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In this paper, we study the homogeneous one-dimensional bosonic gas interacting via a repulsive contact
potential by using the improved Gaussian approximation. We obtain the gapless excitation spectrum of the
Bogoliubov mode. Our result is in good agreement with the exact numerical calculation based on the Bethe
ansatz. We speculate that the improved Gaussian approximation could be a quantitatively good approximation
for higher-dimensional systems.
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I. INTRODUCTION

Since the concept of Bose-Einstein condensation (BEC)
was originally put forward by Bose and Einstein, the dilute
Bose gas, as a many-body system which displays macro-
scopic quantum phenomena such as superfluidity, has been
extensively studied theoretically. The microscopic description
of BEC started with Bogoliubov theory [1–4], in which the
destruction and creation operators for the macroscopically
occupied lowest-energy mode are specially treated as c num-
bers, known as Bogoliubov replacement. Based on Bogoliubov
replacement, the Green’s function methods were applied to
a dilute Bose gas at zero temperature [5–7]. Hugenholtz
and Pines [7] showed that, for a repulsive interaction, the
pole of the one-particle Green’s function approaches zero for
zero momentum, which means a gapless excitation spectrum
(usually we call it as Goldstone theorem [8]). P. C. Hohenberg
and P. C. Martin described BEC as spontaneous global U(1)
symmetry breaking by introducing external sources which
are set negligibly small in the end [9]. The interpretation of
BEC as symmetry breaking makes the quantum field-theoretic
treatment very convenient, in which the expectation value
of the field operator describes the density as well as the
wave function of the condensed bosons and, hence, is also
called the macroscopic wave function. The effective action
approach [10–14] is usually employed and certain types of
approximations can be easily formulated in this framework,
such as the Bogoliubov approximation, the Popov approxima-
tion, and the Hartree-Fock Bogoliubov (HFB) approximation,
as discussed in detail in Refs. [15–20].

However, for the bosonic model, if we use the simplest
nonperturbative calculation, the HFB approximation, the
spectrum obtained is gapped, even in the broken phase. The
Goldstone theorem is violated in such an approximation [9,15].
Although in the Popov approximation the spectrum remains
gapless, the method is not self-consistent and we will also
show that we cannot apply this method to the one-dimensional
bosonic model. The � derivable theory, a self-consistent
approximation method beyond the HFB, including some
higher two-particle irreducible (2PI) diagrams of the effective
action, is often used in studying BEC systems. The spectrum
obtained in the � derivable theory is also gapped [21].

In the self-consistent theories such as the HFB approxima-
tion, the Ward identity from U(1) symmetry is not preserved
due to partial resummations of some Feynman diagrams.

Therefore, the Goldstone theorem is violated and the resulting
excitation spectrum is gapped, even in the symmetry-breaking
phase. In order to preserve the Ward identity, we should
incorporate the contributions of some other Feynman diagrams
and thereby remove the gap [21–23]. It is called the covariant
Gaussian approximation in Ref. [22] and we will call it the
improved Gaussian approximation (IGA). In principle, we can
apply a similar method to the � derivable theory beyond HFB
(we will call it the improved � derivable theory or IDT), but
the theory becomes too complex (involving integral equations
which cannot be solved analytically) [21].

In recent years, interest in the one-dimensional (1D) Bose
gas has been revived due to its experimental realization with
ultracold bosonic atoms [24–27]. In 1D, at finite temperature,
the excitation spectra are gapped. However, the 1D Bose gas
at zero temperature contains gapless spectra and the system
exhibits algebraic long-range order. In a trapped 1D gas, the
BEC regimes of a true condensate, quasicondensate regime
and the regime of a trapped Tonks gas (gas of impenetrable
bosons) at finite temperature have been identified in Ref. [28].
The stability and phase coherence of trapped 1D Bose gases
was studied in Ref. [29]. Most of the other relevant works are
summarized in the review article [30]. In highly anisotropic
traps, where the axial motion of the atoms is weakly confined
while the radial motion is frozen by the tight transverse
confinement, the shape of the Bose-condensed systems reduces
to one dimension. If the characteristic range of the interatomic
potential is much smaller than the typical length of the radial
extension, the system can be described by the Lieb-Liniger
model [31,32], in which the contact potential strength g1D

is given by g1D = − 2h̄2

ma1D
with a1D being the 1D scattering

length [33,34]. The Lieb-Liniger model can be exactly solved
by the Bethe ansatz and two types of excitations (named
type I and type II) have been found. Type I excitations
are gapless with a linear dispersion in the long-wavelength
limit and reduce to the Bogoliubov excitations in the weak
coupling limit. Type II excitations, the Fermionic excitations
which are prominent in the strong coupling regime, have no
equivalent in the Bogoliubov theory. J. S. Caux et al. [35]
studied the one-particle dynamical correlation function of the
Lieb-Liniger model by using the ABACUS method [36] for a
wide range of values of the interaction parameter.

In this paper we will apply IGA to the 1D Bose gas at zero
temperature. This system can be described by the Lieb-Liniger
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model (LLM), which has been exactly solved by the Bethe
ansatz. We can compare the result of the IGA method with the
exact one in order to test the precision and validity of the IGA
method. In the future, we shall apply IGA to 2D or 3D Bose
gas at finite temperature, as in high dimensions we cannot
apply the Bethe ansatz method to obtain the exact solution;
IGA or IDT is the only approach we can rely on. In higher
dimensions, the quantum and thermal fluctuations are weaker
than in 1D, and the result obtained by IGA or IDT should
be better qualitatively and quantitatively than that in 1D. In
this paper, we shall study LLM by using IGA and focus our
attention on the excitation spectrum. We will follow Ref. [22]
and present the IGA method by solving the Dyson-Schwinger
equations, which are generated by functional differentiation of
the effective action.

We will show that only the Bogoliubov excitation spectrum
(or type I excitation) can be obtained by IGA. By comparison
with the results of the Bogoliubov approximation and type I
excitations based on the exact solution [31,35], we find that the
spectrum obtained in this way is a good improvement to the
spectrum in the Bogoliubov approximation. In order to obtain
type II excitation, we speculate that we shall use more general
� derivable theory beyond IGA (we will leave it as our future
work). If we study a high-dimensional bosonic system, there
will be no type II excitation, and IGA will give more accurate
results quantitatively.

The rest of the paper is organized as follows. In Sec. II we
review the basic formulation of one-particle irreducible (1PI)
effective action theory and the Dyson-Schwinger equations.
We also present the 1D bosonic model and the Dyson-
Schwinger equations for 1D bosonic model in this section.
In Sec. III we review the traditional approximations, such as
the Bogoliubov approximation, the HFB approximation, and
the Popov approximation. In Sec. IV, we present an improved
Gaussian approximation and obtain an improved gapless
excitation spectrum. In Sec. V we make a comparison with
the exact solution of the 1D bosonic model [31,35]. Finally,
we give a summary and conclusions. We use h̄ = kB = 1
throughout the paper with kB as the Boltzmann constant.

II. THE DYSON-SCHWINGER EQUATIONS
FOR THE 1D BOSONIC MODEL

In this section we shall present the general formulations
and the model and set up all the notations and definitions. We
shall start with the thermodynamic partition function and set
the temperature to zero in the end. For a bosonic system, the
grand-canonical partition function takes the form [37]

Z =
∫

D[ψ∗ψ]e−S[ψ∗,ψ] (1)

with the classical action S[ψ∗,ψ] given by∫ β

0
dτ

∫
dDx(ψ∗∂τψ − μψ∗ψ + H[ψ∗,ψ]), (2)

where β = 1
kBT

, μ is the chemical potential, H [ψ∗,ψ] is
the Hamiltonian density, and D is the dimension of position
space (the formulation is valid for arbitary D; however, in this
paper, we will carry out calculations only for 1D). In order to

obtain the correlation functions of field operators, a generating
functional is defined by coupling fields to an external source,

Z[J ∗,J ] =
∫

D[ψ∗,ψ]e−(S[ψ∗,ψ]+J ∗ψ+Jψ∗), (3)

where J ∗ψ is a shorthand for
∫ β

0 dτ
∫

dDxJ ∗(x,τ )ψ(x,τ ) and
similarly for Jψ∗. The connected generating functional is
defined as

W [J ∗,J ] = − lnZ[J ∗,J ]. (4)

The one-point expectation value of the field operators can be
obtained by the derivatives of the generating functional with
respect to the external source,

ϕ(x,τ ) = δW [J ∗,J ]

δJ ∗(x,τ )
(5)

ϕ∗(x,τ ) = δW [J ∗,J ]

δJ (x,τ )
,

where ϕ(x,τ ) = 〈ψ(x,τ )〉, ϕ∗(x,τ ) = 〈ψ∗(x,τ )〉 with

〈· · ·〉 ≡ 1

Z[J ∗,J ]

∫
D[ψ∗,ψ] · · · e−(S[ψ∗,ψ]+J ∗ψ+Jψ∗). (6)

Successive derivatives generate multipoint correlation func-
tions, for instance,

δ2W

δJ (x)δJ ∗(y)
= −〈ψ∗(x)ψ(y)〉c (7)

where x ≡ (x,τ ), y ≡ (y,τ ′), and the connected Green’s
function 〈ψ∗(x)ψ(y)〉c = 〈ψ∗(x)ψ(y)〉 − 〈ψ∗(x)〉 〈ψ(y)〉. For
notation compactness, we define

(J, J ∗) ≡ (J1, J2), (ψ∗,ψ) ≡ (ψ1,ψ2),
(8)

(ϕ∗,ϕ) ≡ (ϕ1,ϕ2), Gmn(x,y) ≡ 〈ψm(x)ψn(y)〉c ,

where m = 1,2, n = 1,2. Gmn(x,y) is related to W [J ∗,J ] by
the following equation:

Gmn(x,y) = − δ2W

δJm(x)δJn(y)
. (9)

The 1PI effective action is defined by the Legendre
transformation,

	[ϕ∗,ϕ] = W [J ∗,J ] − J ∗ϕ − Jϕ∗, (10)

which is a functional of the field expectation ϕ∗and ϕ.
Analogously with Eq. (5), the external source can be obtained
by the derivatives of the effective action with respect to the
one-point expectation of the field operators,

δ	[ϕ∗,ϕ]

δϕ(x,τ )
= −J ∗(x,τ ),

δ	[ϕ∗,ϕ]

δϕ∗(x,τ )
= −J (x,τ ). (11)

The effective action is the generating functional for vertex
functions. Using the chain rule to calculate δϕm(x)

δϕn(y) , we have

δϕm(x)

δϕn(y)
=

∑
i

∫
dz

δϕm(x)

δJi(z)

δJi(z)

δϕn(y)

= −
∑

i

∫
dz

δ2W

δJm(x)δJi(z)

δ2	

δϕi(z)δϕn(y)
. (12)
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On the other hand,

δϕm(x)

δϕn(y)
= δmnδ(x − y). (13)

Thus, by combining Eqs. (12) and (13) one obtains∑
i

∫
dzGmi(x,z)	in(z,y) = δmnδ(x − y), (14)

where 	mn(x,y) ≡ δ2	[ϕ1,ϕ2]
δϕm(x)δϕn(y) and Gmn(x,y) is defined in

Eq. (8). The 1PI effective action 	[ϕ∗,ϕ] can be approximately
obtained by loop expansion [38].

Dyson-Schwinger equations can be obtained by using the
following identity:∫

D[ψ∗,ψ]
δ

δψ∗(x)
e−(S[ψ∗,ψ]+J ∗ψ+Jψ∗) = 0, (15)

which leads to 〈
δS[ψ∗,ψ]

δψ∗(x)

〉
+ J (x) = 0. (16)

Derivatives of Eq. (16) with respect to the average field ϕm(x)
shall produce a series of Dyson-Schwinger equations, such as

δ

δϕ(y)

〈
δS[ψ∗,ψ]

δψ∗(x)

〉
+ δ

δϕ(y)
J (x) = 0. (17)

Successive functional derivatives with respect to ϕ (z) yield
higher-order Dyson-Schwinger equations, which involve the
correlation functions of more field operators. Therefore, the
infinite Dyson-Schwinger equations must be truncated to form
a set of closed equations in order to carry out any calculations.
Let us term Eq. (16) as the first Dyson-Schwinger equation
and Eq. (17) as the second Dyson-Schwinger equation.

We apply the Dyson-Schwinger formalism to a system
of one-dimensional bosonic gas interacting via a repulsive
contact potential, described by the Lieb-Liniger Hamiltonian

H = −
N∑

i=1

(
∂2

/
∂x2

i

) + g

N∑
i<j

δ(xi − xj ), (18)

where the mass of the particle has been set to 2m = 1 and
g is the contact interaction strength, which is related to the
1D scattering length experimentally. The second quantization
form reads

Ĥ =
∫

dDx
(
ψ†(x)(−∇2)ψ(x) + 1

2
gψ†(x)ψ†(x)ψ(x)ψ(x)

)
,

(19)

where we have used the notation for a general position space
dimension D and bear in mind that we will study the 1D case
of D = 1 in the end.

In path-integral formalism, the grand-canonical partition
function takes the form,

Z =
∫

D[ψ∗ψ]e−S[ψ∗,ψ], (20)

with the classical action S[ψ∗,ψ] given by∫ β

0
dτ

∫
dDx

(
ψ∗(∂τ − μ − ∇2)ψ + 1

2
gψ∗ψ∗ψψ

)
,

(21)

where ψ ≡ ψ(x,τ ), β = 1
kBT

, and μ is the chemical potential.
By variable rescaling

ψ = √
gψ ′, τ = g−2τ ′, x = g−1x′, μ = g2μ′, (22)

the action can be recast as a simple form dependent only on
one parameter, μ′,∫ β ′

0
dτ ′

∫
dDx′

(
ψ ′∗ (

∂τ ′ − ∇2
x′ − μ′) ψ ′ + 1

2
ψ ′∗ψ ′∗ψ ′ψ ′

)
.

(23)

In the following discussions, we will omit the primes for
simplicity,

S
[
ψ∗,ψ

]
=

∫ β

0
dτ

∫
dDx

(
ψ∗(∂τ − ∇2 − μ)ψ + 1

2
ψ∗ψ∗ψψ

)
.

(24)

Starting with the rescaled action in Eq. (24), we define the
generating functional,

Z[J ∗,J ] =
∫

D[ψ∗,ψ]e−(S[ψ∗,ψ]+J ∗ψ+Jψ∗). (25)

The first Dyson-Schwinger equations take the form,

(∂τ − ∇2 − μ)ϕ2 + 〈ψ1ψ2ψ2〉 + J1 = 0,
(26)

(−∂τ − ∇2 − μ)ϕ1 + 〈ψ1ψ1ψ2〉 + J2 = 0,

where implicitly all the arguments are x ≡ (x,τ ). By Wick
theorem we know

〈ψ1ψ2ψ2〉
= 〈ψ1ψ2ψ2〉c + 2ϕ2〈ψ1ψ2〉c + ϕ1〈ψ2ψ2〉c + ϕ1ϕ

2
2 , (27)

where 〈· · ·〉c denotes connected correlation functions. Substi-
tuting Eq. (27) into Eq. (26) yields

(∂τ − ∇2 − μ)ϕ2 + ϕ1ϕ
2
2 + ϕ1G22 + 2ϕ2G12

+ 〈ψ1ψ2ψ2〉c + J1 = 0,

(−∂τ − ∇2 − μ)ϕ1 + ϕ2
1ϕ2

+ϕ2G11 + 2ϕ1G12 + 〈ψ2ψ1ψ1〉c + J2 = 0, (28)

where all the default arguments are x ≡ (x,τ ) and G11 =
G11(x,x), G22 = G22(x,x), and G12 = 〈ψ1(x)ψ2(x)〉c. Gij =
Gij (x,x) is a constant for a translational symmetric system
which is the case in this paper. Further differentiations of
Eq. (28) with respect to ϕ1(y) and ϕ2(y) result in the second
Dyson-Schwinger equations,

	11(x,y) = (
ϕ2

2 + G22
)
δ(x − y) + ϕ1
221(x,y)

+ 2ϕ2
121(x,y) + δ

δϕ1(y)
〈ψ1ψ2ψ2〉c ,

	22(x,y) = (
ϕ2

1 + G11
)
δ(x − y) + ϕ2
112(x,y)

+ 2ϕ1
122(x,y) + δ

δϕ2(y)
〈ψ2ψ1ψ1〉c ,
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	12(x,y) = (
∂τ − ∇2

x − μ + 2ϕ1ϕ2 + 2G12
)
δ(x − y)

+ϕ1
222(x,y) + 2ϕ2
122(x,y)

+ δ

δϕ2(y)
〈ψ1ψ2ψ2〉c ,

	21(x,y) = (−∂τ − ∇2
x − μ + 2ϕ1ϕ2 + 2G12

)
δ(x − y)

+ϕ2
111(x,y) + 2ϕ1
121(x,y)

+ δ

δϕ1(y)
〈ψ2ψ1ψ1〉c , (29)

where x ≡ (x,τ ), y ≡ (y,τ ′), and 
mnl(x,y) ≡ δGmn(x,x)
δϕl (y) with

m (n, l) = 1, 2. Since what we consider is a homogeneous gas,
we can set

ϕ1(x,τ ) = ϕ2(x,τ ) ≡ υ, (30)

where υ is a real constant number. Further, we define the
Fourier transformations

δ(x − y) =
∫

dω

2π

∫
dDk

(2π )D
eik·(x−y)−iω(τ−τ ′),


mnl(x,y) =
∫

dω

2π

∫
dDk

(2π )D

mnl(k)eik·(x−y)−iω(τ−τ ′),

(31)

Gmn(x,y) =
∫

dω

2π

∫
dDk

(2π )D
Gmn(k)eik·(x−y)−iω(τ−τ ′),

	mn(x,y) =
∫

dω

2π

∫
dDk

(2π )D
	mn(k)eik·(x−y)−iω(τ−τ ′),

where k ≡ (k,ω) and ω denotes the Matsubara frequency in
the zero temperature limit. In the frequency space, Eq. (14) is
recast as ∑

m=1,2

Gim(k)	mj (k) = δij . (32)

The first and second Dyson-Schwinger equations are
not closed equations. They are impossible to solve unless
truncations are performed.

III. THE TRADITIONAL APPROXIMATIONS

The traditional approximations, such as the Bogoliubov ap-
proximation, the HFB approximation, and the Popov approx-
imation, have been exhaustively discussed in the literature.
In order to clarify the interrelations of the various familiar
schemes and the IGA scheme, which we shall present later, in
this section we formulate those approximations by truncating
the first and second Dyson-Schwinger equations.

A. Bogoliubov approximation

Ignoring any correlations, only the first Dyson-Schwinger
equations Eq. (28) are retained:

(∂τ − ∇2 − μ)ϕ2 + ϕ1ϕ
2
2 + J1 = 0,

(33)
(−∂τ − ∇2 − μ)ϕ1 + ϕ2

1ϕ2 + J2 = 0,

and the two-point vertex functions are defined by
	ij (x,y) = − δJi (x)

δϕj (y) |Ji (x)=0, where Ji(x), ϕj (y) are related

by Eq.(33),

	11(x,y) = ϕ2
2δ(x − y),

	22(x,y) = ϕ2
1δ(x − y),

(34)
	12(x,y) = (

∂τ − ∇2
x − μ + 2ϕ1ϕ2

)
δ(x − y),

	21(x,y) = (−∂τ − ∇2
x − μ + 2ϕ1ϕ2

)
δ(x − y).

By using the homogeneous and static condition in Eq. (30) and
applying the Fourier transformation in Eq. (31), we rewrite
Eq. (33) when Ji(x) = 0 as

υ2 = μ (35)

and Eq. (34) becomes, when Ji(x) = 0,

	11(k) = υ2, 	22(k) = υ2,

	12(k) = −iω + k2 + υ2, (36)

	21(k) = iω + k2 + υ2.

With the help of Eq. (32) we obtain the Green’s functions
in the Bogoliubov approximation,(

G11(k) G12(k)
G21(k) G22(k)

)
= 1

(iω)2−k2(k2+2υ2)

(
υ2 iω−(k2+υ2)

−iω−(k2+υ2) υ2

)
.

(37)

The Bogoliubov spectrum is given by the pole of the
determinant of the matrix in Eq. (37),

εBog(k) = k
√

k2 + 2υ2. (38)

In this approximation, the particle density n is equal to υ2.

B. HFB approximation

If two-point correlation functions are kept, ignoring
three- or higher-point correlation functions, the first Dyson-
Schwinger equations (28) become

(∂τ − ∇2 − μ)ϕ2 + ϕ1ϕ
2
2 + ϕ1G22 + 2ϕ2G12 = 0,

(39)
(−∂τ − ∇2 − μ)ϕ1 + ϕ2

1ϕ2 + ϕ2G11 + 2ϕ1G12 = 0,

and the second Dyson-Schwinger equations [Eq. (29)] become

	11(x,y) = (
ϕ2

2 + G22
)
δ(x − y),

	22(x,y) = (
ϕ2

1 + G11
)
δ(x − y),

(40)
	12(x,y) = (

∂τ − ∇2
x − μ + 2ϕ1ϕ2 + 2G12

)
δ(x − y),

	21(x,y) = (−∂τ − ∇2
x − μ + 2ϕ1ϕ2 + 2G12

)
δ(x − y).

By using the homogeneous and static condition in Eq. (30)
and applying the Fourier transformation in Eq. (31), we rewrite
Eq. (39) as

0 = −μ + υ2 + G11 + 2G12, G11 = G22 (41)
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and Eq. (40) as

	11(k) = υ2 + G11,

	22(k) = υ2 + G11,
(42)

	12(k) = −iω + k2 + υ2 − G11,

	21(k) = iω + k2 + υ2 − G11.

With the help of Eq. (32) we obtain the two-point Green’s
functions in the HFB approximation,(

G11(k) G12(k)
G21(k) G22(k)

)
= 1

(iω)2 − (k2 + 2υ2)(k2 − 2G11)

×
(

υ2+G11 iω−(k2+υ2−G11)
−iω−(k2+υ2−G11) υ2+G11

)
. (43)

The HFB spectrum then is given by

εHFB(k) =
√

(k2 + 2υ2)(k2 − 2G11). (44)

The variable G11 can be determined in a self-consistent way.
By the definitions of G11and G12, there are

G11 = − 1

4π
(υ2 + G11)

∫ ∞

−∞
dk

1√
(k2 + 2υ2)(k2 − 2G11)

(45)

and

G12 = 1

4π

∫ ∞

−∞
dk

(
(k2 + υ2 − G11)√

(k2 + 2υ2)(k2 − 2G11)
− 1

)
. (46)

In the HFB approximation, the particle-number density is

n = υ2 + G12. (47)

C. Popov approximation

The Popov approximation is well known for its gapless
excitation spectrum. It differs from the HFB approximation
in neglecting the “anomalous” two-point correlations G11 and
G22, so the Dyson-Schwinger equations take the form,

−μ + υ2 + 2G12 = 0 (48)

and

	11(k) = υ2, 	22(k) = υ2,
(49)

	12(k) = −iω + k2 + υ2, 	21(k) = iω + k2 + υ2.

In terms of the variable υ2, the two-point Green’s functions
have a form similar to those in the Bogoliubov approximation,(

G11(k) G12(k)
G21(k) G22(k)

)
= 1

(iω)2−k2
(
k2+2υ2

) (
υ2 iω−(k2+υ2)

−iω−(k2+υ2) υ2

)
,

(50)

and also the excitation spectrum,

εPopov(k) = k
√

k2 + 2υ2. (51)

By the definition of G12, there is

G12 =
∫

dω

2π

∫
dDk

(2π )D
iω − (k2 + υ2)

(iω)2 − k2(k2 + 2υ2)
. (52)

The particle-number density is given by n = υ2 + G12. How-
ever, in 1D, the above equation leads to

n = υ2 + 1

4π

∫ ∞

−∞
dk

(
−1 + 1

k

√
k2 + 2υ2 − υ2

k
√

k2 + 2υ2

)
,

(53)

which is infrared divergent, so the Popov approximation is
inapplicable here.

The reason the Popov theory breaks down in 1D is that phase
fluctuations are not considered properly. Reference [39] gave a
detailed discussion of this problem and proposed the modified
Popov theory, in which the inappropriately incorporated phase
fluctuations are subtracted and, thus, the infrared divergence
is removed. The particle-number density from the modified
Popov theory shall be given by

n = υ2 + 1

4π

∫ ∞

−∞
dk

(
−1 + k√

k2 + 2υ2

)
, (54)

which is free of divergences.

IV. IMPROVED GAUSSIAN APPROXIMATION

In this section we shall present another strategy, IGA, which
takes into account the quantum fluctuations more precisely
(adding some Feynman diagrams to preserve symmetry re-
quirement) and retains the gapless Goldstone mode.

By preserving up to two-point correlation functions in
the first Dyson-Schwinger equations, however, we will keep
source terms here for a while in order to define the Green’s
function in IGA scheme.

(∂τ − ∇2 − μ)ϕ2 + ϕ1ϕ
2
2 + ϕ1G

tr
22 + 2ϕ2G

tr
12 + J1 = 0,

(−∂τ − ∇2 − μ)ϕ1 + ϕ2
1ϕ2 + ϕ2G

tr
11 + 2ϕ1G

tr
12 + J2 = 0,

(55)

and

	tr
11(x,y) = (

ϕ2
2 + Gtr

22

)
δ(x − y)

	tr
22(x,y) = (

ϕ2
1 + Gtr

11

)
δ(x − y),

(56)
	tr

12(x,y) = (
∂τ − ∇2

x − μ + 2ϕ1ϕ2 + 2Gtr
12

)
δ(x − y)

	tr
21(x,y) = (−∂τ − ∇2

x − μ + 2ϕ1ϕ2 + 2Gtr
12

)
δ(x − y),

where “tr” denotes truncation. We will define

	ij (x,y) = − δJi(x)

δϕj (y)

∣∣∣∣
Ji (x)=0

, (57)

where the relations between Ji (x) and ϕj (y) are given by
Eqs. (55) and (56).

	11(x,y) = (
ϕ2

2 + Gtr
22

)
δ(x − y) + ϕ1


tr
221(x,y)

+ 2ϕ2

tr
121(x,y),
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FIG. 1. Feynman diagrams for the corrections to the two-point
vertex function obtained by the HFB approximation.

	22(x,y) = (
ϕ2

1 + Gtr
11

)
δ(x − y) + ϕ2


tr
112(x,y)

+ 2ϕ1

tr
122(x,y),

	12(x,y) = (
∂τ − ∇2

x − μ + 2ϕ1ϕ2 + 2Gtr
12

)
δ(x − y)

+ϕ1

tr
222(x,y) + 2ϕ2


tr
122(x,y),

	21(x,y) = (−∂τ − ∇2
x − μ + 2ϕ1ϕ2 + 2Gtr

12

)
δ(x − y)

+ϕ2

tr
111(x,y) + 2ϕ1


tr
121(x,y), (58)

where


tr
mnl(x,y) ≡ δGtr

mn(x,x)

δϕl(y)
, (59)

and, in the end, we shall take Ji(x) = 0. From 	ij (x,y), we can
obtain the Green’s function, which is the inverse of 	ij (x,y).
The result obtained is gapless [9,40]. 	tr

ij (x,y) is obtained from
the truncated Dyson-Schwinger equation, ignoring the three-
point Green’s function. We comment that, diagrammatically,
the corrections �	ij (x,y) = 	ij (x,y) − 	tr

ij (x,y) correspond
to some additional diagrams [21–23], which are plotted
schematically in Fig. 1. In the Feynman rules of Fig. 1,
the point vertices are defined by the interaction part of
S [ϕ1 + ψ1,ϕ2 + ψ2], i.e., the part with three and four ψi fields
expanded around ϕi . The lines in Fig. 1 denote the truncated
Green’s function, Gtr

ij . The cross in Fig. 1 represents ϕi

(details can be found in Ref. [21]). By using the homogeneous
and static condition in Eq. (30) and applying the Fourier
transformation in Eq. (31), we rewrite Eq. (58) as

	11(k) = υ2 + Gtr
11 + υ
tr

221(k) + 2υ
tr
121(k),

	22(k) = υ2 + Gtr
11 + υ
tr

112(k) + 2υ
tr
122(k),

	12(k) = −iω + k2 + υ2 − Gtr
11 + υ
tr

222(k) + 2υ
tr
122(k),

	21(k) = iω + k2 + υ2 − Gtr
11 + υ
tr

111(k) + 2υ
tr
121(k),

(60)

where υ2 and Gtr
ij in the above equation are obtained from the

HFB equations in the previous section as in the end we take
Ji(x) = 0.

We start to calculate 
tr
mnl(x,y). First, we differentiate

Eq. (56) with respect to ϕm(z),

	tr
111(x,y,z) = δ(x − y)
tr

221(x,x,z),

	tr
221(x,y,z) = δ(x − y)

[

tr

111(x,x,z) + 2ϕ1δ(x − z)
]
,

	tr
121(x,y,z) = δ(x − y)

[
2
tr

121(x,x,z) + 2ϕ2δ(x − z)
]
,

	tr
211(x,y,z) = δ(x − y)

[
2
tr

121(x,x,z) + 2ϕ2δ(x − z)
]
,

	tr
222(x,y,z) = δ(x − y)
tr

112(x,x,z),

	tr
112(x,y,z) = δ(x − y)

[

tr

222(x,x,z) + 2ϕ2δ(x − z)
]
,

	tr
122(x,y,z) = δ(x − y)

[
2
tr

122(x,x,z) + 2ϕ1δ(x − z)
]
,

	tr
212(x,y,z) = δ(x − y)

[
2
tr

122(x,x,z) + 2ϕ1δ(x − z)
]
,

(61)

where z ≡ (z,τ ′′). From Eq. (14) we know

Gtr
mn(x,y)

=
∑
m′

∑
n′

∫
dx ′

∫
dy ′Gtr

mm′ (x,x ′)	tr
m′n′ (x ′,y ′)Gtr

n′n(y ′,y).

(62)

The derivatives of the above equation with respect to ϕl(z)
result in


tr
mnl(x,y,z) = −

∑
m′

∑
n′

∫
dx ′

×
∫

dy ′Gtr
mm′ (x,x ′)	tr

m′n′l(x
′,y ′,z)Gtr

n′n(y ′,y).

(63)

One can now take Ji(x) = 0. Gtr
mm′ (x,x ′) is, thus, given by

the HFB approximation in the above equation. By substituting
Eq. (61) into Eq. (63) and setting x = y, one obtains a set of
closed equations for 
mnl(x,x,z),


mnl(x,x,z) = −2υ
[
Gtr

ml(x,z)Gtr
l̄n

(z,x) + Gtr
ml̄

(x,z)Gtr
ln(z,x) + Gtr

ml̄
(x,z)Gtr

l̄n
(z,x)

]
− 2

∫
dx ′ [Gtr

ml(x,x ′)Gtr
l̄n

(x ′,x)
l̄ll(x
′,x ′,z) + Gtr

ml̄
(x,x ′)Gtr

ln(x ′,x)
l̄ll(x
′,x ′,z)

]
−

∫
dx ′ [Gtr

ml(x,x ′)Gtr
ln(x ′,x)
l̄l̄l(x

′,x ′,z) + Gtr
ml̄

(x,x ′)Gtr
l̄n

(x ′,x)
lll(x
′,x ′,z)

]
, (64)

where l̄ is defined by δll̄ = 0, which means l = 1, l̄ = 2 or l = 2, l̄ = 1. By applying the Fourier transformations in Eq. (31) we
rewrite Eq. (64) as


tr
mnl(k) = 
tr

lll(k)Iml̄,l̄n(k) + 
tr
l̄ l̄l

(k)Iml,ln(k) + 
tr
l̄ll

(k)[2Iml,l̄n(k) + 2Iml̄,ln(k)] + 2υ[Iml,l̄n(k) + Iml̄,ln(k) + Iml̄,l̄n(k)], (65)
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where

Imn,m′n′(k) = −
∫

dω1

2π

∫
dDk1

(2π )D
Gtr

mn(k1 + k)Gtr
m′n′(k1) (66)

and the two-point functions Gtr
mn(k) are those obtained from the HFB equations. We can explicitly integrate ω1 in Eq. (66), for

example,

I11,11(k) = 1

4

∫
dDk1

(2π )D
−(

υ2 + Gtr
11

)2√
[(k + k1)2 + 2υ2]

[
(k + k1)2 − 2Gtr

11

] (
k2

1 + 2υ2
)(

k2
1 − 2Gtr

11

)
×

(
1

iω +
√

[(k + k1)2 + 2υ2]
[
(k + k1)2 − 2Gtr

11

] +
√(

k2
1 + 2υ2

)(
k2

1 − 2Gtr
11

)
− 1

iω −
√

[(k + k1)2 + 2υ2]
[
(k + k1)2 − 2Gtr

11

] −
√(

k2
1 + 2υ2

)(
k2

1 − 2Gtr
11

))
, (67)

which shall be used for analytic continuation described below. Next, we insert the 
mnl(k) solved from Eq. (65) into Eq. (60), to
obtain the improved two-point vertices 	mn(k). The improved two-point correlation functions take the form,

G12(k) = 1

M(k)

(
iω − {

k2 + υ2 − Gtr
11 + υ

[

tr

222(k) + 2
tr
122(k)

]})
,

G22(k) = 1

M(k)

{
υ2 + Gtr

11 + υ
[

tr

221(k) + 2
tr
121(k)

]}
,

(68)

G11(k) = 1

M(k)

{
υ2 + Gtr

11 + υ
[

tr

112(k) + 2
tr
122(k)

]}
,

G21(k) = 1

M(k)

{−iω − [
k2 + υ2 − Gtr

11 + υ
[

tr

111(k) + 2
tr
121(k)

]})
,

where M(k) is the determinant of the matrix 	mn(k) and reads,

M(k) = {
υ2 + Gtr

22 + υ
[

tr

221(k) + 2
tr
121(k)

]} {
υ2 + Gtr

11 + υ
[

tr

112(k) + 2
tr
122(k)

]}
− {−iω −μ+ k2 + 2υ2 + 2Gtr

12 + υ
[

tr

222(k) + 2
tr
122(k)

]} {
iω − μ + k2 + 2υ2 + 2Gtr

12 + υ
[

tr

111(k) + 2
tr
121(k)

]}
.

(69)

The Green function in Eq. (68) gives a gapless excitation
spectrum, which shall be shown by the numerical result and
also can be analytically verified by investigating the poles of
the Green’s function. Analytically, one can prove M(0) = 0 to
make sure that the excitation spectrum is gapless. The details
of the proof are in the Appendix.

One can obtain the retarded and advanced Green’s func-
tion by analytic continuation, iω → � ± iη, where η is an
infinitesimally positive number. The spectral weight function
is then obtained by using the relation [41]

ρ (k,�) = 2ImGA (k,�) = −2ImGR (k,�) . (70)

Equation (67) is an analytic function of “complex” variable
� except on the real axis in the � plane. The retarded and
advanced Green’s function obtained, therefore, have desirable
analytic properties.

There is an equivalent formalism of the IGA approximation
in the framework of the improved � derivable theory. The �

derivable theory can start with the two-particle irreducible

(2PI) action functional 	̃ [ϕ1,ϕ2,G], which takes the form,

	̃ [ϕ1,ϕ2,G] = S [ϕ1,ϕ2] + 1

2
Tr ln G−1

+ 1

2
Tr[D−1(G − D)] + � [ϕ1,ϕ2,G] (71)

(D−1)ij = δ2S [ϕ1,ϕ2]

δϕiδϕj

,

where (ϕ1,ϕ2) ≡ (ϕ∗,ϕ), as defined previously, and G repre-
sents matrix (G)ij = Gij of Green’s functions. In the order of
the HFB approximation (omitting higher-order diagrams like
the setting sun diagram),

� [ϕ1,ϕ2,G] = 1

2

∫
dx [G11 (x,x) G22 (x,x)

+ 2G12 (x,x) G21 (x,x)] . (72)

We will obtain the same equations as Eqs. (39) and (40) of
the HFB approximation if we require

δ	̃ [ϕ1,ϕ2,G]

δϕi

= 0,
δ	̃ [ϕ1,ϕ2,G]

δGij

= 0. (73)
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In the framework of the � derivable theory, the IGA can
be reformulated as in Ref. [21]. The 1PI effective action
	 [ϕ1,ϕ2] is equal to 	̃[ϕ1,ϕ2,Gtr(ϕ1,ϕ2)] with Gtr (ϕ1,ϕ2)
defined by δ	̃[ϕ1,ϕ2,G]

δGij
|G=Gtr(ϕ1,ϕ2) = 0. From 	 [ϕ1,ϕ2], one

then obtains the inverse Green’s function, 	ij = δ2	[ϕ1,ϕ2]
δϕiδϕj

=
δ2	̃[ϕ1,ϕ2,Gtr(ϕ1,ϕ2)]

δϕiδϕj
. For technical details, see Ref. [21]. Substi-

tuting the solution of Eq. (73) into the functional 	̃ [ϕ1,ϕ2,G],
we obtain a quantity 	. The thermodynamical potential
is β−1	. According to the thermodynamical relation, the
particle-number density n is equal to − ∂	

βL∂μ
with L being the

size of the 1D system (L is infinity in the thermodynamic limit).
Using Eqs. (73) and (71), we know the density n is equal to
υ2 + Gtr

12, the same as the case of HFB. It is also valid in any �

derivable theory or improved � derivable theory beyond HFB.

V. COMPARISON WITH THE EXACT SOLUTION

References [31,35] present an exact solution of the
Lieb-Liniger model, which gives the exact excitation spectrum.
References [31,35] also consider a one-dimensional system
of length L (satisfying periodic boundary conditions), with N

bosonic particles interacting via a repulsive contact potential
of strength 2c, governed by the Lieb-Liniger Hamiltonian,

H = −
N∑

i=1

(
∂2

/
∂x2

i

) + 2c
∑

1�i<j�N

δ(xi − xj ). (74)

The excitation spectrum is plotted as ω/n2 ∼ k/n, with
n being the particle-number density N

L
. The dimensionless

parameter of the system is defined by γ = c
n

. Comparing
Eq. (18) with Eq. (74), there is g = 2c and, hence, the
corresponding parameter in the field-theoretic treatment takes
the form, γ = g

2n
.Comparing Eqs. (21) and (23), we know n =

gn′, k = gk′, and ω = g2ω′, which implies ω/n2 = ω′/n′2,
k/n = k′/n′, where we restore the notation k′, n′, ω′ for the
rescaled quantities after Eq. (23) (we had dropped prime for
simplicity). Therefore, in order to compare with the exact
solution, we should plot the excitation spectrum in the form,
ω′/n′2 ∼ k′/n′, with n′ being the rescaled particle-number
density, at the parameter γ = 1

2n′ . At the parameters γ =
1, γ = 32, γ = 64, corresponding to n′ = 1/2, n′ = 1/64,
n′ = 1/128, we plot the spectrum obtained from the different
approximation schemes in Fig. 2. The IGA spectrum, which
incorporates extra corrections based on the HFB spectrum, is
gapless, while the HFB spectrum is gapped. When the particle
density is high (γ is small), all approximation schemes lead to
good results, which implies that quantum fluctuations are weak
at a high particle density. Furthermore, at a very low particle
density when quantum fluctuations become strong, the IGA
scheme shows its advantage. Specifically, at γ = 32 and γ =
64, the IGA spectrum is in good agreement with the exact one,
while the Bogoliubov spectrum is not accurate quantitatively.

VI. SUMMARY

We have presented the IGA to treat a one-dimensional
bosonic gas. The Green’s function obtained by IGA satisfies

FIG. 2. (Color online) The spectra obtained from Bogoliubov
approximation (green lines), HFB (blue dashed lines), IGA (red
dotted lines), and exact numerical calculations (black squares) from
Bethe ansatz [35] are compared at three different γ .

Ward identities from U(1) symmetry and, therefore, the
spectrum is gapless.
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We have formulated all the traditional approximations
(the Bogoliubov approximation, the HFB approximation,
and the Popov approximation) in terms of truncations of
Dyson-Schwinger equations. The HFB approximation is a
well-known self-consistent approximation, but it leads to a
gapped excitation spectrum, violating the Goldstone theorem.
The spectrum obtained by IGA scheme, which incorporates
more quantum corrections to the HFB spectrum, is gapless.
In order to test the validity and precision of the IGA method,
we apply it to the one-dimensional bosonic gas described by
the Lieb-Liniger model. We can obtain only a type I excitation
(Bogoliubov spectrum) within the IGA method. Nevertheless,
by comparison with the type I spectrum exactly solved by the
Bethe ansatz, we find that the IGA method gives quantitatively
good results on the type I spectrum.

The idea of the IGA method can be applied to improve
higher-order � derivable theory (the HFB theory is the result
of the lowest order � derivable approximation) [21,22]. The
essence of the idea is to add extra Feynman diagrams to
preserve the symmetry of all the Feynman diagrams and
thereby restore the Ward identity. The IGA method makes
an improvement based on the HFB approximation. When
quantum fluctuations are very strong, the higher-order �

derivable approximation beyond the HFB approximation will
be required and then the corresponding improvement to restore
the Ward identity can be performed in a similar way. In order
to get type II (fermionic excitation), one probably shall go
beyond the IGA and use “improved” high-order � derivable
theory.

The IGA method presented here can be employed to handle
many other Bose-condensed systems, including 2D or 3D,
zero temperature or finite temperature, or in homogeneous or
optical lattices. For higher-dimensional systems, as there is no
type II excitation and quantum fluctuations are weaker, IGA
shall be expected to give more quantitatively accurate results.

As one of applications of IGA, we have carried out the
IGA calculation on type II superconductor where acoustic and
optical spectra are obtained nonperturbatively. The results will
be presented elsewhere [42].
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APPENDIX

We shall prove M(0) = 0, namely

0 = {
υ2 + Gtr

22 + υ
[

tr

221(0) + 2
tr
121(0)

]}
× {

υ2 + Gtr
11 + υ

[

tr

112(0) + 2
tr
122(0)

]}
− {−μ + 2υ2 + 2Gtr

12 + υ
[

tr

222(0) + 2
tr
122(0)

]}
× {−μ + 2υ2 + 2Gtr

12 + υ
[

tr

111(0) + 2
tr
121(0)

]}
.

(A1)

By using the homogeneous and static condition in Eq. (30) and
applying the Fourier transformation in Eq. (31), we rewrite
Eq. (55) as

0 = −μ + υ2 + Gtr
11 + 2Gtr

12, Gtr
11 = Gtr

22 (A2)

and Eq. (56) as

	tr
11(k) = υ2 + Gtr

11,

	tr
22(k) = υ2 + Gtr

11,
(A3)

	tr
12(k) = −iω + k2 + υ2 − Gtr

11,

	tr
21(k) = iω + k2 + υ2 − Gtr

11.

Note that the value of the external sources J1 and J2 has been
set to zero. With the help of Eq. (32) we obtain the two-point
truncated Green’s function,[

Gtr
11(k) Gtr

12(k)

Gtr
21(k) Gtr

22(k)

]
= 1

(iω)2 − (k2 + 2υ2)
(
k2 − 2Gtr

11

)
×

[
υ2+Gtr

11 iω− (
k2+υ2−Gtr

11

)
−iω− (

k2+υ2−Gtr
11

)
υ2+Gtr

11

]
,

(A4)

which has the same form as the Green’s function in the HFB
approximation. Using Eq. (A2) we can rewrite Eq. (A1) as

0 = {
υ2 + Gtr

11 + υ
[

tr

221(0) + 2
tr
121(0)

]}
× {

υ2 + Gtr
11 + υ

[

tr

112(0) + 2
tr
122(0)

]}
− {

υ2 − Gtr
11 + υ

[

tr

222(0) + 2
tr
122(0)

]}
× {

υ2 − Gtr
11 + υ

[

tr

111(0) + 2
tr
121(0)

]}
. (A5)

By inserting Eq. (A4) into Eq. (66), it is easy to verify that

Iml,ln(0) = Im̄l̄,l̄n̄(0) , (A6)

where m,n,l,m̄,n̄,l̄ = 1,2 with the constraint δmm̄ = 0, δnn̄ =
0, and δll̄ = 0, for example, I11,11(0) = I22,22(0), I21,11(0) =
I12,22(0), and so on. Equations (A6) and (65) lead to


tr
mnl(0) ≡ 
tr

m̄n̄l̄
(0) . (A7)

There is


tr
mnl(k) = 
tr

nml(k) , (A8)

which is evident from the definition in Eq. (59). Using
Eqs. (A7) and (A8), we can rewrite Eq. (A5) as

0 = [
2υ + 4
tr

121(0) + 
tr
111(0) + 
tr

221(0)
]

× [
2Gtr

11 + υ
tr
221(0) − υ
tr

111(0)
]
. (A9)

From Eq. (65) we find that[

tr

221(0) − 
tr
111(0)

] = 2υ[I11,11(0) − I12,21(0)]

[1 + I11,11(0) − I12,21(0)]
. (A10)

033609-9



QIONG LI, DAOGUANG TU, AND DINGPING LI PHYSICAL REVIEW A 85, 033609 (2012)

By straightforward calculations, we know

I11,11(0) − I12,21(0) = 1

4π

∫ ∞

0
dk

1√
(k2+2υ2)

(
k2−2Gtr

11

)
(A11)

and

Gtr
11 = − (

υ2 + Gtr
11

) 1

4π

∫ ∞

0
dk

1√
(k2 + 2υ2)

(
k2 − 2Gtr

11

) .

(A12)

Equations (A12) follows from the definition of Gtr
11, that

is, Gtr
11 = Gtr

11(x,x) = ∫
dω
2π

∫
dDk

(2π)D Gtr
11(k,ω). By comparing

Eqs. (A11) and (A12) we know

I11,11(0) − I12,21(0) = −Gtr
11(

υ2 + Gtr
11

) . (A13)

Equations (A10) and (A13) lead to

2Gtr
11 + υ
tr

221(0) − υ
tr
111(0) = 0. (A14)

Thus, Eq. (A9) is proved and Eq. (A1) is proved.
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