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Metric for three-dimensional alignment of molecules
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In an effort to clarify the three-dimensional alignment dynamics of polyatomic molecules, we propose a single
measure for the degree of angular confinement of such molecules. The measure proposed for three-dimensional
orientation is the angle of the single rotation that takes the molecule to the desired target orientation. Further,
taking into account the D2 symmetry of a three-dimensionally aligned distribution, a symmetrized version of
the measure is constructed that serves as a direct indicator of the degree of three-dimensional alignment of a
distribution. The calculation of the rotational dynamics of iodobenzene under the influence of two cross-polarized
laser pulses demonstrates the effectiveness of the proposed metric.
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I. INTRODUCTION

Laser-induced molecular alignment has become an im-
portant tool in molecular physics over the past decade. The
interaction of a molecule’s nonresonant polarizability with an
intense laser pulse can be used to either hold it adiabatically
or to set up a coherent rotational wave packet that aligns when
the laser pulse is over [1]. Since the interaction is nonresonant,
a variety of molecules can be aligned with the same laser,
typically a Nd:YAG or Ti:sapphire laser, and the strong-field
interaction ensures that all molecules in the laser focus are
aligned. The experiments made possible by this technique
include high-harmonic generation from aligned molecules
[2], laser-induced electron diffraction [3], molecular frame
photoelectron angular distribution measurements [4–6] even
from molecules that do not fragment when ionized, control of
filamentation of intense laser pulses in air [7], and ultrafast
optical phase modulation [8]. Most of these applications have
used linear molecules for which only one-dimensional (1D)
alignment of the molecular axis is required. For asymmetric
top molecules, it is necessary to align the molecules along
all three axes in the laboratory frame (LF) in order to make
measurements in the molecular frame (MF). In fact, depending
on the number of mirror planes the molecule has, orientation
of one or more axes will be required if the goal of molecular
frame measurements is to be attained. Several experiments
have shown three-dimensional (3D) alignment [9,10] and even
1D orientation combined with 3D alignment for molecules
with two mirror planes [11,12]. Full 3D orientation has been
discussed theoretically [13] but, to the best of our knowledge,
has not yet been demonstrated.

For linear molecules, the characterization of alignment and
orientation is based on a straightforward metric—the cosine
of the angle between the desired alignment axis and the
axis of the molecule. Quantifying alignment and orientation
is somewhat more complex in three dimensions. Broadly
speaking, two approaches have been adopted—using Euler
angles [14] and direction cosines [15–17]—but neither is
very satisfactory. Here we propose the adoption of a unifying
scheme for quantifying the degree of alignment or orientation
of molecules. Euler’s rotation theorem guarantees that a single
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rotation can take an arbitrarily oriented rigid body to a target
orientation, and we will show that the angle of this rotation can
be used to characterize the degree of alignment and orientation
of molecules.

Expectation values of cos2 α, where α is one of the three
Euler angles θ , φ, and χ , are used for characterizing 3D
alignment in Refs. [14,18]. (We will follow the convention
used by Zare [19], in which XYZ is the LF coordinate system,
xyz is the MF coordinate system, and θ , φ, and χ are the Euler
angles.) The Euler angles have the advantage that they are
independent variables and are used very widely to describe the
physics of rigid body motion, but alignment in 3D requires the
creation of distributions in which these angles are correlated.
For example, we will show that only the sum and difference
of the angles φ and χ , and not the angles themselves, matter
for 3D alignment. For this reason the 〈cos2 α〉 are not ideal for
characterizing 3D alignment.

The direction cosines (x̂ · X̂ = cos θxX,ŷ · X̂ = cos θyX,
etc.) were used in Refs. [15,16]. But the direction cosines
measure the alignment of individual molecular axes with their
target locations instead of measuring the alignment of the
MF with LF. Thus, quantifying 3D alignment requires not
only 〈cos2 θii〉 (we will use θij as a collective symbol for the
angles between the MF and LF coordinate axes) but some
other 〈cos2 θij 〉’s, too. Any conclusions about 3D alignment
require careful examination of the temporal evolution of all
these variables.

In both cases, at least three 1D plots are required for
characterizing 3D alignment. These plots are not easy to
interpret, especially when the degree of alignment is not
very strong. They also leave open to qualitative interpre-
tation the comparison of 3D alignment in different types
of experiments. For instance, is it better to have one angle
strongly confined and the others not so well confined, or to
equally confine all of them? In particular, how should an
optimization algorithm score the two cases? Both the Euler
angles and the direction cosines approaches suffer from these
shortcomings. In this paper, we will show that using the
axis-angle representation provides a unifying framework for
all alignment and orientation experiments and addresses these
issues in an adequate manner. The angle of rotation in this
representation is a metric on the rotation group SO(3), and
we will show that its cosine serves as the basis for defining a
single measure for 3D alignment that reflects the symmetries
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of 3D-aligned ensembles of molecules. In Sec. II we introduce
our measure for 3D alignment and derive the expressions
required to calculate it. In Sec. III we demonstrate the efficacy
of the measure by showing results of a calculation of the 3D
alignment of iodobenzene, a near-prolate asymmetric top. We
summarize our results and briefly discuss how such a measure
can be useful in experiments in Sec. IV.

II. A SINGLE MEASURE FOR 3D ALIGNMENT

The problem of specifying a metric for 1D alignment of
linear molecules is particularly simple. The space of possible
orientations is the surface of a unit sphere. Since we are
interested in the displacement of the members of the molecular
ensemble from a laboratory-fixed axis, it is very convenient to
chose this axis as the Z axis, and then measure the geodesic
distance to each ensemble member on the unit sphere. This
geodesic distance is quite intuitive—the cosine of the polar
angle θ gives the length of the great circle arc that takes
the z axis to the Z axis. The expectation value of cos θ is
widely accepted as a metric for characterizing 1D orientation
of molecules. With this choice, a value of 1 denotes perfect
orientation, and −1 denotes perfect antiorientation. When the
Hamiltonian has a mirror plane perpendicular to the desired
alignment axis—either due to a mirror plane perpendicular to
the molecular axis or due to a symmetric field—every molecule
at θ has an equivalent companion at π − θ and we use 〈cos2 θ〉
instead of the identically zero 〈cos θ〉. In this case, perfectly
aligned, perfectly antialigned, and isotropic distributions have
〈cos2 θ〉 = 1, 0, and 1/3, respectively.

Our goal is to specify a similar scheme for 3D alignment.
We show here that the use of the axis-angle representation of
rotations in 3D is better suited for this purpose than either
the Euler angle or the direction cosine representation. In this
representation, arbitrary rotations are specified in terms of an
angle and the unit vector along the axis of rotation. The angle
δif of the rotation that takes initial orientation (θi,φi,χi) to
the final orientation (θf ,φf ,χf ) is a metric on SO(3), and the
rotation is the geodesic path between the two orientations (for a
discussion of this and other metrics on SO(3), see Ref. [20] and
references therein). In terms of the rotation matrices R(θ,φ,χ ),

cos δif = 1
2 {tr[RT (θi,φi,χi)R(θf ,φf ,χf )] − 1}. (1)

This metric does not depend on the choice of the coordinate
system in which the Euler angles are defined—the trace is
invariant when the coordinate system is rotated. The angle δif

(0 � δif � π ) is in radians. This angle is, thus, a natural choice
for characterizing the degree of three-dimensional orientation
of rigid molecules. The MF is the initial orientation and the
LF is the final one [R(θf ,φf ,χf ) is the identity matrix in this
case].

Although different vectors in the MF will be rotated by
different angles when the MF is rotated by δ to make it coincide
with the LF, no MF vector is displaced by an angle greater
than δ. Therefore, δ is both the angle of a single rotation to the
target and the worst possible separation of all MF axes from
the corresponding LF axes. Thus, besides characterizing the
distance between the MF and the LF in SO(3), the angle δ also
provides information about the distribution of the individual
MF axes. Due to these properties, 〈cos δ〉 is a good choice

for a measure of 3D orientation. The values of 〈cos δ〉 for
perfect orientation, perfect antiorientation, and for an isotropic
distribution are 1, −1, and −1/2, respectively. Note that unlike
the 1D case, where θ = π is the only perfectly antioriented
orientation, in 3D, there are infinitely many orientations that
are perfectly antioriented since rotating a perfectly oriented
molecule by π around any axis makes cos δ = −1.

In terms of the Euler angles, the direction cosines and the
Wigner matrix elements, we have

cos δ = (cos θ + 1)[cos(φ + χ ) + 1]/2 − 1 (2a)

= [cos θxX + cos θyY + cos θzZ − 1]/2 (2b)

= [
D1

11(�) + D1
00(�) + D1

−1−1(�) − 1
]
/2. (2c)

The last form, where � is a collective symbol for the three
Euler angles, is particularly useful for computation in the
symmetric top basis, widely used for solving the Schrödinger
equation for rigid-rotor dynamics.

Similar to 1D alignment, for 3D alignment we ignore the
distinction between positive and negative directions for all the
LF and MF axes. Since molecules are assumed to be rigid
and have fixed handedness, there are four equivalent target
orientations connected by a rotation of the LF along any of its
Cartesian axes by π . These are shown in Fig. 1. The importance
of considering these operations, which form the symmetry
group D2, in solving the Schödinger equation for the rotational
dynamics of asymmetric tops has been highlighted by Pabst
et al. [17]. We show here that the correct incorporation of
the symmetry into the choice of observable allows the use
of a single measure for 3D alignment. For every possible
orientation of the MF, specified by the Euler angles θ , χ , and φ,
we define four angles δF (F = O,X,Y,Z), denoting the angles
of the rotations that take the MF to the four target orientations.
Here the subscript O denotes the LF and X, Y, and Z denote
the target orientations generated by a π rotation around the
corresponding LF axis. The rotation matrices describing the
four target orientations themselves are diagonal, with elements
(1,1,1), (1,−1,−1), (−1,1,−1), and (−1,−1,1) along the
diagonal. Expressions for cos δF are readily obtained by using
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FIG. 1. (Color online) On the left, four equivalent target orienta-
tions for 3D alignment generated by π rotations around the LF axes.
On the right, two of eight possible perfectly antialigned orientations
in 3D. The axis of rotation is the unit vector (X̂ + Ŷ + Ẑ)/

√
3. The

remaining six can be generated from these two by π rotations around
the X, Y , and Z axes.
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Eqs. (1) and (2). In terms of the Euler angles,

cos δO = (1 + cos θ )[1 + cos(φ + χ )]/2 − 1, (3a)

cos δX = (1 − cos θ )[1 − cos(φ − χ )]/2 − 1, (3b)

cos δY = (1 − cos θ )[1 + cos(φ − χ )]/2 − 1, (3c)

cos δZ = (1 + cos θ )[1 − cos(φ + χ )]/2 − 1. (3d)

These equations can be recast in terms of the Euler pa-
rameters: cos δF = 2e2

F − 1 [21]. These parameters generate a
representation of rotations in terms of SU(2) matrices, and
satisfy the constraint that

∑
F e2

F = 1, which ensures that
rotations preserve the norms of vectors. In terms of the cos δF ,
this constraint becomes

cos δO + cos δX + cos δY + cos δZ = −2. (4)

This implies that the expectation value of each cos δF for an
isotropic distribution is −1/2—on average, the angle required
to rotate a molecule to any one of the target orientations is
120◦. In fact, for any distribution with D2 symmetry 〈cos δF 〉
must all be −1/2. Therefore, none of these cosines is suitable
as a measure of 3D alignment. Further, for a given molecular
orientation the cos2 δF do not have the same value for each
of the equivalent target orientations, making them unsuitable

measures as well. We define instead the average of the cos2 δF ,

cos2 δ ≡ 1

4

∑
F

cos2 δF , (5)

as our measure for 3D alignment. The expectation values of
the cos2 δF must, of course, be the same for any D2-symmetric
distribution of molecules; if this is the case, the averaging is
redundant. In terms of the direction cosines, it is easily seen
that

cos2 δ = 1
4 (1 + cos2 θxX + cos2 θyY + cos2 θzZ). (6)

In this form, several properties of 〈cos2 δ〉 are apparent.
For perfect alignment cos2 δ = 1. The expectation value for a
uniform distribution of molecules is 1/2, while the minimum
possible value is 1/4. The minimum is obtained for the worst
3D-aligned molecules, when each axis is perfectly antialigned
and cos δF are all −1/2. There are eight perfectly antialigned
orientations—at θ = π/2, φ = 0 or π , and χ = ±π/2; and
at θ = π/2, χ = 0 or π and φ = ±π/2—and a 120◦ rotation
is required to bring them into alignment with any of the four
target orientations. Two of these are shown in Fig. 1.

The matrix elements of cos2 δ in the symmetric top basis
(|JKM〉, where J is the total angular momentum and K and M
are the projections along the z axis and the Z axis, respectively)
are

〈JKM| cos2 δ|J ′K ′M ′〉 = 1

4
+

[
1

4
δJJ ′δKK ′δMM ′ + 1

4

√
2J + 1

2J ′ + 1
〈J,M; 2,0|J ′,M ′〉〈J,K; 2,0|J ′,K ′〉

]

+
[

1

8

√
2J + 1

2J ′ + 1
[〈J,K; 2,2|J ′,K ′〉 + 〈J,K; 2,−2|J ′,K ′〉][〈J,M; 2,2|J ′,M ′〉

+ 〈J,M; 2,−2|J ′,M ′〉]
]
. (7)

Each matrix element splits into three terms. The constant
1/4 is the minimum value of cos2 δ, reflecting the fact that
no MF is more than 120◦ away from perfect 3D alignment.
The second term reflects the alignment of the z axis with
the Z axis, and is directly related to the matrix element for
cos2 θzZ [Eq. (A1)]. The coherences that contribute to this
term involve �J = 0,±1,±2 and �K,M = 0. The last term
contains the contributions of coherences that involve �K =
±2 and �M = ±2 and thus the simultaneous motion of the
molecules about the z and Z axes. There is no contribution
from coherences in which �K = ±2 or �M = ±2. These
coherences contribute to 〈cos2 θxX〉 [Eq. (A3)] and 〈cos2 θyY 〉
[Eq. (A2)] but cancel out in 〈cos2 δ〉. This elucidates an
essential feature of 3D alignment: Only coupled motion about
the z and Z axes can contribute to 3D alignment. The
absence of the third term, and the corresponding uncoupled
motion can be traced back to the D2 symmetry of 3D-aligned
ensembles. The value of one of the cos δF (and hence 3D
orientation) can be improved by uncoupled rotation of a
molecule about either the z or the Z axes, but D2 symmetry
introduces the three additional target orientations shown in
Fig. 1. Bringing molecules to each of these orientations
simultaneously necessitates coupled motion about the z and Z

axes. This feature is evident in Eq. (3), where the Euler angles χ

and φ—variables conjugate to K and M, respectively—appear
only in pairs.

Alignment schemes that use two cross-polarized pulses
[10,22] rely on changing both quantum numbers simultane-
ously by first getting the z and Z axes as close to each other
as possible. In the limit of perfect 1D alignment of the z axis,
χ and φ become degenerate and the motion is necessarily
coupled.

If the z axis is perfectly aligned with the Z axis, the
x and y axes are necessarily confined to the XY plane.
If these axes are uniformly distributed in the XY plane,
〈cos2 θxX〉 = 〈cos2 θyY 〉 = 1/2. In this case 〈cos2 δ〉 = 3/4.
Thus, the difference between 1D and 3D alignment is just
a matter of degree—aligning only in one dimension brings
the distribution closer to the target distribution in 3D and
should be considered a limited form of 3D alignment. We
would like to note here that the seemingly special status
of 1D alignment of the z axis along the Z axis is the
result of the choice of the symmetric top basis—perfect
1D alignment of any MF axis with the corresponding LF
axis will make 〈cos2 δ〉 = 3/4. In fact, the invariance of
cos δif [Eq. (1)] under rotations of the coordinate system
implies that the target orientations need not coincide with the
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LF at all: The 3D measure defined in Eq. (5) inherits the
invariance.

III. THREE-DIMENSIONAL ALIGNMENT
OF IODOBENZENE

In order to clarify the dynamics of 3D alignment in terms
of cos2 δ, we solve the time-dependent Schrödinger equation
(TDSE) for an asymmetric top molecule in an intense laser
field interacting through the nonresonant polarizability tensor
[14,17]. Iodobenzene is used as an example. We assume that
the laser pulse excites only rotational Raman transitions from
the initial ground vibronic state, and centrifugal distortion
is not taken into account. A thermal distribution of initial
asymmetric top states, including the nuclear spin statistics of
iodobenzene [23], is used. No averaging over the laser focal
volume is carried out; the results shown are for a single laser
intensity.

The time-dependent Hamiltonian is

H = Hrot − 1
4 E(t) · [αE(t)], (8)

where Hrot = AJ 2
a + BJ 2

b + CJ 2
c is the field-free Hamiltonian

for an asymmetric rigid rotor, α is the polarizability tensor of
the molecule, and E(t) is the laser electric field. The electric
field for linearly or elliptically polarized laser pulses is

E(t) = E0(t)[εX cos(ωt)eX + εZ sin(ωt)eZ], (9)

where ω is the field frequency and E0(t) is the time-dependent
field envelope that is assumed to be Gaussian. eX and
eZ represent unit vectors in the X and Z directions. The
z axis in the MF is chosen to be along the C-I bond, and
the y axis is perpendicular to the plane of the ring. The field
polarization is determined by εX and εZ , which are constrained
by ε2

X + ε2
Z = 1. The symmetric top basis is used to the solve

the TDSE in the laser field by using an adaptive step-size
Dormand-Prince method [24], and the field-free wave packet
is propagated in the asymmetric top basis.

The results of TDSE calculations for iodobenzene, a
near-prolate top, subject to a single linearly polarized
pulse and to two time-separated, orthogonally polarized pulses
are shown in Fig. 2. The one-pulse trace in Fig. 2(c) shows
the expected behavior of 〈cos2 θzZ〉 after excitation by a single
linearly polarized pulse. J- and C-type revivals, resulting from
�J = ±1,±2,�K = 0 and �J = ±2,�K = 0 coherences
[25], respectively, are seen in a pattern that has previously
been observed [26]. The corresponding traces in Figs. 2(a)
and 2(b) show the evolution of 〈cos2 θxX〉 and 〈cos2 θyY 〉,
respectively. Linearly polarized pulses do interact with the
angle χ for asymmetric tops, and this results in the appearance
of K-type revivals (�J = 0,�K = ±2) in these two variables.
From Fig. 3 it is clear that 〈cos2 δ〉 reflects the behavior
of 〈cos2 θzZ〉, as expected from Eq. (7). According to the
description suggested here, this should be viewed as 3D
alignment in the sense that even 1D alignment moves the
molecules closer to the target orientations for 3D alignment.
The K-type coherences seen in 〈cos2 θxX〉 and 〈cos2 θyY 〉 cancel
out because they are out of phase and do not contribute to 3D
alignment at all.

For two crossed-polarized pulses, however, we see that
the behavior of 〈cos2 δ〉 (Fig. 3) does not reflect that of any

(a)

(b)

(c)

FIG. 2. (Color online) Expectation values calculated using TDSE
for one-pulse and two-pulse excitation of rotational wave packets.
The single pulse and the first pulse of the two-pulse calculation
are polarized along the Z axis and peak at 0 ps; the second pulse
is polarized along the X axis and peaks at 3.8 ps. Each pulse
has a Gaussian temporal envelope with a duration (full width at
half maximum of the intensity) of 170 fs and a peak intensity of
8 TW/cm2. The rotational temperature of iodobenzene is 0.5 K. The
insets show details of the initial alignment and the second J-type
revival.

individual direction cosine. After the second pulse 〈cos2 θxX〉
and 〈cos2 θyY 〉 (Fig. 2) rise sharply, indicating that the MF x

and y axes are being driven to the LF X and Y axes. 〈cos2 θzZ〉,
however, begins to drop after the second pulse, indicating that
the molecular z axis is being driven away from the laboratory Z

axis. In this case, since the z axis of iodobenzene rotates much
slower than the other two axes, it has not strayed very far when
the other axes reach their peak alignment (at about 4.8 ps), thus
producing a 3D-aligned population. The crucial idea is that this
information is available from 〈cos2 δ〉 alone. We see that after
the second pulse 〈cos2 δ〉 rises sharply and peaks at 4.73 ps,
indicating that the second pulse drives the molecules further
toward 3D alignment, and the best 3D alignment occurs at
4.73 ps.

In the two-pulse case 〈cos2 δ〉 (Fig. 3) has an interesting
revival structure, too. Now the K-type revivals in 〈cos2 θxX〉
and 〈cos2 θyY 〉 are no longer out of phase and do contribute
to 〈cos2 δ〉 as well, indicating coupled rotation around the z

and Z axes. These revivals in 〈cos2 δ〉 are not K-type revivals
since the selections rules governing them are �K,M = ±2.
But since the field-free energies of the rotational eigenstates do
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FIG. 3. (Color online) The expectation values of 〈cos2 δ〉 for the
excitation schemes shown in Fig. 2. The evolution of 3D alignment
can be seen directly in this variable. Apart from the initial 3D
alignment after the second pulse, the overlap of J- and K-type revivals
results in a substantial revival of 3D alignment at 710.2 ps.

not depend on M, the periodicity of these revivals is the same
as that of K-type revivals. Once again, the maxima exhibited at
these revivals are also local maxima in 3D alignment, limited in
the same sense that 3D alignment in the the single-pulse case
was limited. Here it is the evolution of 〈cos2 θzZ〉 that does
not contribute to the revivals. Coincidentally, the 14th K-type
revival overlaps with the second J-type revival, producing a
sharp spike in 〈cos2 δ〉 at 710.2 ps, representing a substantial
revival of the initial 3D alignment. In general, 3D alignment
revivals have to rely on such coincidences, where two different
types of revivals together involve all three molecular axes
and occur in close proximity to each other. Due to the finite
temporal extent of the revivals, it is only necessary for the
revival periods to be approximately commensurate for these
overlaps to occur. In the manner of revivals in the 1D alignment
of asymmetric tops, these 3D revivals will neither be complete
nor truly periodic but might nevertheless be substantial.

IV. SUMMARY

We have proposed a unified method for quantifying the
three-dimensional alignment of molecules using a single scalar
quantity that handles the symmetries of the molecular axis
distribution correctly. The proposed measure is based on a
metric on the rotational group that also serves as a measure of
3D orientation and has several advantages over schemes used

currently. First, the measure is easy to interpret physically—it
gives the value of the smallest angle by which molecules need
to be rotated to bring them to a desired orientation. At the same
time, it also provides the largest possible angle by which any
individual axis might be separated from its desired orientation.
Second, unlike other measures used in the literature, our
measure provides a single number that works over the entire
space of possible orientations, including perfect antialignment
in three dimensions. This aspect is essential in designing better
schemes to confine the orientation of molecules. In particular,
such a measure should be very useful in optimization schemes,
both in computational efforts as well as in experiments.

Coincident fragment momentum spectroscopy provides the
most detailed measurements of 3D alignment since the full 3D
orientation of each molecule can be determined by measuring
the momenta of two or more fragment ions in coincidence. It is
possible to evaluate 〈cos δ〉 and 〈cos2 δ〉 from this information
by first constructing the expectation values of 〈cos θij 〉 and
〈cos2 θij 〉 and then using Eqs. (2b) and (6), respectively. But
such coincidence experiments are feasible only for small
molecules such as sulfur dioxide, and even these are subject
to the influence of the probe pulse which selectively ionizes
molecules in some orientations more effectively than others
[27]. In the absence of coincident imaging, 3D alignment can
still be characterized by momentum imaging techniques such
as velocity map imaging when the degree of alignment of one
axis is very good. This approach was taken in Refs. [12,22],
where one axis was confined very strongly using an adiabatic
field, allowing direct measurement of the molecular plane
without coincidence measurements. However, a quantitative
determination of 〈cos2 δ〉 is not possible in this scheme, even
if the full 3D momentum distribution of the fragment ions
is reconstructed tomographically [28], due to the lack of
sufficient information about the distribution of all the axes. We
expect that the development of direct and rapid measurement
techniques for 〈cos δ〉 and 〈cos2 δ〉 will advance our ability to
align and orient polyatomic molecules substantially.
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APPENDIX: MATRIX ELEMENTS OF cos2 θi i

The matrix elements of 〈cos2 θij 〉 in the symmetric top basis,
with terms grouped into the three types discussed in Sec. II,
are

〈JKM| cos2 θzZ|J ′K ′M ′〉 =
[

1

3
δJJ ′δKK ′δMM ′ + 2

3

√
2J + 1

2J ′ + 1
〈J,M; 2,0|J ′,M ′〉〈J,K; 2,0|J ′,K ′〉

]
, (A1)

〈JKM| cos2 θyY |J ′K ′M ′〉 =
[

1

3
δJJ ′δKK ′δMM ′ + 1

6

√
2J + 1

2J ′ + 1
〈J,M; 2,0|J ′,M ′〉〈J,K; 2,0|J ′,K ′〉

]

+
[

1

2
√

6

√
2J + 1

2J ′ + 1
{〈J,M; 2,0|J ′,M ′〉[〈J,K; 2,2|J ′,K ′〉 + 〈J,K; 2, − 2|J ′,K ′〉]
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+〈J,K; 2,0|J ′,K ′〉[〈J,M; 2,2|J ′,M ′〉 + 〈J,M; 2, − 2|J ′,M ′〉]}
]

+
[

1

4

√
2J + 1

2J ′ + 1
{[〈J,K; 2,2|J ′,K ′〉 + 〈J,K; 2, − 2|J ′,K ′〉]

× [〈J,M; 2,2|J ′,M ′〉 + 〈J,M; 2, − 2|J ′,M ′〉]}
]
, (A2)

〈JKM| cos2 θxX|J ′K ′M ′〉 =
[

1

3
δJJ ′δKK ′δMM ′ + 1

6

√
2J + 1

2J ′ + 1
〈J,M; 2,0|J ′,M ′〉〈J,K; 2,0|J ′,K ′〉

]

−
[

1

2
√

6

√
2J + 1

2J ′ + 1
{〈J,M; 2,0|J ′,M ′〉[〈J,K; 2,2|J ′,K ′〉 + 〈J,K; 2, − 2|J ′,K ′〉]

+ 〈J,K; 2,0|J ′,K ′〉[〈J,M; 2,2|J ′,M ′〉 + 〈J,M; 2, − 2|J ′,M ′〉]}
]

+
[

1

4

√
2J + 1

2J ′ + 1
{[〈J,K; 2,2|J ′,K ′〉 + 〈J,K; 2, − 2|J ′,K ′〉]

× [〈J,M; 2,2|J ′,M ′〉 + 〈J,M; 2, − 2|J ′,M ′〉]}
]
. (A3)
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