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We study high-order harmonic generation (HHG) spectra by a focused truncated Bessel beam versus a Gaussian
beam, including macroscopic propagation of the fundamental laser and harmonic fields in the gas medium, with
the single-atom-induced dipole response calculated from the recently developed quantitative rescattering theory.
We first simulate the HHG spectra of Ar by an 8-fs and 780-nm short laser pulse, reported by Wörner et al. [Phys.
Rev. Lett. 102, 103901 (2009)], assuming the incident beam is a truncated Bessel beam or a Gaussian beam. Both
simulations fail to reproduce the observed wide and deep Cooper minimum in the HHG spectra. However, we are
able to reproduce the HHG spectra of Ar generated by few-cycle 1800-nm near-infrared lasers, reported recently
by Shiner et al. [Nature Phys. 7, 464 (2011)]. We also provide a systematic phase-mismatch analysis in the gas
jet to examine the spatial growth of harmonics for tight-focusing versus loose-focusing lasers. The dependence
of phase mismatch on the gas-jet position and gas pressure is investigated. Finally, we check the divergence of
the harmonic beam generated by a tight-focusing versus loose-focusing truncated Bessel beam. These studies
show that for a typical gas-jet experiment, whether the spatial mode is a truncated Bessel beam or a Gaussian
beam is important only when the laser beam is tightly focused.
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I. INTRODUCTION

High-order harmonic generation (HHG) has been widely
studied for more than two decades for its potential as a
short-wavelength light source [1,2], and for the production
of ultrashort attosecond pulses [3–5]. HHG by a single atom
is well described qualitatively in terms of the three-step
model [6–8], but a full quantitative description of HHG
in a macroscopic medium requires the inclusion of the
propagation of the fundamental laser field and the generated
harmonic field. Recently, our group developed a quantitative
rescattering (QRS) theory that can calculate the single-atom
(or single-molecule) response [9–11] efficiently. This theory
was subsequently corroborated in the analytical form by Frolov
et al. [12,13]. The QRS theory was further incorporated into
the well-established macroscopic propagation theory by Jin
et al. [14,15] such that the simulated HHG spectra can be
compared directly with experimental measurements. So far
we have successfully simulated the HHG spectra that have
been reported in targets such as Ar [15,16], N2 [16,17], and
CO2 [18], where experimental conditions have been well
specified. The harmonics in these studies were generated with
multicycle (FWHM, ∼10 optical cycles) laser pulses. Later
on, we simulated the HHG spectra of Xe by few-cycle (∼2
optical cycles) mid-infrared lasers [19,20] and we were able
to reproduce the observed harmonic spectra. We also made
an investigation of the harmonics generated in Ar and Ne
atoms under the conditions of very high intensities and high
pressures, where the nonlinear propagation of the laser field
in the medium undergoes severe modifications [21]. All of
these simulations were based on the assumption that the initial
fundamental laser pulse at the entrance of the gas medium is a
Gaussian beam.

Few-cycle pulses are usually obtained by a gas-filled
hollow-core fiber compression technique [22]. This method
actually produces a truncated Bessel (TB) beam instead of a
Gaussian beam. Nisoli et al. [23,24] showed that the spatial
properties (divergence and brightness) of the harmonics were

greatly improved using a TB beam as the driving laser
pulse. A TB beam is also obtained by spatial filtering of a
Gaussian pulse in a hollow-core fiber (without filled gas).
Bandulet et al. [25] measured the total HHG yield over a
range of photon energy using such a TB beam and found
that the harmonic yield was stronger and had less divergence
compared to harmonics generated from a Gaussian beam. In
order to simulate harmonics generated by few-cycle pulses, we
generalize our propagation code to include situations where the
spatial distribution of the generating laser pulse is a TB beam.

Our goals in this paper are twofold. First, using the spatial
TB beam, we want to see if we can simulate the high-harmonic
spectra of Ar reported by Wörner et al. [26], which were carried
out with a few-cycle laser at relatively high intensities (Fig. 1 of
their paper). We have not been able to reproduce these spectra
by assuming a spatial Gaussian beam. Our second goal is to
establish the conditions where the generated harmonic spectra
are insensitive to whether the generating beam is a Gaussian
or a TB beam for a typical gas-jet experiment.

An in-depth detailed HHG theory with the inclusion of the
macroscopic propagation of the fundamental and harmonic
fields where the single-atom harmonics are obtained by the
QRS theory has been given in Ref. [15]. We modify the
numerical code by changing the initial condition in which
the input beam is a TB beam. A TB beam exiting from
the hollow-core fiber is usually refocused through lenses and
mirrors before entering the harmonic-generating gas medium.
In Appendix A, we describe two types of TB beams. In
TB-1 (Type-1 Bessel), a tight-focusing beam was used by
Nisoli et al. [23,24]. In TB-2 (Type-2 Bessel), a loosely
focused TB beam was used by Wörner et al. [26] and
Shiner et al. [27]. In Sec. II, we show the calculated HHG
spectra of Ar with a TB beam or a Gaussian beam using
a 780-nm laser and setup parameters as close as those in
Wörner et al. [26]. Even with the TB-2 beam, we still have not
been able to reproduce the observed deep Cooper minimum
(CM) reported in the experiment. However, we are able to
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reproduce the HHG spectra of Ar reported in Shiner et al.
[27], where the harmonic spectra were generated using
1800-nm mid-infrared lasers. In Sec. III, we turn to study
the detailed harmonic growth maps in space for TB-1 and
TB-2 beams. Specifically, we investigate how these maps
change with the gas-jet position and gas pressure in terms of
phase-matching conditions. We also check the divergence of
harmonics generated by TB-1 and TB-2 beams. We then draw
the conclusion that for a TB-2 beam, the HHG spectra are
generally close to those generated from a Gaussian beam with
the similar beam waist. A summary in Sec. IV concludes this
paper. For completeness, Appendix A summarizes the basics
of TB-1 and TB-2 beams. Appendix B gives a summary of
the different terms that contribute to phase mismatch in a gas
medium.

II. SIMULATION OF EXPERIMENTAL HARMONIC
SPECTRA OF Ar

A. HHG spectra using a 780-nm laser

High-harmonic spectra of Ar have been widely studied over
the years. According to the QRS theory, the HHG spectra
generated from a single atom would mimic the field-free
photoionization cross section of the atom. Following the works
of Refs. [14–16], it has been further established that the
macroscopic HHG spectra can be written as

Sh(ω) ∝ |W (ω)|2σ R(ω), (1)

where W (ω) is the “macroscopic wave packet” (MWP), and
σ R(ω) is the differential photorecombination cross section
(PRCS). The σ R(ω) is related to photorecombination transition
dipole d(ω) by

σ R(ω) ∝ ω3

p
|d(ω)|2, (2)

where p is the momentum of the continuum electron. It is
well known that the photoionization cross section (PICS) of
Ar has a minimum [28], called the Cooper minimum (CM),
at photon energy near 51 eV. The Cooper minimum also
appears in the harmonic spectra of Ar, and has been reported
in many measurements [16,26,27,29–33] using different laser
intensities and different wavelengths, but the position of the
minimum differs somewhat from one experiment to another.
To observe a clear CM, the cutoff of the HHG spectrum
should lie well above 51 eV. Since the HHG cutoff is given by
Ip + 3.17Up, where Ip is the ionization energy and Up is the
ponderomotive energy, in experiments with typical 800-nm
Ti:sapphire lasers, this would require a high laser intensity. On
the other hand, at high intensities, saturation occurs. Thus,
in earlier experiments with 800-nm Ti:sapphire lasers, the
CM in the HHG spectrum of Ar was not clearly located. To
avoid the saturation effect, in Wörner et al. [26] few-cycle
laser pulses were used and a clear CM has been reported. In
this experiment, a hollow-core fiber filled with Ar gas was
used to achieve self-phase modulation for the laser pulse;
subsequently, using chirped mirrors, it was compressed to
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FIG. 1. (Color online) Calculated HHG spectra (CEP averaged) of Ar assuming the initial laser pulse is (a),(b) a truncated Bessel beam
(Type 2 in Fig. 15) or (c),(d) a Gaussian beam (beam waist w0 = 50 μm). z0 is the position of the gas jet with respect to the laser focus, and
the laser intensity (at the focus, z = 0 mm) is given in units of I0 = 1014 W/cm2. Dashed lines indicate the position of the Cooper minimum.
The laser wavelength is 780 nm. See text for additional laser parameters. This figure should be compared with Fig. 1 in Ref. [26] and Fig. 2(b)
below.
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a few-cycle pulse (∼3 optical cycles). The most prominent
feature of the experimental result is the appearance of a
clear deep CM at 53 ± 3 eV, which does not shift with the
laser intensity. The experimental result of Wörner et al. [26]
appears to be consistent with the general prediction of the
QRS, in that the position of the CM is at about 51 eV, and the
position does not change with the laser intensity. However,
the width and depth of the CM appear to be inconsistent with
the prediction of the QRS. (The CM observed in the PICS
of Ar is not as deep [28].) We carried out simulations with
experimental parameters by assuming that the incident laser
pulses were Gaussian beams, but were unable to reproduce the
broad and deep Cooper minimum reported in the experiment.
We thus decided to investigate whether the limitation is due
to the use of a Gaussian beam in the simulation. Here we
report the results from simulations using a truncated Bessel
beam.

To simulate the measurements, we carry out the macro-
scopic propagation calculation [15] where the single-atom
response is obtained using the QRS theory. In Fig. 1, we show
the simulated HHG spectra of Ar. In the calculation, the laser
wavelength is 780 nm, and the duration is 3 cycles (FWHM).
The gas jet is 1-mm wide in the interaction region, the gas
pressure is assumed to be a constant at 30 Torr, and a slit with
a width of 100 μm is placed at 24 cm after the gas jet to select
the harmonics in the far field. These parameters are close to
those in Wörner et al. [26]. The laser peak intensity at the focus
(in the vacuum) is adjusted as indicated in Fig. 1 to obtain the
correct experimental cutoff position.

We first assume that the laser pulse is a Gaussian beam
with waist w0 = 50 μm and the center of the gas jet is
at the laser focus (z0 = 0 mm). The HHG spectra after
being carrier-envelope-phase (CEP) averaged are shown in
Fig. 1(c). For clarity, the spectra have been shifted for
different intensities. In Fig. 1(d), we show the spectra for three
intensities in a linear scale. The CM appears at about 50 eV.
Beyond 4 × 1014 W/cm2, the laser field reaches saturation
and higher harmonics show a blue shift. The ratio of the
maximum yield near the cutoff with respect to the lowest
yield at the CM is about a factor of 3–6 in the simulation,
but the same ratio is close to 100 in the experiment of
Wörner et al. [26] [also see Fig. 2(b) below]. We varied the
position of the gas jet (z0) with respect to the laser focus,
but the harmonic spectra remain nearly the same as those in
Fig. 1(c).

We next assume that the incident beam is a TB-2 pulse,
and the center of the gas jet is located at 4 mm after the
laser focus (i.e., z0 = 4 mm). The HHG spectra after being
CEP averaged are shown in Figs. 1(a) and 1(b). The laser
intensities indicated are the ones at the laser focus (z = 0 mm),
so the on-axis intensities at z = 4 mm are almost the same
as those in the Gaussian pulses (at z = 0 mm) in Fig. 1(c).
The high-harmonic spectra shown in Fig. 1(a) do not differ
significantly from those in Fig. 1(c), with the CM appearing
near 50 eV. From Fig. 1(b), we find that with the TB-2 beam,
the HHG spectra are stronger for the higher harmonics, such
that the previous maximum/minimum ratio rises by about 50%,
but still much smaller than the ratio seen in Wörner et al. [26].
We also changed z0 (not shown); the CM was always seen,
but the depth of the CM reported in the experiment still could

not be reproduced. Thus the origin of the discrepancy remains
unexplained.

B. HHG spectra using an 1800-nm laser

Since the ponderomotive energy is proportional to the
square of the wavelength of the driving laser, it is preferable
to study the CM in the HHG spectra of Ar using near-infrared
(NIR) lasers. Indeed, such measurements have been reported
by Jin et al. [16] using 1.2- and 1.36-μm lasers and by Higuet
et al. [33] with 1.8- to 2.0-μm and 50-fs NIR lasers. None
of these experiments reported the CM as deep as shown in
Wörner et al. [26]. In fact, the experimental data reported
in Jin et al. [16] were well reproduced by our simulations
using an incident Gaussian beam spatially. Note that Ar HHG
spectra generated using long laser pulses in Jin et al. [16]
were taken with exactly the same experimental chamber as
those in Wörner et al. [26], (i.e., the gas jet, spectrometer,
detector, geometries, etc., were exactly the same in the two
experiments). Recently, Shiner et al. [27] also reported the
measurements of Ar HHG spectra using a few-cycle (∼2
optical cycles) 1800-nm laser (see Fig. 9 in the supplementary
information of Ref. [27]). We show their experimental spec-
trum in Fig. 2(a). We carry out the simulation with an 1800-nm,
11-fs laser pulse. A gas jet (0.5-mm wide) is located at the
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FIG. 2. (Color online) (a) Comparison of experimental (envelope
only) [27] and theoretical HHG spectra using an 1800-nm laser. The
laser intensity used in the simulation is indicated in units of I0 =
1014 W/cm2. See text for additional parameters. The experimental
data are shown only from 30 to 75 eV due to constraint from the
filter. (b) Experimental HHG spectra (envelope only) [26] using a
780-nm laser with intensity of 2.9 × 1014 W/cm2. The calculated
photorecombination cross section (PRCS) using the Muller potential
[34] is also shown in (a) and (b).
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laser focus, the gas pressure is 6 Torr, and a slit with a width of
190 μm is placed at 45.5 cm after the gas jet. Only the harmon-
ics after the slit are detected. The initial laser beam is assumed
to be a Gaussian one with w0 = 100 μm. The calculated
HHG spectra (CEP averaged) with two intensities are shown
in Fig. 2(a). We can see that the experimental spectrum agrees
very well with the theoretical one (laser intensity is 1.5 ×
1014 W/cm2). These spectra also agree well with the calculated
PRCS of Ar using the Muller potential [34]. With decreasing
laser intensity, the general spectral shape and the depth of the
Cooper minimum do not change much, except that the cutoff
position moves to a lower photon energy. This also shows that a
Gaussian beam can be used to model the experiment of Shiner
et al. [27]. In other words, the general HHG spectra obtained
from a loose-focusing TB beam and Gaussian beam do not
differ significantly.

Based on the above simulations, we conclude that the deep
Cooper minimum in the HHG spectra reported in Wörner et al.
[26] remains unreproduced by simulations. On the other hand,
the deep minimum was not observed in other experiments
using NIR lasers. Our simulations can reproduce these latter
observations. In Wörner et al. [26], the laser wavelength is
780 nm and the laser intensity is near the saturation. However,
the saturation effect was included in our simulation and no
drastic differences were seen between an input Gaussian vs
TB-2 pulses. As shown in Fig. 3, the macroscopic wave packet
(or returning electron wave packet) is relatively flat in the
plateau region. To reproduce the observation of Wörner et al.
[26], the wave packet has to undergo the change of more than
a factor of 20 within about 10–20 eV. We are not aware of any
possible effects that can cause such a big change on the MWP.
In view of the negative results from our extended theoretical
analysis, perhaps additional experiments would help to resolve
this discrepancy.
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FIG. 3. (Color online) Macroscopic wave packet |W (ω)|2 defined
in Eq. (1) extracted from the harmonic spectra in Fig. 1. Note that
linear scales are used to display the wave packets.

III. PHASE-MATCHING CONDITIONS: TRUNCATED
BESSEL BEAM VS GAUSSIAN BEAM

In a previous paper, Nisoli et al. [23] showed that the
characteristics of HHG using a truncated Bessel beam and
Gaussian beam were quite different. Our results in Sec. II
seem to contradict their conclusions. It turns out that Nisoli
et al. [23] used a tightly focused truncated Bessel beam (or
TB-1), while in Sec. II, a loosely focused truncated Bessel
beam (or TB-2) was applied. In Appendix A, we summarize
how the two types of TB beams are constructed, together with
their typical spatial intensity distributions. In this section, we
present a systematic comparison of phase-matching conditions
for the TB-1, TB-2, and Gaussian beams. In the calculation,
the ab initio macroscopic propagation and the QRS theory
for the single-atom response are applied, and the laser intensity
(at the focus, as shown in Figs. 13 and 15), wavelength, dura-
tion (FWHM), and CEP are fixed at 3 × 1014 W/cm2, 780 nm,
3 cycles, and 0, respectively.

Phase matching is a prerequisite for efficient generation of
high harmonics. The phase mismatch for the qth harmonic can
be written as [5,35–38]

�kq = (kq − qk1) − Kq,dip

= �kq,geo + �kq,el + �kq,at − Kq,dip. (3)

Here the first term of the phase mismatch is due to the
geometry of laser focusing. The second term is from the
dispersion by free electrons that are present in the gas medium,
i.e., free electron or plasma dispersion. The third term is
from neutral atom dispersion, where the index of refraction
changes with the wavelength. The last term is due to the
laser-induced atomic dipole phase, which depends strongly on
laser intensity. The dipole-phase mismatch is given by Kq,dip =
∇ϕq,dip, where ϕq,dip is the action accumulated by an electron
during its excursion in the laser field. This phase depends on
whether the qth harmonic is emitted by electrons that take
the “long” or “short” trajectories. More detailed discussions
on these different phase-mismatch terms can be found in
Appendix B.

A. Phase-matching map at low gas pressure

We first set the gas pressure very low (0.1 Torr) such that the
pressure effect can be ignored. In this case, the phase-matching
conditions are only determined by the interplay between
the geometric phase, ϕq,geo(r,z) ≈ −(q − 1)φlaser(r,z), and
the induced dipole phase, ϕq,dip(r,z) = −α

q

i I (r,z), defined
in Appendix B. We plot �ϕq(r,z) = ϕq,geo(r,z) − ϕq,dip(r,z),
modulo 2π , in Fig. 4 for the 15th harmonic (H15), in contrast
to the generally used contour map for the coherence length
[37,39]. The color coding is chosen such that it is bright (or
white) when �ϕq is near π , and dark (or red) when �ϕq is near
0 and 2π (such that no color changes at the two boundaries).
Note that the length scale is in mm along the z axis and in μm
along the r axis. In Fig. 4, the phase between two neighboring
white regions is 2π . For good phase matching, this region
is large (such that the gradient is small). From the figure,
we can see in general that it is easier to achieve good phase
matching for short (upper row) rather than for long (lower row)
trajectories.
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FIG. 4. (Color online) Phase-matching map for H15 of the
interplay between the geometric phase ϕq,geo(r,z) and induced dipole
phase ϕq,dip(r,z) for Type-1 Bessel and Gaussian (w0 = 25 μm)
beams. Upper row: short trajectory; lower row: long trajectory.
Note that �ϕq (r,z) = ϕq,geo(r,z) − ϕq,dip(r,z), modulo 2π , is plotted,
and the phase change between two neighboring white regions
is 2π .

More explicitly, consider a Gaussian beam where the
intensity and phase can be expressed as

I (r,z) = I0

1 + (2z/b)2
exp

[
−

(
r

w0

)2 2

1 + (2z/b)2

]
, (4)

φlaser(r,z) = − tan−1

(
2z

b

)
+ kλ1

2π

(
r

w0

)2 (2z/b)

1 + (2z/b)2
,

(5)

where the parameters in the above equations are defined in
Appendix B. Using the phases in Fig. 4, we can calculate
the phase mismatch by taking the gradient. In Figs. 5(c)
and 5(d), we show the phase mismatch �kq(z) for H15
along the propagation axis z for a Gaussian beam. It is
much smaller for the short-trajectory component than for the
long-trajectory one. Furthermore, phase matching is better
after the focus. Since laser intensity decreases quickly away
from the focus, a gas jet located at z = 2 mm is about near the
optimum condition for HHG generation for a Gaussian beam.
In Figs. 5(a) and 5(b), the phase mismatch �kq(z) for a TB
beam along the propagation axis z is shown. Again, the phase
mismatch is much larger for the long-trajectory component
than for the short-trajectory one. Although the phase oscillates
widely near z = 0 mm, the spatial average over a small volume
would result in a small phase mismatch. Thus, for TB beams,
a broad good phase-matching region close to the axis from
z = −1.5 to 1.5 mm for short-trajectory harmonics can be
achieved. This conclusion is consistent with the experimental
results of Nisoli et al. [23]. For the typical gas-jet length
(∼1 mm), the phase-matching conditions should depend
strongly on the position of the gas jet, as well as on whether it
is a Type-1 Bessel or Gaussian (w0 = 25 μm) beam.

For harmonics generated away from the axis, the phase
mismatch has components parallel and perpendicular to the
axis. For a Gaussian beam, the distance between two white
regions (where the phase changes by 2π ) is larger along the z

axis than along the r axis [see Figs. 4(c) and 4(d)], thus phase
matching (by taking the gradient of the phase) is still favorable,
although not as good as the on-axis region (also see Fig. 4 in
Ref. [37]). From Fig. 4, in general, long-trajectory harmonics
tend to have off-axis phase matching and the harmonics are
more divergent.

We next consider loosely focused laser beams. From
Eqs. (4) and (5), we note that for a Gaussian beam, if we scale
z by the confocal parameter b, and scale r by the beam waist
w0, then the intensity and phase stay the same. Thus, for the
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FIG. 5. (Color online) On-axis phase mismatch �kq (z) = (∂/∂z)[�ϕq (0,z)] for the phase shown in Fig. 4 with Type-1 Bessel and Gaussian
(w0 = 25 μm) beams; q = 15. Upper row: short trajectory; lower row: long trajectory. Dashed lines indicate the zero values of the phase
mismatch. Note that the values of �kq (z) from z = −0.2 to 0.2 mm in (a) and (b) are probably not precise numerically due to the dramatic
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FIG. 6. (Color online) Spatial distributions (normalized) of harmonic intensity for H15 and H35 using tight-focusing laser beams. z0 is the
position of the gas-jet center with respect to the laser focus, i.e., z0 > 0 means the gas jet (1-mm wide) is placed after the laser focus. Gas
pressure: 0.1 Torr (i.e., the fundamental laser field is not modified through propagating in the medium). Upper row: Type-1 Bessel beam; lower
row: Gaussian beam (w0 = 25μm).

loosely focused Gaussian beam, the phase-matched volume
will increase (by b or w0 in each direction). For a typical fixed
gas-jet length, we expect that good phase-matching conditions
are more easily achieved. This is also true for TB beams. We
have checked (not shown) that the phase map for TB-2 and
Gaussian (w0 = 50 μm) beams were very similar to those
shown for TB-1 and Gaussian (w0 = 25 μm) beams in the
scaled coordinates (for H15). Thus, for loosely focused TB-2
beams, the phase-matching conditions do not differ much from
the loosely focused Gaussian beam. In the next section, we
show that in this case, the HHG spectra generated by the TB-2
beam and by the Gaussian beam are very similar.

B. Dependence of harmonic yield on gas-jet position

Figure 6 shows the intensity distributions of the plateau
harmonic H15 and cutoff harmonic H35, under tight-focusing
conditions at two different gas-jet (1-mm width) positions, for
a TB-1 beam and a Gaussian beam. The other laser parameters
are given in the figure caption. To understand these results, we
examine the phase-mismatch [see Eq. (3)] values in units of
1/mm. In Table I, we show the typical values of �kq,geo(0,z) =
�ϕq,geo(0,z) and Kq,dip(0,z) = �ϕq,dip(0,z) for a Gaussian

beam at z = 1 mm on the axis (r = 0). [We caution that the
value of Kq,dip(0,z) calculated using α

q

i in the cutoff region in
Eq. (B4) may not be very accurate.] Since the gas pressure is
very low (0.1 Torr), there is no laser defocusing. For b = 5 mm
(w0 = 25 μm), as shown clearly in Table I, the short trajectory
is favored for good phase matching. The coherence length is
lcoh = π/�kq , where �kq = �kq,geo − Kq,dip is calculated to
be about 1 mm for both H15 [also see Figs. 5(c) and 5(d)]
and H35. This large coherence length allows the harmonic
intensity to grow steadily along the propagation axis z, as
seen in Figs. 6(f) and 6(h). If the gas jet is placed before
the laser focus (z0 = −1 mm), then Kq,dip changes its sign,
while �kq,geo remains the same as that at z = 1 mm. Thus
the coherence length lcoh (for either a short or long trajectory)
becomes much smaller. In Figs. 6(e) and 6(g), we see that the
buildup of the harmonic along z is not monotonic. The small
coherence length results in destructive interference such that
the harmonic yield vanishes, followed by buildup and then
destruction, as z increases. Thus gas-jet position z0 = −1 mm
is not favorable for phase matching for the generation
of harmonics. For a Type-1 Bessel beam, as shown in
Figs. 6(a)–6(d), the harmonic spatial distribution is quite
different from the Gaussian beam, but the strong gas-jet

TABLE I. Phase mismatch �kq,geo(0,z) and Kq,dip(0,z) (mm−1) from Eqs. (B1) and (B4) in Appendix B for a Gaussian beam. Here, z = 1
mm and I0 = 3 × 1014 W/cm2.

Harmonic order H15 H35

Confocal parameter b (mm) 5 3 20 15 5 3 20 15
�kq,geo 4.83 6.46 1.39 1.83 11.72 15.69 3.37 4.45

Kq,dip Short (S) 0.71 1.28 0.059 0.103 <9.77 <17.51 <0.81 <1.41
Long (L) 17.12 30.67 1.41 2.47 >9.77 >17.51 >0.81 >1.41
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FIG. 7. (Color online) Same as Fig. 6, except for loosely focused laser beams. Upper row: Type-2 Bessel beam; lower row: Gaussian beam
(w0 = 50 μm).

position dependence is similar, i.e., the coherence length is
shorter for negative z0 than for positive z0.

The same analysis can be done for a loosely focused
Gaussian beam (b = 20 mm, w0 = 50 μm). At z = 1 mm,
lcoh is ∼2 mm (H15) or ∼1 mm (H35), and lcoh becomes
∼1 mm at z = −2 mm. The large coherence length allows
steadily monotonic buildup of the harmonics as z is increased,
as confirmed by numerical results shown in Figs. 7(e)–7(h).
For the Type-2 Bessel in Figs. 7(a)–7(d), the harmonic spatial
distribution is very similar to the Gaussian beam. These
confirm that for loosely focused Gaussian and Bessel beams,
the generated harmonic spectra are expected to be quite similar
for the same gas-jet positions, and the results are less sensitive
to their positions with respect to the laser focus, as discussed
in Sec. II.
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FIG. 8. (Color online) Phase mismatch �kq,el + �kq,at of Ar as
a function of ionization probability at the pressure of 10 Torr. This
value is proportional to the pressure.

C. Pressure-induced phase mismatch

The phase mismatch �kq,el due to free electrons and �kq,at

due to neutral atom dispersion explicitly depend on pressure
[40] [also see Eqs. (B6) and (B7)]. In Fig. 8, we plot �kq,el

+ �kq,at as a function of ionization probability for H15 and
H35 at 10 Torr. Here, �kq,el is always positive, and �kq,at

usually is negative for high-energy photons. As shown in Fig. 8,
these two terms can compensate, i.e., add up to near zero, at
a very low ionization level (about 6% for H15, and 4% for
H35). Here a 780-nm, three-cycle (FWHM) laser is applied.
More discussions can be found in the works of Murnane and
Kapteyn [41–43]. On the other hand, gas pressure also induces
laser defocusing and blue shift, thus changing the geometric
phase mismatch �kq,geo in Eq. (B1) and Kq,dip in Eq. (B3). It is
difficult to quantify the variations of these values since the laser
field undergoes complicated spatial and temporal variation in
the medium. In the following, we only illustrate the effect of
laser defocusing by changing the confocal parameter b for a
Gaussian beam.

We first give a rough estimate of phase mismatch caused by
the pressure, i.e., �kq,el + �kq,at , and �kq,geo − Kq,dip, due to
the laser defocusing. For the tight-focusing Gaussian beam, the
ionization level (in the end of the laser pulse) is about 12%,
thus the values of �kq,el + �kq,at are about 0.5 and 2 mm−1

at 10 Torr for H15 and H35, respectively (see Fig. 8). These
values increase to 4 and 16 mm−1 at 80 Torr. On the other
hand, pressure could induce laser defocusing, i.e., making the
confocal parameter b smaller. In Table I, we show �kq,geo and
Kq,dip as b changes to 3 mm. We can see, at 10 Torr, the phase
mismatch caused by the laser focusing is dominant, and then
becomes comparable to �kq,el + �kq,at at 80 Torr. For Type-1
Bessel and Gaussian beams, the geometric phase and induced
dipole phase between the two beams have been shown to be
quite different (see Fig. 4). With the increase in pressure, their
differences still prevail, so the harmonic spatial distributions
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FIG. 9. (Color online) Spatial distributions (normalized) of the harmonic intensity under different pressures (10 and 80 Torr) using
tight-focusing laser beams. z0 = 1 mm (as can be read from the z coordinate). The gas jet is 1-mm wide, and harmonic order is indicated.
Upper row: Type-1 Bessel beam; lower row: Gaussian beam (w0 = 25 μm).

for the two beams behave differently at higher pressure as
well. Figure 9 shows the spatial harmonic emissions for Type-1
Bessel and Gaussian beams at two pressures, and they are quite
different for the two tightly focused beams.

We carry out a similar analysis for the loosely focused
laser beams. The ionization level is found to be about 15%
for the loose-focusing Gaussian beam, so the values of
�kq,el + �kq,at are about 1 and 3.5 mm−1 at 10 Torr for H15

and H35, respectively (see Fig. 8). These values increase to
8 and 28 mm−1 at 80 Torr. In Table I, changing b to 15 mm
for the Gaussian beam does not change the phase mismatch
much. �kq,geo − Kq,dip is comparable with �kq,el + �kq,at

at 10 Torr, and then �kq,el + �kq,at becomes dominant as the
pressure is increased. Figure 10 shows that the spatial harmonic
emissions for Type-2 Bessel and Gaussian beams are similar
even at moderate pressures.
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FIG. 10. (Color online) Same as Fig. 9, except for the loose-focusing laser beams. Upper row: Type-2 Bessel beam; lower row: Gaussian
beam (w0 = 50 μm).
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FIG. 11. (Color online) Divergence of harmonic beam vs har-
monic order, for different gas-jet positions, z0. Gas pressure: 30 Torr.

D. Divergence of harmonics

We define the divergence angle of a harmonic as follows
[44]:

θ̄q =
∫ θmax

0 θIq(θ )dθ∫ θmax

0 Iq(θ )dθ
, (6)

where θ is the divergence angle, Iq(θ ) is the harmonic intensity
in the far field, and θmax is the maximal acceptance angle
of the experimental apparatus. We plot the divergence angle
vs harmonic order for the two types of Bessel beams in
Fig. 11 at each harmonic peak. For the Type-1 Bessel beam,
the divergence angle for the gas jet near the laser focus
(z0 = −1 and 1 mm) is small, but it suddenly jumps to a
big value at z0 = 2 mm. This behavior is consistent with the
results reported in Nisoli et al. for Ne [23]. For the Type-2
Bessel, there are no divergence jumps when varying the gas-jet
position z0 from −2 to 4 mm. We can also see that the
loosely focused laser beam tends to generate low-divergence
harmonics.

IV. SUMMARY

In this paper, we examined the generation of harmonics in
the gas medium for incident intense lasers that have Gaussian
or truncated Bessel spatial profiles. We investigated how
the generated harmonic emissions (with the inclusion of a
propagation effect) depend on the gas-jet position and gas
pressure for tightly and loosely focused Bessel and Gaussian
beams. First we simulated the HHG spectra of Ar reported
in Wörner et al. [26] using the 780-nm few-cycle pulses.
We concluded that we are unable to reproduce the deep and
broad Cooper minimum in the observed HHG spectra of Ar,
whether we assume that the spatial profile was a truncated
Bessel beam or a Gaussian beam. However, our simulation was
able to reproduce the observed HHG spectra of Ar generated
using 1800-nm lasers in Shiner et al. [27]. We suggested that

FIG. 12. (Color online) Sketch of the experimental setup for
Type-1 Bessel beam generation [23].

additional experiments might be needed to clarify the existing
discrepancy for the 780-nm data.

We also analyzed phase-matching conditions for tightly
and loosely focused Bessel and Gaussian beams, and varied
the gas-jet position and gas pressure. We demonstrated that
for loosely focused Bessel or Gaussian beams, the harmonic
growth maps were very similar, thus resulting in nearly identi-
cal harmonic spectra. For tightly focused beams, the harmonic
growth maps were different for Bessel and Gaussian beams,
and the resulting HHG spectra differed from each other as well.
At higher pressure and/or intensity, phase-matching analysis
is complicated due to laser defocusing and blue shift, as
the laser intensity changes in the gas medium. To probe an
atomic or molecular electronic structure using HHG, harmon-
ics generated from loosely focused beams are preferable since
the spectra would be less sensitive to gas-jet location and
other experimental parameters. For tightly focused beams,
the harmonic spectra are very sensitive to experimental
conditions such that the comparison of theoretical simulation
with experiment is less straightforward, since experimental
parameters are not all generally well specified.
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APPENDIX A: TRUNCATED BESSEL BEAMS

For an axial-symmetric lenslike system, the complex
electric field on the output plane is related to the one on
the input plane by an ABCD ray matrix [45,46]. Let the laser
electric field on the input plane (the exit plane of a hollow-core
fiber) be given by E(ρ) = E0J0(2.405ρ/a) with ρ � a, where
ρ is the radial coordinate, E0 is the on-axis peak electric
field, a is the capillary radius, and J0 is the zero-order Bessel
function of the first kind. The transverse electric field on the
output plane, according to the diffraction theory in the paraxial
approximation, is

ETB(ξ,r) = E0
−ik

B(ξ )
exp

{
ik

[
L + ξ + Dr2

2B(ξ )

]}

×
∫ a

0
J0

(
2.405

ρ

a

)
J0

[
krρ

B(ξ )

]
exp

[
ikA(ξ )

2B(ξ )
ρ2

]
ρdρ,

(A1)
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where k = 2π/λ1, and λ1 is the central laser wavelength.
The meanings of the parameters in the equation will be
defined explicitly below. We note that the integral in Eq. (A1)
becomes indeterminate if B(ξ = ξ̄ ) = 0, where ξ = ξ̄ is also
the location of the focus plane. As discussed in Ref. [46], the
electric field at ξ̄ can be written as

ETB(ξ̄ ,r) = E0

A
exp

[
ik

(
L + ξ̄ + Cr2

2A

)]
J0

(
2.405

r

aA

)
.

(A2)

For a lossless system, AD − BC = 1. In the following, we
will show two truncated Bessel (TB) beams from the different
optical systems, which have been used by Nisoli et al. [23]
and Wörner et al. [26], respectively.

1. Type-1 Bessel beam: Tightly focused beam

In the experiment of Nisoli et al. [23], the setup of the
optical system is depicted in Fig. 12. The radius of the capillary
is a = 0.25 mm, and the focal length of the focus mirror is
f = 250 mm. The ξ and the focus plane ξ̄ are sketched in the
figure. The laser pulse emerging from the hollow-core fiber
propagates in free space for a distance d = 2000 mm [or L in
Eq. (A1)] to the focusing mirror, where it further propagates
for a distance ξ after the mirror to the output plane. The laser
pulse is also compressed by chirped mirrors, but they are not
included in the ABCD matrix. For this optical system, the
ABCD matrix is

A(ξ ) = 1 − ξ/f, B(ξ ) = d + ξ (1 − d/f ), C = −1/f,

D = 1 − d/f. (A3)

The TB beam constructed by Eq. (A3) is called the Type-1
Bessel beam in this paper. We plot the intensity |E TB|2 and the
phase φTB (red solid lines) as a function of z for r = 0 (on-axis)
in Figs. 13(a) and 13(b), respectively. Here the coordinate ξ has
been replaced by z = ξ − ξ̄ for convenience, and the phase φTB

is set as 0 at z = 0 and r = 0 (focusing point). In the present
case, ξ̄ > f , where B(ξ̄ ) = 0 with B defined in Eq. (A3). The
laser wavelength λ1 = 780 nm, and the laser intensity at the
focus is 3 × 1014 W/cm2. For comparison, we fix the laser
intensity at the focus and plot the intensity and phase (dashed
lines) of a Gaussian beam with the beam waist w0 = 25 μm in
Figs. 13(a) and 13(b), respectively. In Fig. 13(c), we plot the
spatial distribution of the laser intensity for the TB beam. We
also introduce the pulse energy Wpulse for the laser beam,

Wpulse =
∫ ∫

I (r,z,t)2πrdrdt, (A4)

where I (r,z,t) is the spatial- and temporal-dependent laser
intensity (assuming cylindrical symmetry). For a Gaussian
beam, the explicit expression of I (r,z,t) in Eq. (A4) can be
found in Ref. [14]; we then have an analytical expression for
the pulse energy,

Wpulse = I0
πw2

0

2
τp

√
π

4 ln 2
, (A5)

where I0 is the laser peak intensity at the focus, τp is the pulse
duration (FWHM), and w0 is the beam waist. We choose τp
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FIG. 13. (Color online) (a) On-axis laser intensity and (b) phase
as a function of propagation distance z: Type-1 Bessel (solid lines)
vs Gaussian (w0 = 25 μm, dashed lines). (c) Spatial intensity
distribution (where I0 is in the units of 1014 W/cm2) of the Type-1
Bessel beam. The laser intensity at the focus is 3 × 1014 W/cm2.

to be three cycles (7.8 fs), then Wpulse obtained by Eq. (A5)
is 24.45 μJ for the Gaussian beam in Fig. 13. And Wpulse is
27.24 μJ for the Type-1 Bessel beam in Fig. 13 calculated
using Eq. (A4) numerically.

2. Type-2 Bessel beam: Loosely focused beam

For the experiment of Wörner et al. [26], the setup is
depicted in Fig. 14. The hollow-core fiber (HCF) is similar to
that of Nisoli et al. [23]. The beam that comes out of the HCF

FIG. 14. (Color online) Sketch of the experimental setup used by
Wörner et al. [26] for Type-2 Bessel beam generation.
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FIG. 15. (Color online) Same as Fig. 13, except for loosely
focused Type-2 Bessel and Gaussian (w0 = 50 μm) beams.

(with radius a = 0.125 mm) is divergent and it is recollimated
by a spherical mirror (with focal length f1 = 1000 mm) placed
1 m after the output of the HCF (d1 = 1000 mm). The beam is
then reflected eight times on chirped mirrors and propagated
a distance of 2 m from the spherical mirror (d2 = 2000 mm)
until it reaches a focusing mirror (focal length f2 = 500 mm).
It further propagates through a distance ξ after the mirror to the
output plane. L in Eq. (A1) is equal to d1 + d2. We then write
the ABCD matrix for this optical system without considering
the chirped mirrors:

A(ξ ) =
(

1 − d2

f1

)(
1 − ξ

f2

)
− ξ

f1
,

B(ξ ) =
(

d1 + d2 − d1d2

f1

)(
1 − ξ

f2

)
− ξ

(
d1

f1
− 1

)
,

(A6)

C = − 1

f1
− 1

f2
+ d2

f1f2
,

D = −d1

f2
+

(
1 − d1

f1

)(
1 + d2

f2

)
.

To have the collimated laser beam before the focusing
mirror f2 requires d1 = f1, i.e., the output of the HCF is put at
the focal plane of the spherical mirror f1. In this case, ξ̄ = f2.
The TB beam constructed by Eq. (A6) is called the Type-2
Bessel beam in this paper. Similar to Fig. 13, we plot the
on-axis intensity |ETB|2 and the phase φTB (red solid lines)
as a function of z and the spatial distribution of intensity in
Fig. 15. In Figs. 15(a) and 15(b), we also plot the on-axis
intensity and phase (dashed lines) of a Gaussian beam with

the beam waist w0 = 50 μm. The same laser wavelength and
intensity (at the focus) are applied. Similarly, Epulse is 82.37 μJ
for the Type-2 Bessel beam, and 97.82 μJ for the Gaussian
beam in Fig. 15.

APPENDIX B: PHASE-MATCHING FACTORS

Generally, phase matching is the matching of the phase
front of the generated harmonic field to the phase front
of the fundamental laser field. In a strong-field interaction,
phase matching could have complicated spatial and temporal
dependence due to the variation of the laser intensity. The
phase-matching relation for the qth harmonic has been given in
Eq. (3) as consisting of four terms [5,35–38]. Each dispersion
term will be discussed in the following.

1. Geometric dispersion

The phase mismatch introduced by laser focusing is

�kq,geo(r,z) = δkq,geo(r,z) − qδk1,geo(r,z). (B1)

We take a Gaussian beam for example. Consider on-axis (r =
0) phase matching only, and assume that the fundamental laser
and harmonic fields have the same geometrical phase. Then,
�kq,geo can be written as

�kq,geo(0,z) ≈ −(q − 1)δk1,geo(0,z)

= 2

b
(q − 1)

1

1 + (2z/b)2
, (B2)

where b = 2πw2
0/λ1 is the confocal parameter.

2. Induced dipole phase

In the strong-field regime, the induced dipole phase strongly
depends on the laser intensity, so the spatial variation of
the focused laser beam results in longitudinal and transverse
gradients of this phase. The phase mismatch is

Kq,dip(r,z) = ∇ϕq,dip(r,z). (B3)

Here this intrinsic dipole phase ϕq,dip is the action accumulated
by an electron during its excursion in the external field along
the trajectory leading to the emission of the qth harmonic. It
can be expressed as

ϕq,dip(r,z) = −α
q

i I (r,z), (B4)

where I (r,z) is the instantaneous laser intensity. The propor-
tional constant α

q

i=S,L depends on short (S) or long (L) trajec-
tories. When the harmonics are in the plateau region, α

q

i=S ≈
1 × 10−14 rad cm2/W and α

q

i=L ≈ 24 × 10−14 rad cm2/W
[47–50]. In the cutoff region, these two trajectories merge
into one trajectory, and α

q

i=S,L ≈ 13.7 × 10−14 rad cm2/W.
We only consider the on-axis phase mismatch of a Gaussian
beam for simplicity. It can be written as follows:

∂ϕq,dip(0,z)

∂z
= −α

q

i

∂I (0,z)

∂z

= 8z

b2

1

[1 + (2z/b)2]2
α

q

i I0, (B5)

where I0 is the peak intensity at the laser focus.
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3. Plasma (electronic) dispersion

The first step of harmonic generation is tunneling ionization
of an atom. Only a small portion of free electrons returns to
recombine with the parent ion. The electrons in the medium
create a plasma surrounding which could modify the refractive
index. The phase mismatch due to the free electrons (or
plasma) is

�kq,el(r,z,t) = δkq,el(r,z,t) − qδk1,el(r,z,t)

≈ e2ne(r,z,t)

4πε0mec2
qλ1

= qr0ne(r,z,t)λ1, (B6)

where ne(r,z,t) is the electron density, and e, me, and r0

are the charge, mass, and classical radius of an electron,
respectively. Here the free-electron dispersion for the harmonic
field is neglected because the frequencies of high harmonics
are much higher than the plasma frequency. Note that this term
is proportional to the harmonic order q.

4. Atomic dispersion

The phase mismatch due to neutral atom dispersion is

�kq,at (r,z,t) = δkq,at (r,z,t) − qδk1,at (r,z,t)

≈ −n0(r,z,t)πα1

λq

− n0(r,z,t)r0λqf1, (B7)

where n0(r,z,t) is the atom density, λq = λ1/q is the wave-
length of the qth harmonic, and α1 is the atomic polarizability
at the fundamental wavelength λ1. Here, f1 is the real part
of the atomic scattering factor, f = f1 + if2 [51,52], at the
harmonic wavelength λq . And the imaginary part f2 is related
to the absorption length Labs by L−1

abs = 2r0λqn0(r,z,t)f2. In
the propagation calculation [15], the spatial and temporal
variation of the harmonic dispersion is ignored, so in the
analysis of �kq,at (r,z,t), we treat n0(r,z,t) in the second
term of Eq. (B7) as a constant. The Kerr nonlinearity
[15] depending on the laser intensity is the third-order
effect and it is not included in the present phase-mismatch
analysis.
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