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Laser-induced multiphoton dissociation of H2
+ as a function of the field frequency

using parametric equations of motion

Dhrubajyoti Kalita and Ashish K. Gupta*

Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
(Received 16 December 2011; published 12 March 2012)

We have applied parametric equations of motion (PEM) to study photodissociation dynamics of H2
+. This is

an application of PEM having frequency as the parameter to a non-Hermitian Hamiltonian. The resonances are
extracted using the smooth exterior scaling method. Here we have studied how different resonance states behave
with respect to the change in frequency of the laser field. The advantage of this method is that one can easily
trace different resonance states that are changing as the parameter changes. It is observed that some higher lying
vibrational states remain bound states in continuum with the decrease in frequency.
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I. INTRODUCTION

Rabitz and co-workers [1] had put forward a method in
which the Schrödinger equation was solved explicitly only
once and the solutions at other parameter values were obtained
by integrating a set of ordinary differential equations through
the parameter space of the Hamiltonian. These equations
have been termed as parametric equations of motion (PEM).
These kinds of equations have been applied initially in the
field of quantum chaos [2–4]. Rabitz and co-workers [1]
applied PEM to several simple, illustrative examples. Later
PEM was implemented by Gross et al. [5,6] to obtain the
three-dimensional (3D) plots of population dynamics as a
function of frequency and phase or amplitude. In their method,
the time-dependent Schrödinger equation (TDSE) was needed
to be solved once to obtain the quantum dynamic behavior
in the presence of strong (nonperturbative) periodic fields
having the form A cos(ωt) over a range of field amplitudes and
frequencies. This method utilizes Floquet theory as well and
integrates through frequency and amplitude space using PEM
for quasienergies and Floquet eigenvectors. The advantage of
PEM lies in the fact that one can trace individual eigenstates
in parameter space. In this paper, we have implemented PEM
jointly with the smooth exterior scaling method (SES) to study
the photodissociation dynamics of H2

+. In this paper we are
trying to accumulate information about the photodissociation
dynamics of H2

+ by applying PEM having field frequency
as the parameter. In one of our recent publications, we have
studied the photodissociation dynamics of H2

+ by applying
PEM having field amplitude as the parameter [7].

Intense ultrashort laser pulses are used to initiate and control
molecular dynamics and have many applications in molecular
science. It has been reported earlier that the H2 and H2

+ are the
ideal systems for a detailed understanding of the ionization
and dissociation dynamics of small molecules. Multiphoton
dissociation (MPD) of H2

+ has been studied extensively
[8–12]. Many interesting phenomena viz. “bond-hardening”
and “bond-softening” have been put forward. The smooth
exterior scaling (SES) method is one of the known methods to
generate the wave functions without any artificial reflections
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occurring at the grid [13–20]. Furthermore it doesn’t disturb
the interaction region. In this method, one can keep as large
a grid as desired without being disturbed by complex scaling.
The wave functions calculated by this method can provide
indisputable proof for different mechanisms. The dissociating
channels can be recognized directly from the resonance wave
functions. A resonance state is a long-lived state that has
sufficient energy to break up into two or more subsystems.
Continuum tails are part of the wave functions that are at
large distances but still in the undisturbed region (due to the
scaling). The SES method has been explained in detail in our
three recent publications [7,19,20] as well as numerous other
publications [13,14,17,21–23]. For the sake of completeness,
we have discussed Floquet formalism and SES methods in
Sec. II and parametric equations of motion formalism in
Sec. III. Results and discussion and the conclusion drawn from
this work are discussed in Secs. IV and V, respectively.

II. FLOQUET FORMALISM

Chu and co-workers [11] had calculated the complex
quasienergies by diagonalizing the complex scaled Floquet
Hamiltonian whose size in the Fourier grid basis depends
upon the number of grid points (N), the number of electronic
surfaces involved in photodissociation (m), and the number
of photons absorbed (n). The dimension of the Hamiltonian
matrix should be (mN × mN ) for a single photon excitation.
The form of the Floquet Hamiltonian (Ĥf ) derived by Chu
and co-workers [11] including the SES absorbing term [i.e.,
complex absorbing potential (VCAP) term] [17,19,20] is given
by

ˆ(Hf )
αn,βm

=
[

P̂ 2

2M
+ Uα,β(F (R)) + nh̄ω + V̂CAP

]
δαβδnm

+
[

1

2
�μαβ(F (R)) · �A0

]
δ(n,m=n±1)(1 − δαβ),

(1)

where R is the nuclear separation and α and β denote the
electronic states and indices m and n go over the Fourier
expansion of the Floquet vector ranging from +∞ to −∞.
Here μ is the dipole operator, and A0 and ω are the amplitude
and frequency of the laser, respectively. Here F (R) is the path
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in the complex coordinate plane defined as [14]

∂F

∂R
= 1 + [exp(iθ0) − 1]g(R),

where g(R) is varied from 0 to 1 smoothly around the point
R = R0 and θ0 and λ are the scaling parameters. We have used
the modified smooth exterior scaling (MSES) path [7,20]:

F (R) = Reiθ(R), (2)

where

θ (R) = {1 + 0.5{tanh[λ(R − R0)] − tanh[λ(R + R0)]}}θ0.

(3)

Only two electronic states of H2
+ [i.e., the ground

(1sσg) and the first excited repulsive (2pσu) states] are
considered [11].

The block structure of the Floquet Hamiltonian [ ˆ(Hf )
αn,βm

]
is given as [11]

HF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

A + 4ωI B 0 0 0

BT A + 2ωI B 0 0

0 BT A B 0

0 0 BT A − 2ωI B

0 0 0 BT A − 4ωI

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

A =
(

TR + U1(F (R)) + V̂CAP
1
2 �μ12(F (R)) · �A0

1
2 �μ21(F (R)) · �A0 TR + U2(F (R)) + V̂CAP − ωI

)
,

and

B =
(

0 0
1
2 �μ12(F (R)) · �A0 0

)
.

Here TR stands for the kinetic energy operator. To put the
matrices into a suitable form to apply frequency PEM, A is
transformed as A = C + Dω, where

C =
⎛
⎝TR + U1(F (R)) + V̂CAP �μ12(F (R)) · �A0

�μ12(F (R)) · �A0 TR + U2(F (R)) + V̂CAP

⎞
⎠ ,

and

D =
(

0 0

0 −I

)
.

Here we define a matrix HF
0 and P as follows:

HF
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

C B 0 0 0
BT C B 0 0
0 BT C B 0
0 0 BT C B

0 0 0 BT C

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

4I + D 0 0 0 0

0 2I + D 0 0 0

0 0 D 0 0

0 0 0 −2I + D 0

0 0 0 0 −4I + D

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Now HF can be written as

HF = HF
0 + Pω.

Diagonalization of the complex general matrix HF will give
the necessary quasienergies (ε) and the eigenvectors ψL and
ψR at the initial laser field frequency (ω). HF depends linearly
on ω. More importantly these equations are in a suitable form
to apply the PEM with respect to the ω as described in the next
section.

III. PARAMETRIC EQUATIONS
OF MOTION FORMULATION

Consider an eigenvalue problem:

¯̄H C̄i
R = C̄i

REi,

(
C̄i

L
)T ¯̄H = Ei

(
C̄i

L
)T

,

where ¯̄H depends linearly on λ as

¯̄H = ¯̄H0 + λ ¯̄V ,

where ¯̄H0 and ¯̄V are λ independent matrices and C̄R
i , C̄L

i

are the respective right and left eigenvectors of the complex
general matrix ¯̄H having complex eigenvalues Ei . Superscript
T stands for transpose. C̄R

i and C̄L
i follows the relationship,(

C̄L
i

)T
C̄R

i = 1.

Following the derivation of Rabitz and co-workers [1]
evolution of eigenvalues (E) and eigenvectors (C) as a function
of the linear perturbation parameter λ is given as

∂En

∂λ
= Vnn, (4)

∂CR
i

∂λ
= −

∑
j �=i

CR
j Vji

Ej − Ei

, (5)

∂CL
i

∂λ
= −

∑
j �=i

CL
j Vij

Ej − Ei

, (6)

∂Vnn

∂λ
= 2

∑
m�=n

VnmVmn

En − Em

, (7)

∂Vmn

∂λ
=

∑
l �=m,n

VmlVln

(
1

En − El

+ 1

Em − El

)

+ VmnVmm

En − Em

+ VmnVnn

Em − En

. (8)

Equations (4)–(8) are collectively called PEM. For the appli-
cation of PEM to the photodissociation of H+

2 , Vmn is defined
as

Vmn = [
CL

m(ω)
]T

PCR
n (ω). (9)

IV. RESULTS AND DISCUSSION

We have considered the H2
+ molecule as a test case for the

PEM implementation. Here we have chosen frequency as the
parameter. The necessary potential energy surface and dipole
matrix are given by Chu and co-workers [11]. We have used
the length gauge [11]. The Floquet electronic-field potential
curve crossings are shown in Fig. 1.

Here, each Floquet channel |g,n〉 and |e,n〉 represents
ground electronic (1sσg) and first excited electronic state
(2pσu) potential surface, respectively, dressed by “n” photons.
|g,0〉 and |e,−1〉 form a single Floquet block. In Fig. 1,
potential corresponding to three Floquet blocks are shown
(i.e., one Floquet block moved by 2ω is added to either
side of |g,0〉 and |e,−1〉 block [11]). Here, Figs. 1(a)–1(c)
describe the dressed potential at ω = 0.1716, 0.1306, and
0.0865 a.u., respectively. The ground electronic (1sσg) state
is represented by triangles whereas the first excited electronic
state (2pσu) is represented by squares. The resulting Hamil-
tonian is constructed in the Fourier grid method [24]. PEM
are integrated numerically using a fifth-order Runge-Kutta
integrator. Before integrating the PEM through frequency
space, it is important to determine the appropriate initial
conditions [i.e., the quasienergies (ε), Vij matrix elements, and
eigenvectors (CR

i and CL
i )] at some chosen field amplitude

(A0) and initial frequency (ω). We have determined this
initial condition by diagonalizing the HF matrix [19,20].
Kinetic energy operator and SES terms are calculated as

shown by Karlsson [17]. The resonances are calculated by
diagonalizing this Hamiltonian. A LAPACK subroutine for
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U
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|g,0>
|e,-1>
|g,-2>

|e,-3>

|g,+2>

|e,+1>

FIG. 1. (Color online) Potential-energy curves for the two elec-
tronic states of H2

+ dressed by n = 0, −1, −2, −3 photons at laser
field frequency (ω) = 0.1716, 0.1306, and 0.0865 a.u. are shown in
(a), (b), and (c), respectively. As the frequency decreases, the crossing
points move upward and toward right.
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FIG. 2. (Color online) Plot of results obtained from diagonalizing
the SES Hamiltonian and from solving the PEM at ω = 0.1306 and
0.0865 a.u. for A0 = 0.005 a.u.

general complex matrix diagonalization is used. The real part
(Er ) of the eigenvalue provides the position of the resonances
and the reciprocal of its imaginary part (�) is proportional to
the lifetime of the resonances. We have used 151 basis
functions. After diagonalization of the SES Hamiltonian
[Eq. (1)] ε, CR

i , and CL
i are immediately obtained. Using

Eq. (9) the matrix elements are obtained. The PEM are then
integrated as a function of field frequency starting from 0.1716
to 0.0865 a.u. Use of the PEM is advantageous as it enables
us to trace different resonance states as a function of the laser

TABLE I. Resonances for the H2
+ molecule at the frequency

0.1306 a.u. (A) Diagonalization results. (B) PEM results.

Real part Imaginary part

A −0.0973 6058 3284 −0.0000 0000 0124
B −0.0973 6085 3284 −0.0000 0000 0124

A −0.0872 3010 1465 −0.0000 0000 0021
B −0.0872 3010 1465 −0.0000 0000 0021

A −0.0770 4912 5060 −0.0000 0002 4716
B −0.0770 4912 5060 −0.0000 0002 4716

A −0.0688 4738 9808 −0.0000 0563 8548
B −0.0688 4738 9808 −0.0000 0563 8548

A −0.0608 3954 9752 −0.0002 3873 4335
B −0.0608 3954 9752 −0.0002 3873 4335

A −0.0534 3810 7239 −0.0012 6865 5756
B −0.0534 3810 7239 −0.0012 6865 5756

A −0.0439 1841 2102 −0.0017 9323 6746
B −0.0439 1841 2102 −0.0017 9323 6746

TABLE II. Resonances for the H2
+ molecule at the frequency

0.0865 a.u. (A) Diagonalization results. (B) PEM results.

Real part Imaginary part

A −0.0973 4896 8503 −0.0000 0000 0075
B −0.0973 4896 8503 −0.0000 0000 0075

A −0.0872 0435 2170 −0.0000 0000 1086
B −0.0872 0435 2170 −0.0000 0000 1086

A −0.0776 4570 3774 −0.0000 0000 1697
B −0.0776 4570 3774 −0.0000 0000 1697

A −0.0686 8687 3360 −0.0000 0000 0093
B −0.0686 8687 3360 −0.0000 0000 0093

A −0.0603 5896 7212 −0.0000 0001 4843
B −0.0603 5896 7212 −0.0000 0001 4843

A −0.0527 6432 9783 −0.0000 0717 2492
B −0.0527 6432 9783 −0.0000 0717 2492

A −0.0461 2317 1534 −0.0003 7849 3058
B −0.0461 2317 1534 −0.0003 7849 3058

field frequency. Otherwise, in the diagonalization method, the
eigenvalues are rearranged every time and that information
gets lost.

In Fig. 2, we have compared the results obtained from
diagonalizing the SES Hamiltonian and from solving the
PEM at two frequencies (i.e., for ω = 0.1306 and 0.0865
a.u., respectively) at a fixed field amplitude A0 = 0.005 a.u.
Here, Fig. 1(a) shows both the SES and PEM results at ω =
0.1306 a.u. The PEM results and the SES results are denoted
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FIG. 3. Plot of the positions of resonances [i.e., real part of
the quasienergies (Re (E))] versus width of resonances (�/2) as
frequency changes from 0.1716 to 0.0865 a.u. at A0 = 0.001 a.u. The
starting point (ω = 0.1716 a.u.) of integration is pointed by an arrow.
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by open squares and solid circles, respectively. From this plot
it is clear that the results obtained from PEM integration are
in good concordance with the direct diagonalization results.
Similarly, Fig. 1(b) shows both the SES and PEM results at
ω = 0.0865 a.u. This plot also shows precise agreement of
results.

A better comparison of resonances obtained from the
diagonalization method and the PEM at frequencies 0.1306
and 0.0865 a.u., respectively, is provided in Tables I and II,
respectively. The resonances are calculated by using θ0 = 0.09
in both cases. From these tables it is clear that the results
obtained from PEM integration are in good concordance with
the direct diagonalization results.

In Fig. 3, we have plotted the positions [i.e., the real part
of the quasienergies [Re (E)]] versus width (�/2) of the first
seven resonances for a range of frequencies (i.e., ω goes over
0.1716–0.0865 a.u.) at A0 = 0.001 a.u. Here, we have plotted
ν = 0, 1, 2–6th vibrational states of H2

+ as a function of ω.
The starting point of integration is pointed by an arrow. The
crossing between |g,0〉 and |e,−1〉 Floquet channels (referred
to as the crossing point) at ω = 0.1716 a.u occurs at value
−0.06624 a.u. Initially (i.e., at ω = 0.1716 a.u.) the first field
free state (ν = 0) having position −0.09719 a.u. lies below the
crossing point and therefore it obviously behaves as a bound
state. As the frequency decreases further, the crossing point
shifts upward and as a result the lifetime (i.e., inverse of �

value) of this resonance state increases. The same trend is also
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-6

-2×10
-6

-1×10
-6
0

-0.09212 -0.09165 -0.09118 -0.09071-4×10
-4

-2×10
-4

0

-0.085 -0.068 -0.051 -0.034-2.2×10
-3

-2.0×10
-3

-1.8×10
-3

-0.08 -0.06 -0.04 -0.02

-2.4×10
-3

-2.1×10
-3

Γ/
2 

(a
.u

.)

-0.06 -0.04 -0.02
-2.9×10

-3

-2.6×10
-3

-2.4×10
-3

-0.06 -0.045 -0.03 -0.015 0
-3.3×10

-3
-3.1×10

-3
-2.9×10

-3

-0.04 -0.03 -0.02 -0.01 0
Re (E) (a.u.)

-3×10
-6

-2×10
-6

-1×10
-6
0

ν=0

ν=1

ν=2

ν=3

ν=4

ν=5

ν=6

FIG. 4. Plot of the positions of resonances [i.e., real part of
the quasienergies (Re (E))] versus width of resonances (�/2) as
frequency changes from 0.1716 to 0.0865 a.u. at A0 = 0.02 a.u. The
starting point (ω = 0.1716 a.u.) of integration is pointed by an arrow.

followed by field free states corresponding to ν = 1, 2, and
3 which has positions −0.0869, −0.0774, and −0.0683 a.u.,
respectively. However, field free state corresponding to ν =
4 having position −0.0598 a.u. initially lies at the crossing
point. With the decrease in frequency, the crossing point shifts
upward and as a result, this state (ν = 4) lies below the crossing
point. Hence, the lifetime of this state also increases with the
decrease in laser frequency. On the other hand, field free states
corresponding to ν = 5 and 6 having positions −0.05185 and
−0.04448 a.u., respectively, lie initially above the crossing
point. With the decrease in frequency, these states gradually
come close to the crossing point and finally lie below it. That
is why the lifetime of these two states first decreases and
then increases. Like Fig. 3, the positions [i.e., the real part
of the quasienergies [Re (E)]] versus width (�/2) of the first
seven resonances for a range of frequencies (i.e., ω goes over
0.1716–0.0865 a.u.) at A0 = 0.02 a.u. have been plotted in
Fig. 4. At this laser field amplitude (A0) a deeper understanding
of the trend followed by different resonance states as a function
of field frequency (ω) is beyond the scope of the present study.
Vibrationally trapped states start appearing at this amplitude
[10,19]. In the case of resonance state corresponding to
ν = 6, it is expected that with the decrease in frequency, the
lifetime (inverse of �) should increase due to the upward shift
of the crossing point. This in turn should make other higher
lying states in continuum go below the crossing point—with
a subsequent increase in their lifetimes. Interestingly, from
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FIG. 5. Plot of the positions of resonances [i.e., real part of the
quasienergies [Re (E)]] (in the left column) and width (�/2) (in
the right column) of some bound resonances (i.e., corresponding to
ν = 0, 2, 5, 6, 7, and 9) versus frequency (ranging from 0.1716 to
0.0865 a.u.) at A0 = 0.02 a.u.
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FIG. 6. (Color online) Plot of the wave function (�) of the first
resonance state (ν = 0) corresponding to different Floquet channels
for laser field frequency 0.1716 (solid line), 0.1306 (dotted line), and
0.0865 a.u. (dashed line).

our calculations we see that with a decrease in frequency,
the lifetime of the sixth resonance state is imperceptibly small
(on the order of 10−6) throughout the entire frequency domain.
Hence, the state remains as the vibrationally trapped state. This
state is localized over the crossing point and follows the shift of
the crossing point (see Fig. 7). We have plotted the variation
of Re (E) and width (�/2) of some bound resonances (i.e.,
corresponding to ν = 0, 2, 5, 6, 7, and 9) versus frequency
at an amplitude (A0) = 0.02 a.u. in Fig. 5. Here in the left
column Re (E) is varied whereas in the right column width is
varied as a function of laser frequency. Like Fig. 4, the same
information can be obtained from this plot.

In Fig. 6, the wave function of the first resonance state
(ν = 0) corresponding to |g,0〉, |e,−1〉, |g,−2〉, and |e,−3〉,
|e,+1〉, and |g,+2〉 Floquet channels have been plotted for
three different frequencies [i.e., ω = 0.1716 (solid line),
0.1306 (dotted line), and 0.0865 a.u. (dashed line)] at A0 =
0.02 a.u. From this figure it has been observed that with the
decrease in frequency the dissociation of the state increases.
This increase in dissociation is mainly due to an increase in
dissociation via the |e,−3〉 Floquet channel. Hence we can
conclude that the photodissociation of H2

+ by three-photon
absorption becomes dominant at lower frequency. In Fig. 7,
the wave function of the seventh resonance state (ν = 6)
corresponding to the |g,0〉 and |e,−1〉 Floquet channels for
frequencies ω = 0.1716 (solid line), 0.1306 (dotted line),
and 0.0865 a.u. (dashed line) at A0 = 0.02 a.u. have been
plotted. From this figure it is clear that with the decrease in
frequency the center of this state gets shifted and coincides with

0 2 4 6 8
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0.075

|Ψ
|2

0.1716
0.1306
0.0865

0 2 4 6 8 10

R (a.u.)

0

0.015

0.03

0.045

|g,0> |e.-1>

FIG. 7. (Color online) Plot of the wave function (�) of the seventh
resonance state (ν = 6) corresponding to |g,0〉, |e,−1〉 Floquet
channels for laser field frequency 0.1716 (solid line), 0.1306 (dotted
line), and 0.0865 a.u. (dashed line).

the crossing point. As the frequency decreases the crossing
between states (i.e., |g,0〉 and |e,−1〉) will occur at higher
energy and higher nuclear separation. So this vibrationally
trapped state will also be centered on higher nuclear separation
value. Thus this state remains the bound state in the continuum
with the decrease in frequency as mentioned in Fig. 4.

Though computationally matrix diagonalization is 10 times
faster than the PEM method, the efficiency of the PEM lies
in the fact that the variation of a specific resonance state with
respect to a range of field frequency can be easily traced which
is shown in Figs. 3 and 4, respectively. This is because in PEM
the line number of a particular resonance state remains fixed in
output whereas in the matrix diagonalization it is rearranged
every time. In one of our recent publications [7], we have
described the outcome of PEM where amplitude acts as a
parameter. One reason for PEM being slow is the very high
accuracy demanded during the propagation of the equations as
is evident from the two tables in discussion.

V. CONCLUSION

In summary, we have implemented PEM where frequency
is chosen as the parameter to study the photodissociation
dynamics of H2

+. The resonance states are calculated with
the help of the SES method. Here we are able to trace different
vibrational states as a function of frequency. We can see very
clearly that some higher lying vibrational states remain bound
states in continuum with the decrease in frequency.
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