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Effect of disorder close to the superfluid transition in a two-dimensional Bose gas

B. Allard,1 T. Plisson,1 M. Holzmann,2,3 G. Salomon,1 A. Aspect,1 P. Bouyer,1,4 and T. Bourdel1,*

1Laboratoire Charles Fabry, Institut d’Optique, CNRS, Univ Paris-Sud, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex, France
2LPTMC, UMR 7600 of CNRS, Université P. et M. Curie, 75752 Paris, France
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We experimentally study the effect of disorder on trapped quasi-two-dimensional (2D) 87Rb clouds in the
vicinity of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The disorder correlation length is of the
order of the Bose gas characteristic length scales (thermal de Broglie wavelength, healing length) and disorder
thus modifies the physics at a microscopic level. We analyze the coherence properties of the cloud through
measurements of the momentum distributions for two disorder strengths as a function of its degeneracy. For
moderate disorder, the emergence of coherence remains steep but is shifted to a lower entropy. In contrast, for
strong disorder, the growth of coherence is hindered. Our study is an experimental realization of the dirty boson
problem in a well controlled atomic system suitable for quantitative analysis.
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I. INTRODUCTION

Together with band structure and interactions, disorder
is a key ingredient for the understanding of transport in
condensed matter physics [1]. At low temperature it affects the
conductivity of a metal and it even induces phase transitions
to insulating states [2]. A striking example is Anderson
localization [3], which has recently been observed in three-
dimensional (3D) ultracold gases [4].

Disorder is especially relevant in 2D systems, such as
Si-MOSFET (metal-oxide-semiconductor field-effect transis-
tor) [5], or thin metal films [6], in which quantum phase
transitions to insulating phases have been observed. Moreover,
in high-Tc superconductors, doping intrinsically introduces
inhomogeneities in the CuO planes [7]. Understanding the
complex interplay between disorder and interactions in these
systems remains a major challenge.

Whereas the above mentioned electronic systems are
fermionic, superconductivity originates from the bosonic
nature of Cooper pairs. As long as disorder does not break the
Cooper pairs, the problem is reduced to a study of dirty bosons
[8,9]. It has mainly been studied numerically in the framework
of the disordered 2D Bose-Hubbard model. Disorder can both
favor or disfavor superfluidity [10], and the occurrence of a
Bose glass, an insulating, gapless, compressible phase has
been predicted [8].

In the context of ultracold atoms, the properties of
disordered trapped Bose gases have been studied both in
one-dimension (1D) [11–13] and 3D [14]. In 2D Bose
gases in the absence of disorder, the Berezinskii-Kosterlitz-
Thouless (BKT) superfluid phase transition [15] has been
experimentally studied through the modification of the gas
coherence properties associated with the pairing of thermal
vortices [16,17]. In a continuous system, the effect of disorder
on the BKT superfluid transition is expected to depend on
the correlation length of the disorder σ , which has to be
compared to the characteristic length scales of the cloud such
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as the thermal de Broglie wavelength λdB and the healing
length ξ , that is, the vortex core size [18]. For slowly varying
disorder (σ � ξ,λdB), the physics can be locally described
by the homogeneous BKT transition, and disorder causes a
percolation transition of superfluid islands. In contrast, for a
microscopically correlated disorder (σ � ξ,λdB), tunneling is
possible and the very nature of the phase transition is affected.

A recent Monte Carlo study of the homogeneous 3D Bose
gas in the presence of speckle disorder [18] has shown that,
depending on its correlation length σ , the disorder can either
reduce the critical temperature (due to quantum localization) or
increase it because of the reduction of the available volume (see
Fig. 14 in [18]). However there have been so far no theoretical
prediction for the effect of disorder on the BKT superfluid
transition in a continuous 2D system. As in 3D, Anderson
localization [3] and percolation phenomena are likely to affect
the superfluid transition, but reducing dimensionality should
enhance their effects [18,19]. In addition, new phenomena af-
fecting specifically the BKT transition such as enhanced phase
fluctuations or vortex pinning [20] may play an important role.

In this paper we present an experimental study of the
effect of microscopically correlated disorder on the coherence
properties of a 2D ultracold atomic gas near the BKT superfluid
transition. As in [21], the coherence properties are probed by
the study of the momentum distribution, which is the Fourier
transform of the first order correlation function g1 [22]. We
observe that an adiabatic ramping up of the disorder results in
a suppression of the low momentum peak, that is, a decrease
of coherence. In particular, for a moderate disorder strength
of 0.4 times the temperature, we measure a small shift of
the emergence of coherence toward low entropy. For stronger
disorder strength of the order of the temperature, the growth
of coherence is significantly hindered both as a function of
entropy and temperature.

II. EXPERIMENTAL SETUP

Our experiment starts with a quantum degenerate 2D Bose
gas in a trap obtained from a combination of a blue detuned
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TEM01 beam, which confines the gas in a horizontal plane,
and a red detuned Gaussian beam for the in-plane confinement
[21]. The trap oscillation frequencies are ωx/2π = 8 Hz,
ωy/2π = 15 Hz, ωz/2π = 1.5 kHz. The atom number N is
varied between 2 × 104 and 6 × 104 in order to change
the degeneracy of the gas across the BKT transition. The
temperature, measured from a fit to the wings of the momentum
distribution using a Hartree-Fock mean-field model [21],
remains constant at 64.5 ± 2.0 nK. At this temperature ∼70%
of the atoms are in the ground state of the vertical harmonic
oscillator. The dimensionless 2D interaction strength is g̃ =√

8πas/az = 0.096, where as = 5.3 nm is the 3D scattering
length, az = √

h̄/mωz ≈ 0.28 μm is the vertical harmonic
oscillator characteristic length, m is the atom mass, and h̄

is the reduced Planck constant.
The disorder potential is a speckle pattern produced by a

532 nm laser beam, which passes through a diffusive plate
and is focused on the atoms. The repulsive disorder potential
is characterized by its mean value V (equal to its standard
deviation) and its correlation lengths, inversely proportional
to the numerical aperture of the optical system [23]. Given
the intensity of the beam and its transverse waist radius of 1
mm, the maximum value of V felt by the atoms is V max =
kB × 60(10) nK. As the beam is tilted by 30◦, the in-plane
disorder is effectively anisotropic [24]. The correlation lengths
of the disorder are such that σx/2 = σy = 0.5 μm (half-width
at 1/

√
e). These correlation lengths are of the order of both

the thermal de Broglie wavelength λdB =
√

2πh̄2/mkBT ≈
0.73 μm and the healing length (at the BKT transition)
ξ = λdB/

√
Dcg̃ ≈ 0.82 μm, where Dc ≈ ln(380.3/g̃) ≈ 8.3

is the BKT critical phase space density [25]. However, σx

and σy are small compared to the Thomas-Fermi radii of

the cloud at the BKT transition lx = h̄
√

2g̃Dc

mωxλdB
= 25 μm, ly =

(ωx/ωy)lx = 13 μm, a necessary condition for self-averaging
measurements. In our experiment we use a single realization
of the speckle pattern.

In the experimental sequence the disorder potential is
slowly ramped up in 250 ms after the preparation of the 2D
gas. After a holding time of 250 ms, all trapping potentials
including the disorder are switched off and the atom cloud
expands in 3D during a free fall of 83.5 ms. The column density
of the gas along z is then measured by fluorescence imaging
from the top. As explained in Ref. [21], it reflects the in-trap
momentum distribution in the x,y plane. Since, the momentum
distributions appear to be cylindrically symmetric, we perform
an azimuthal averaging [26] to obtain the momentum profiles
n(k) as a function of the wave number k.

III. RESULTS

We study the effect of disorder on the momentum distri-
bution for different initial conditions, both above and below
the BKT transition. A narrow momentum distribution is the
signature of a large coherence length in the sample. We
quantify the degeneracy of the nondisordered gas with the
ratio N/Nc, where Nc is the critical atom number of an ideal
3D Bose gas in our anisotropic trap. From our previous study
of the 2D Bose gas in the absence of disorder [21], we know
that the BKT phase transition happens at N/Nc ≈ 1.26 for our
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FIG. 1. (Color online) Azimuthally averaged momentum dis-
tribution profiles for (a) N = 5.6 × 104, (b) N = 3.8 × 104, and
(c) N = 2.9 × 104. In each case we show the influence of the
disorder: no disorder V = 0 (black triangles), 0.4 V max (green open
squares), and V max (red circles).

parameters. In Fig. 1 we compare the momentum distribution
without disorder to the results obtained after ramping up
the disorder potential to V = 0.4 V max and V = V max. For
N/Nc = 1.06 [Fig. 1(c)] and in the absence of disorder, the
gas is in the normal phase. In this case, the addition of the
disorder has little effect, reducing slightly the low momentum
population (k < 2 μm−1). For N/Nc = 1.32 [Fig. 1(b)] the
gas has just entered the superfluid phase in the absence of
disorder and a low momentum peak is clearly present. In this
case the disorder has a strong effect. The population at very low
momentum (k < 0.5 μm−1) is strongly suppressed and the low
momentum peak almost disappears. The profiles with disorder
are then qualitatively similar to the one in the normal phase
[Fig. 1(c)]. For N/Nc = 1.75 [Fig. 1(a)] and in the absence of
disorder, the gas is deep in the superfluid phase with a large
low momentum peak. In this case the addition of the disorder
leads to a reduction of the height of the peak but not to its
disappearance. In all our data, adding disorder always results
in a reduction of the coherence of the Bose gas.

It should be noted that slowly applying the disorder
preserves the entropy. When the disorder potential is ramped
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FIG. 2. (Color online) Fraction of atoms N0/N in the central pixel
of the momentum distribution as a function of the average entropy per
particle S: nondisordered case V = 0 (black triangles), V = 0.4 V max

(green open squares), and V = V max (red circles). Each point results
from the averaging of five experimental profiles and the error bars
are statistical. The line corresponds to a Monte Carlo simulation in
the absence of disorder [21]. Inset: entropy per particle measured by
quantum Monte Carlo simulations at 64.5 nK (blue cross) and fitted
by a third order polynomial (black line). The dashed lines indicate
the BKT transition.

up to a mean value V max in 250 ms and then down in 250 ms,
we find no heating and no atom loss compared to the
nondisordered situation, within our experimental precision
(±1 nK). This uncertainty comes from both the shot-to-shot
fluctuation of the experiment and the accuracy of the fitting
procedure. We thus observe that adding the disorder is a
reversible process. In the following we assume that consecutive
pictures with and without disorder correspond to the same
entropy (Fig. 1). Presenting our data as a function of entropy
is then a natural choice.

Even in the absence of disorder, we however do not have
experimental access to the entropy. To find the correspondence
between the ratio N/Nc, extracted from our measurements
and entropy, we rely on quantum Monte Carlo simulations
of the nondisordered in situ distribution [27], from which the
entropy can be determined because of the scale invariance of
the 2D Bose gas [28]. The calibration of the average entropy
per particle S as a function of N/Nc for our experimental
conditions is shown in the inset of Fig. 2.

IV. ANALYSIS AND DISCUSSION

In order to analyze our result in a simple way, we would
like to characterize the degree of coherence of the gas with a
single number and not with the full momentum distribution. A
natural quantity to consider is the coherence length, that is, the
inverse of the width of the momentum distribution. However,
in our case, the width of the momentum distribution saturates
because of the limited resolution of our imaging system for
highly coherent clouds [21]. As an alternative we choose
to focus our analysis on the fraction of atoms N0/N in the

central pixel of the momentum distribution (k < 0.2 μm−1).
It is also a well-defined model-independent quantity and it is
related to the fraction of atoms that are coherent on a length
scale larger than ∼5 μm [29]. We plot N0/N as a function
of the entropy per particle S (Fig. 2) and find that, at fixed
entropy, the coherence of the gas is reduced in the presence
of disorder. For V = 0.4 V max, the emergence of coherence is
slightly shifted to a lower entropy per particle by 0.2(1) kB,
compared to the nondisordered case. For V = V max, we never
reach a sufficiently low entropy to observe a large increase of
coherence.

Since the phase diagram of disordered systems is typically
presented as a function of disorder and temperature [30], we
now complement our analysis of the coherence as a function
of these quantities. This means that we have to determine
the temperature from the experimental disordered profiles. In
the absence of an exact theoretical model for 2D disordered
gases, we use our nondisordered Hartree-Fock mean-field
model [21], which we expect to be valid at large momenta.
Experimentally we fit to the wings of the distribution between
a variable cut-off momentum kc and 12 μm−1. We find
that for 2.75 � kc � 3.75 μm−1 our signal to noise ratio is
sufficient and the fitted temperature varies typically less than
1 nK, indicating that our model is reasonably accurate in this
range. We use kc = 3.5 μm−1 in the following analysis. For
V = V max the temperature is found to increase on average by
5.5 nK compared to the nondisordered case (T = 64.5 nK).

Figure 3 presents N0/N as a function of the temperature
normalized to Tc, the critical temperature for an ideal 3D Bose
gas in our anisotropic trap and the measured atom number.
The results without disorder and with a disorder of amplitude
0.4 V max are similar and no clear shift is visible. Within our
accuracy we can conclude that for this amount of disorder
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FIG. 3. (Color online) Fraction of atoms N0/N in the central
pixel of the momentum distribution as a function of the normalized
estimated temperature for disorder strengths, V = 0 (black triangles),
V = 0.4 V max (green open squares), and V = V max (red circles). Tc is
the critical temperature of an ideal 3D Bose gas in our anisotropic trap.
Each point results from the averaging of five experimental profiles
and the error bars are statistical. The line corresponds to a Monte
Carlo simulation in the absence of disorder [21].
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the coherence properties are weakly affected. Note that the
classical percolation threshold ∼0.52V̄ ≈ 13 nK [31] is larger
than the mean-field chemical potential at the phase transition
in the absence of disorder μc = g̃h̄2Dc/mλdB

2 ≈ kB × 8 nK.
The observation of a weak effect of disorder is a signature
that classical percolation is not relevant in the regime of a
microscopically correlated disorder (σ ∼ ξ,λdB).

For V = V max, the coherence increases much slower when
T/Tc decreases. The coherence properties of the gas are
greatly modified. This finding contrasts with the 3D quantum
Monte Carlo calculation, which predicts a significant effect
of the disorder only at larger disorder strength [18]. We
thus show the enhanced role of disorder in 2D as compared
to 3D. At our lowest temperatures, N0/N does not reach
the value of 0.0035 which corresponds to the superfluid
transition in the absence of disorder [21]. Although we do
not directly measure the superfluid fraction [17] since the
superfluid transition is generally associated with the apparition
of long range coherence, we can suspect that our system is
not in a superfluid phase and that the critical temperature for
superfluidity is shifted down by a significant amount. Actually,
for our amount of disorder [32], the existence of a superfluid
is not guaranteed even at zero temperature because of the
disorder-driven quantum phase transition from a superfluid to
an insulating Bose glass phase [30].

V. CONCLUSION

In conclusion, we have shown that a microscopically
correlated disorder (σ ∼ ξ,λdB) always reduces the coherence

of a 2D Bose gas, both at constant temperature and entropy.
For moderate disorder strength of 0.4T , the reduction is weak
although we are able to measure a small shift of the emergence
of coherence toward low entropy. A disorder strength of the
order of gas temperature leads to a qualitative change of
behavior with a suppressed coherence growth. We interpret
the observed strong suppression of the coherence growth as
a large shift of the superfluid transition. Theoretical studies
in our experimental conditions would be of great interest
and would strengthen our analysis. The mechanism of the
disorder action can also be addressed both experimentally
and theoretically. In the future, similar studies on strongly
interacting fermions would add the possibility of elucidating
the physics of disorder-induced breaking of bosonic pair.

Note added. Recently, we have learned about a com-
plementary work about disordered 2D Bose gases in
the deep superfluid regime [33]. It is focused on the
different behaviors between quasicondensate fraction and
coherence.
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and I. Bozović, Nature (London) 472, 458 (2011).

[10] W. Krauth, N. Trivedi, and D. Ceperley, Phys. Rev. Lett. 67,
2307 (1991); F. Lin, E. S. Sørensen, and D. M. Ceperley,
Phys. Rev. B 84, 094507 (2011); S. G. Söyler, M. Kiselev, N. V.
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