). (9)

This splitting of energy does not assume anything about the
scales of energy: it is an exact identity. We point out that as
soon as α1α2 − α2

0 � 0, then the quadratic form in the energy
Fα,� is positive, and minimizing Eα,� in (u1,u2) amounts to
minimizing Fα,� in (f1,f2).

Now we assume that we scale everything close to a point p

where η2
1 = ρ1, η2

2 = ρ2, and f1,f2 can be written as functions
of p + |r − p|/ε. Then, in the new variable r̃ = |r − p|/ε, the
functions f1,f2 are a ground state of

Fα,�(f1,f2) =
∫

1

2
ρ1|∇f1|2 − ερ1(� × r) · (if1,∇f1)

+ 1

2
α1ρ

2
1 (|f1|2 − 1)2 + α0ρ1ρ2(1 − |f1|2)

× (1 − |f2|2) + 1

2
ρ2|∇f2|2

− ερ2(�× r) · (if2,∇f2) + 1

2
α2ρ

2
2 (|f2|2 −1)2

(10)

and solve the system

−ρ1
f1 − iε(� × r) · ρ1∇f1 + 2α1ρ
2
1 (|f1|2 − 1)f1

+ 2α0ρ1ρ2f1(|f2|2 − 1) = λ̃1f1

− ρ2
f2 − iε(� × r) · ρ2∇f2 + 2α2ρ
2
2 (|f2|2 − 1)f2

+ 2α0ρ1ρ2f2(|f1|2 − 1) = λ̃2f2. (11)

This is exactly the system studied in Refs. [4,14] for a
homogeneous condensate. The splitting of energy has allowed
us to reach a homogeneous system. Assuming a vortex
in component-1 and a spike in component-2, we have
f1 = v1(r)eiθ and f2 = v2(r). We expect that v1,v2 tend to
1 at infinity so that λ̃1 = ε� and λ̃2 = 0. This yields the
following system:

− (rv′
1)′

r
+ v1

r2
+ 2α1ρ1

(
v2

1 − 1
)
v1 + 2α0ρ2v1

(
v2

2 − 1
) = 0,

(12)

− (rv′
2)′

r
+ 2α2ρ2

(
v2

2 − 1
)
v2 + 2α0ρ1v2

(
v2

1 − 1
) = 0.

(13)

From this system, asymptotic expansions can be obtained
for v1 and v2 at infinity: v1(r) − 1 ∼ −γ1/r2 and

033614-2



VORTEX-PEAK INTERACTION AND LATTICE SHAPE IN . . . PHYSICAL REVIEW A 85, 033614 (2012)

v2(r) − 1 ∼ γ2/r2 for some constants γ1 and γ2. Equations
(12)–(13) at infinity imply that α2ρ2γ2 = α0ρ1γ1 and
1 − 4α1ρ1γ1 + 4α0ρ2γ2 = 0; thus

γ1 = 1

4ρ1α112
and γ2 = α0

4ρ2α1α212
, (14)

where

12 = 1 − α2
0

α1α2
. (15)

In particular,

α0γ1γ1ρ1ρ2 = 1 − 12

16α1
2
12

. (16)

In order to fully analyze the system (12)–(13), we need to
have information for ρ1, ρ2, that is, the ground states η1, η2:
in particular, we need to know whether the supports of η1, η2

are disks or annuli, and where they reach their maximum.

III. THOMAS-FERMI PROFILE OF THE GROUND STATE

We recall some properties of the solutions of (6)–(7)
obtained in Ref. [3]. The following nondimensional parameters
are introduced:

1 = 1 − α0

α1
, (17)

2 = 1 − α0

α2
. (18)

To begin, assume that both components are circular with radii
R1 and R2 and with R1 < R2. When α1α2 − α2

0 � 0, that is,
12 � 0, and ε is small, both components are in the Thomas-
Fermi (TF) regime, and the density profiles for r < R1 are

|η1|2 = 1

2α112

(
μ1 − α0

α2
μ2 − r22

)
, (19)

|η2|2 = 1

2α212

(
μ2 − α0

α1
μ1 − r21

)
, (20)

and for R1 < r < R2 are

|η2|2 = μ2 − r2

2α2
(21)

with |η1|2 = 0. The chemical potentials μ1 and μ2, and the
radii, R1 and R2, are to be found. In addition we have the
normalization condition∫

|ηk|2 = Nk, (22)

where, for generality, N1 �= N2. We denote α̃k = Nkαk and
α̃0 = √

N1N2α0 and get

R1 =
(

4α̃112

π2

)1/4

, (23)

R2 =
{

4[α̃2 + α̃1(1 − 1)]

π

}1/4

, (24)

μ1 =
(

4α̃1122

π

)1/2

+ (1 − 2)

{
4

π
[α̃2 + α̃1(1 − 1)]

}1/2

, (25)

μ2 =
{

4

π
[α̃2 + α̃1(1 − 1)]

}1/2

. (26)

We find from (19) and (14) that

ρ1 = η2
1(0) = 2R

2
1

2α112
=
√

2N1

πα112
(27)

and

γ1 =
√

π

16N1α1212
,

while

ρ2 = η2
2(0) = 1

α2

{[
1

π
(N2α2 + N1α0)

]1/2

−α0

[
N12

πα112

]1/2 }
(28)

and γ2 follows from (14).
Equations (23)–(24) are valid provided 12/2 > 0 (to

ensure that R1 and μ1 are real) and α̃11 < α̃22 (to ensure
that R2 > R1). If instead the initial assumption about the size
of the radii was taken to be R1 > R2, then the appropriate
expressions would also be given by Eqs. (23)–(24), however,
with the indices 1 and 2 alternated. In this case the conditions
would be α̃11 > α̃22 and 12/1 > 0.

Returning now to R2 > R1, one must ensure that |η2|2 > 0
for all r < R1 to have a disk rather than an annulus. Suppose
that there is a point at the origin, where |η2|2 = 0. Then, from
Eq. (20),

α0 = ᾱ0 = α1μ2

μ1
= N1α1

2(N1 + N2)

+ 1

2

√
α2

1N
2
1

(N1 + N2)2
+ 4N2α1α2

N1 + N2
. (29)

The existence of some 12 at which the density in component-2
hits zero at the origin is the indication of a spatial separation
of the components. Notice that this critical value for 12

is independent of �. In the spatial separation regime,
component-1 is circular while component-2 is annular,
provided R2 > R1. It is not possible for an annulus to develop
in component-1 if R2 > R1; this can be seen by writing
the TF density expressions for an annular component-1 and
a circular component-2 in which the chemical potentials
become multivalued. Similarly, an annulus can develop only
in component-1 if R1 > R2. Thus under the assumption
R2 > R1, an annulus can develop only in component-2, and
the condition to have two disks is thus α0 < ᾱ0.
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IV. VORTEX INTERACTION

Let us call ρTF,1, ρTF,2 the Thomas-Fermi limits of |η1|2
and |η2|2 given by (19)–(21) and (23)–(26) in the case of two
disks. Then

ρTF,1 = 2

2α112

(
R2

1 − r2
)
, (30)

ρTF,2 = 1

2α212

(
R2

1 − r2
)+ 1

2α2

(
R2

2 − R2
1

)
(31)

if r < R1,
1

2α2

(
R2

2 − r2) if r > R1. (32)

We want to estimate the various terms in the energy Fα,� as in
Refs. [9,10], and we are going to show that, if pi are the vortices
for component-1 and qj are the vortices for component-2, then
they minimize the point energy

−πε2
∑
i �=j

ρ1 log |pi − pj | − πε2
∑
i �=j

ρ2 log |qi − qj |

+π

(
−ε2| log ε| 2

2α112
+ ε�ρ1

)∑
i

|pi |2

+π

(
−ε2| log ε| 1

2α212
+ ε�ρ2

)∑
i

|qi |2

+π
1 − 12

162
12

(
1

α1
+ 1

α2

)
ε4| log ε|

∑
i �=j

1

|pi − qj |2 .

(33)

A. Estimate of the kinetic energy term

Let us call pi the vortices in component-1 and
qj in component-2. Then the kinetic energy term
(1/2)

∫
η2

1ε
2|∇f1|2 provides a leading-order term due to the

kinetic energy of the phase (which behaves locally like 1/r

outside a disk of radius ε around each vortex), which is

πε2
∑

i

ρTF,1(pi)| log ε| − πε2
∑
i �=j

ρTF,1(pi) log |pi − pj |

(34)

with a similar term for component-2, where pi is replaced
by qj .

B. Rotation term

We call X1(r) the primitive of −rρTF,1(r), which vanishes
at R1, and X2(r) the primitive of −rρTF,2(r), which vanishes
at R2. Then for r < R1,

X1(r) = 2

8α112

(
R2

1 − r2
)2

, (35)

X2(r) = 1

8α212

(
R2

1 − r2
)2

+ 1

8α2

(
R2

2 − R2
1

)(
R2

2 + R2
1 − 2r2

)
. (36)

Thus the rotation term −ε
∫

η2
1(� × r) · (if1,∇f1) is well

approximated by −ε
∫

� × ∇X1 · (if1,∇f1). An integration
by parts around each vortex yields

−2πε�
∑

i

X1(pi) (37)

with a similar contribution for component-2.

C. First vortices

The leading-order approximation of the kinetic and rotation
energy yields (assuming vortices at points pi for component-1
and qj for component-2):

πε2
∑

i

ρTF,1(pi)| log ε| + πε2
∑

j

ρTF,2(qj )| log ε|

−2πε�
∑

i

X1(pi) − 2πε�
∑

j

X2(qj ). (38)

The energy is minimized by a configuration such that ρTF,1/X1

or ρTF,2/X2 reaches its minimum. We find that

X1(r)

ρTF,1(r)
= 1

4

(
R2

1 − r2
)
, (39)

X2(r)

ρTF,2(r)
= 1

4

(
R2

1 − r2)+ 1

4

(
R2

2 − R2
1

)(
R2

2 − r2
)

1
12

(
R2

1 − r2
)+ (R2

2 − R2
1

) .
(40)

This implies that above a critical value �c, vortices become
energetically favorable in the system, and �c is given from
(38) by

�c = 1
2ε| log ε| mini,r

ρTF,i

Xi
. (41)

For a harmonic potential, and in the case of two disks, the
minimum of ρTF,i

Xi
occurs at the origin. Furthermore, since

ρTF,2

X2
= ρTF,1

X1
− D(r), (42)

where

D(r) = 4
(
R2

2 − R2
1

)(
R2

2 − r2
)

(
R2

1 − r2
)

× 1[
1
12

(
R2

1 − r2
)2 + (R2

2 − R2
1

)(
R2

1 + R2
2 − 2r2

)] ,
(43)

and given the signs of the parameters, we see that D(0) > 0
so that we always have ρTF,1/X1 > ρTF,2/X2.

The first vortex is thus preferred in component-2 (i.e., the
component with larger support) and occurs at the origin with
the critical velocity given by

�c =
√

π

α̃212
ε| log ε|[12

√
α̃2 + α̃1(1 − 1)

− (1 − 1)
√

α̃1212]. (44)
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FIG. 1. The critical velocity for creation of the first vortex plotted
analytically from Eq. (44) (solid line) and numerically (dotted line) as
a function of 12 for two parameter sets: (a) ε = 0.0352, α1 = 0.97,
α2 = 1.03 and (b) ε = 0.0358, α1 = α2 = 1.

Note that this expression gives �c = 0 when α0 = ᾱ0 (pro-
vided α1 �= α2; otherwise �c reduces to a nonzero constant).
For some computations in the rest of the paper, we can assume
N1α1 = N2α2 so that R1 = R2, and we have a lattice of peaks
and vortices close to the origin. Since mini,r ρTF,i/Xi = 4/R2

1 ,
we have

�c = ε| log ε|
√

π1

α112
. (45)

We have plotted �c − 12 curves for two cases in Fig. 1, the
first with distinct intracomponent coupling strengths and the
second with equal intracomponent coupling strengths [where
Eq. (44) reduces to Eq. (45)] and compared then to the
numerical results of Ref. [3] (these parameter sets correspond
to sets “ES1” and “ES3,” respectively, from Ref. [3]). We find
good agreement between the two results.

D. Energy expansion

We now have to go further into the energy expansion to
estimate the interaction energy. We assume that the vortices

appear close to the origin. Then (34) and (37) can be expanded
around the origin, using (30)–(32) and (35)–(36), which yields

−πε2
∑
i �=j

ρ1 log |pi − pj | − πε2
∑
i �=j

ρ2 log |qi − qj |

+πε

(
−ε| log ε| 2

2α112
+ �ρ1

)∑
i

|pi |2

+πε

(
−ε| log ε| 1

2α212
+ �ρ2

)∑
i

|qi |2. (46)

E. Interaction energy

We find from (9) that the interaction energy is

α0ρ1ρ2

∫
(1 − |v1|2)(1 − |v2|2).

Near a vortex peak, this reduces to

α0ρ1ρ2γ1γ2

∫
1

r2
(1,0)

1

r2
(0,1)

,

where we take the notations of [4]: r(1,0) is the local distance
to the vortex in component-1, and r(0,1) is the distance to the
next peak in component-1, or equivalently to the vortex in
component-2. From (16), we find that the coefficient in front of
the integral is equal to π 1−12

16α1
2
12

. The computations in Ref. [4]
allow us to estimate the integral term, and we find for the
interaction term

π
1 − 12

162
12

1

α1
ε4| log ε| 1

|pi − qj |2 .

This is for a vortex in v1. Of course, if the vortex is in v2, it
would be different by a factor 1/α2.

The interaction energy is thus

π
1 − 12

162
12

(
1

α1
+ 1

α2

)
ε4| log ε|

∑
i �=j

1

|pi − qj |2 . (47)

Together with (46), this leads to (33).

V. NUMERICAL SIMULATION OF THE RENORMALIZED
ENERGY

We now want to find the ground state of (33) when the radii
of both components are equal. Under this condition we have
ρ1 = ρ2, 1 = 2 and α1 = α2. This allows us to perform a
rescaling that leaves the renormalized energy dependent only
on a single parameter. We write � = ω�c for �c defined in
(45). Then

ρ1

(
−| log ε|

R2
1

+ �

ε

)
= ρ1| log ε|

(
ω

√
π2

α112
− 1

R2
1

)
,

(48)

which implies that we can rescale the pi and qj as pi = γ p̃i

and qj = γ q̃j with

γ 2 = 1

2| log ε|
(
ω

√
π2
α112

− 1
R2

1

) (49)
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FIG. 2. The ground state of the renormalized energy (50) calcu-
lated for (a) cω = 0.05 and (b) cω = 0.3 with the number of points in
each component equal to N = 46. Component-1 is shown in the left
columns and component-2 in the right columns.

so that the new energy is

1

2
πε2ρ1

[
−
∑
i �=j

log |pi − pj |2 −
∑
i �=j

log |qi − qj |2

+
∑

i

|pi |2 +
∑

i

|qi |2 + cω

∑
i �=j

1

|pi − qj |2
]

(50)

with

cω = π (1 − 12)

4α1
2
12

(2ω − 1)ε2| log ε|2. (51)

We simulate this renormalized energy (50) using a conju-
gate gradient method varying the parameter cω and the number
of vortex points. For a fixed number of lattice points N , when
increasing cω, the ground-state lattice goes from triangular to
square at a critical cts

ω . Note that when N gets large, cts
ω no

longer depends on N . In Fig. 2 we plot the ground state for
two values of cω, which give a triangular (cω = 0.05) and a
square lattice (cω = 0.3) when N = 46.

For each N , we can calculate the critical cts
ω and compare

this with the simulations on the full GP equations, as performed
in Ref. [3] (they provide the appropriate value of N ). From
(51), we thus find the critical value of � for which the lattice
goes from triangular to square:

�ts =
[

1

2
+ 2cts

ω α1
2
12

π (1 − 12)ε2| log ε|2
]√

π2

g112
| log ε|. (52)

It turns out that when � gets close to 1, the condensate expands,
and one has to include in the TF profile a term (1 − �2)r2

instead of just r2. The radii R1 and R2 vary like (1 − �2)1/4.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Γ12

Ω

FIG. 3. The critical value of �ts as a function of 12 calculated
analytically by Eq. (55) (solid line) and numerically (dashed line) for
the parameters ε = 0.0358, α1 = α2 = 1.

This changes cω from (51) to

cω = π (1 − 12)

4α1
2
12

(
2ω − √

1 − �2

√
1 − �2

)
ε2| log ε|2 (53)

so that if we define

βts =
[

1

2
+ 2cts

ω g1
2
12

π (1 − 12)| log ε|2
]√

π2

g112
| log ε|, (54)

then �ts = βts

√
1 − (�ts)2, which yields

�ts = βts√
1 + β2

ts

. (55)

We plot this form of �ts as a function of 12 in Fig. 3,
where we have taken ε = 0.0358 and α1 = α2 = 1 (note that
this parameter set corresponds to set “ES3” in Ref. [3]). This
provides good agreement with simulations of the full Gross
Pitaevskii energy and confirms that our point energy (33) well
describes the system.

VI. DISK PLUS ANNULUS

Equation (29) introduces the critical ᾱ0 (or equivalently
12) for which the two-disk state is no longer a solution. In
this section we consider α0 > ᾱ0 so that the system is given
by a disk in component-1 and an annulus in component-2.
This requires α1 to be different to α2, because otherwise
the conditions α0 > ᾱ0 and α2

0 − α1α2 � 0 are not consistent.
Defining the inner and outer radii of component-2 to be at r =
R2− and r = R2+ such that R2− < R1 < R2+ , the appropriate
density profiles are

ρTF,1(r) = |η1|2 = μ1 − r2

2α1
(56)

for 0 < r < R2− ,

ρTF,1(r) = |η1|2 = 1

2α112

(
μ1 − α0

α2
μ2 − r22

)
, (57)

ρTF,2(r) = |η2|2 = 1

2α212

(
μ2 − α0

α1
μ1 − r21

)
(58)

033614-6



VORTEX-PEAK INTERACTION AND LATTICE SHAPE IN . . . PHYSICAL REVIEW A 85, 033614 (2012)

for R2− < r < R1, and

ρTF,2(r) = |η2|2 = μ2 − r2

2α2
(59)

for R1 < r < R2+ .
The normalization condition (22) gives the following

expressions for the radii:

R2− =

√√√√
R −

√
−2

1
S, (60)

R1 =

√√√√
R −

√
−1

2
(1 − 2)2S, (61)

R2+ =
√

R +
√

−12S, (62)

and

μ1 = R, (63)

μ2 = R +
√

−12S (64)

for the chemical potentials. Here we have introduced the
parameters

R = 2

√√√√ α̃1[1 + α̃2
2

α̃2
0
(1 − 2)2]

π
, (65)

S = 2

√
α̃1α̃

2
2(1 − 2)

πα̃2
0

. (66)

A number of conditions can immediately be found from
these expressions. In order for R2− < R1, it must be that
12 > 0. (The inequalities R2+ > R1 and R2+ > R2− are
automatically valid.) Second, all the expressions (except that
for μ1) require 12 < 0. This is equivalent to α2 > α1 (under
the assumption that the annulus develops in component-2).
Thus the range of 12 for which component-1 is circular and
component-2 is annular is given by 0 < 12 < ̄12, where
̄12 = 12 evaluated at α0 = ᾱ0, given by (29).

When α0 = ᾱ0 we have shown in Eq. (44) that the critical
velocity for creation of the first vortex (that occurs at the origin
in component-2) is identically zero. This is precisely the point
at which the annulus develops [ρTF,2(r = 0) = 0 with R2− =
0]. In the region α0 > ᾱ0, the first appearance of a topological
defect is the development of a giant vortex in component-2,
and this can be analyzed fully. We need to introduce

�2 = α2

α̃2

∫ R2+

R2−

ρTF,2(s)

s
ds = 1

4α̃212

[
1R

2
2− log

(
R2

1

R2
2−

)

+12R
2
2+ log

(
R2

2+

R2
1

)]
. (67)

Then the critical velocity for nucleation of the giant vortex is
determined by �gv = ε�2, and the circulation of this giant
vortex is the integer part of �/(ε�2). Next, we want to
determine vortices in the bulk and apply (38) to the case of the
disk plus annulus. Thus we need to define X2(r) to take into
account the giant vortex.

We define X1(r) the primitive of −rρTF,1(r), which van-
ishes at R1, giving

X1(r) = 1

8α1

(
R2

1 − r2
)2

+ α01

8α1α212

(
R2

2− − R2
1

)(
R2

1 + R2
2− − 2r2) (68)

for 0 < r < R2− , and is the same as Eq. (35) in the region
R2− < r < R1. In order to account for the development of vor-
tices beyond the giant vortex, we must recall that additional to
the term −ε

∫
ρTF,2(� × r) · (if2,∇f2), there will be a kinetic

energy term coupling the giant vortex and the vortex cores,
namely, ε2d

∫
ρTF,2/r(if2,∇f2) · ez, where d is the degree of

the giant vortex, of order �/(ε�2). Therefore, we define X2(r)
to be the primitive of −rρTF,2(r) + (1/�2)ρTF,2(r)/r, which
vanishes at both R2− = 0 and R2+ = 0,

X2(r) =
∫ R2+

r

sρTF,2(s) ds − 1

�2

∫ R2+

r

ρTF,2(s)

s
ds, (69)

where �2 is given by (67). Completing the integrals gives

X2(r) = 1

8α2

(
R2

2+ − r2)2 − α02

8α1α212

(
R2

1 − r2)2
− 1

4α212�2

[
1R

2
2− log

(
R2

1

r2

)

+12R
2
2+ log

(
R2

2+

R2
1

)
+ 1r

2 − 1R
2
2−

]
(70)

for R2− < r < R1 and

X2(r) = 1

8α2

(
R2

2+ − r2
)2

− 1

4α2�2

[
R2

2+ log

(
R2

2+

r2

)
+ r2 − R2

2+

]
(71)

for R1 < r < R2+ . As before we write the ratios ρTF,i/Xi :

ρTF,1

X1
(r)

= 4(
R2

1 − r2
) −

[
41α0

12α2

(
R2

2− − R2
1

)(
R2

2− − r2
)

(
R2

1 − r2
)

]

×[(R2
1 − r2)2 + 1α0

12α2

(
R2

2− − R2
1

)(
R2

1 + R2
2− − 2r2)]−1

(72)

for 0 < r < R2− ,

ρTF,1

X1
(r) = 4(

R2
1 − r2

) , (73)

ρTF,2

X2
(r) = 41

12

(
R2

2− − r2
)

×
{(

R2
2+ − r2

)2 − α02

α112

(
R2

1 − r2
)2
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FIG. 4. (Color online) (a) Functions ρTF,1/X1 (solid lines) and
ρTF,2/X2 (dashed lines) given by Eqs. (72)–(75) for 12 = 0.0202
(black lines) and 12 = 0.015 (blue [gray] lines). (b) The critical
velocity for creation of the first vortex plotted from Eq. (41) (black
line) and numerically (blue [gray] line) as a function of 12. The solid
part corresponds to a vortex in component-1 at the center, and the
dashed part in component-2 in the interface region. The parameters
are ε = 0.0352, α1 = 0.97, and α2 = 1.03. Note that ̄12 = 0.02.

− 2

�212

[
1R

2
2− log

(
R2

1

r2

)

+12R
2
2+ log

(
R2

2+

R2
1

)
+ 1

(
r2 − R2

2−

)]}−1

(74)
for R2− < r < R1 and

ρTF,2

X2
(r) = 4

(
R2

2+ − r2
)

(
R2

2+ − r2
)2 − 2

�2

[
R2

2+ log

(
R2

2+
r2

)
+ r2 − R2

2+

]
(75)

for R1 < r < R2+ .

It follows that

min

(
ρT F,1

X1

)
=
⎧⎨
⎩

4
α22R

2
1+α01R

2
2−

α22R
4
1+α01R

4
2−

for 0 < r < R2−
4(

R2
1−R2

2−

) for R2− < r < R1.

(76)

Using the expressions above for the radii, we see that

4
α22R

2
1 + α01R

2
2−

α22R
4
1 + α01R

4
2−

= 2

α̃1

√
π

α2
(α1α̃2 + α̃1α2), (77)

which we note is independent of α0. If we compare the values
of Eq. (76), we see that they are equal when α0 = ᾱ0 (which we
can consider a degenerate case), and otherwise min(ρTF,1/X1)
over the whole space is simply given by the expression in
Eq. (77). This implies that the vortex in component-1 is
preferred at the origin rather than in the interface region of
the two components.

To complete the analysis we must also find the
min(ρTF,2/X2) over the whole space to determine whether
vortices appear first in component-1 or component-2. It is not
possible to find an analytic expression for this minimum, and
so we must resort to plotting the function and comparing this
to min(ρTF,1/X1). In Fig. 4 we plot the functions ρTF,1/X1

and ρTF,2/X2 in two different cases where min(ρTF,1/X1) <

min(ρTF,2/X2) and min(ρTF,1/X1) > min(ρTF,2/X2). We also
plot the critical � defined in Eq. (41) as a function of 12.
We see that until some critical value of 12, the vortex first
nucleates at the origin in component-1, while above in some
small region in 12 before reaching ̄12, the vortex first
nucleates in the interface region in the second component.
Then increasing � leads to a vortex lattice close to this point
of nucleation. Recall that the giant vortex is always present.

VII. CONCLUSION

From the energy of a rotating two-component condensate,
we have derived a reduced energy (33) governing the location
of peaks and vortices. We have found that the ground state
of this reduced energy yields a square lattice of vortices
in regimes consistent with the ones found numerically for
the full Gross Pitaevskii energy. We have analyzed in detail
the geometry of the ground state (two disks or disk and
annulus) and derived the formula of the critical velocity
for the appearance of the first vortex. We can determine in
which component the first vortex appears and the shape of the
lattice.
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