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Solution of the time-dependent Dirac equation for multiphoton ionization of highly charged
hydrogenlike ions
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A theoretical study of the intense-field multiphoton ionization of hydrogenlike systems is performed by solving
the time-dependent Dirac equation within the dipole approximation. It is shown that the velocity-gauge results
agree to the ones in the length gauge only if the negative-energy states are included in the time propagation. On
the other hand, for the considered laser parameters, no significant difference is found in the length gauge if the
negative-energy states are included or not. Within the adopted dipole approximation the main relativistic effect
is the shift of the ionization potential. A simple scaling procedure is proposed to account for this effect.
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I. INTRODUCTION

Future experiments using an electron-beam ion trap (EBIT)
at the Linear Coherent Light Source (LCLS) at Stanford and
X-ray Free Electron Laser (XFEL) at Hamburg are expected
to permit the study of photoabsorption processes of highly
charged atomic ions in the wavelength range of 0.1 to 100 nm
with a peak intensity up to 1025 W/cm2 or even higher. Also
at the GSI (Darmstadt) experimental investigations of highly
charged ions exposed to intense laser fields are planned within
the SPARC project. The analysis of these experiments will
require a relativistic treatment of the ion-laser interaction.

Clearly a full treatment demands to solve the time-
dependent Dirac equation (TDDE) incorporating also the spa-
tial dependence of the vector potential. Since such a treatment
is very demanding, most earlier treatments adopted simpli-
fications. Low-dimensional models are especially popular.
Starting first with a one-dimensional treatment [1], elaborate
two-dimensional calculations have been reported, for example,
in Refs. [2–4]. However, such models can certainly not provide
quantitative predictions and it is, at least a priori, not even
clear whether they are always qualitatively correct. Similarly
to the nonrelativistic case, simplified ionization models like
the strong-field approximation [5–8], semiclassical tunneling
theory [9], or classical models like in Refs. [10–12] have also
been proposed. However, in order to allow for quantitative
predictions or the validation of such simplified models a
full-dimensional solution of the TDDE is needed.

Very recently, a three-dimensional solution of the TDDE for
hydrogenlike systems has been reported in Ref. [13]. The radial
solutions were expanded on a grid and the TDDE was either
solved by a direct propagation on the grid or using a spectral
expansion in field-free eigenstates. The spatial dependence of
the vector potential of the carrier part of the laser pulse was
also considered, while the one in the envelope was ignored.
The velocity gauge was used and the importance of including
the negative-energy (NE) states was emphasized in the case
of a treatment beyond the dipole approximation, even for
the considered laser parameters where the photon energy is
insufficient to produce real positron-electron pairs. Based on
general theoretical considerations it was conjectured that in
the length gauge the importance of the NE states may be
reduced. On the other hand, it was concluded on the basis

of the numerical results that within the dipole approximation
the inclusion of NE states is not needed, even if the TDDE is
solved in the velocity gauge. A comparison of the numerically
obtained ionization rates for various nuclear charges with the
ones in nonrelativistic approximation showed that, expectedly,
increasing differences are found with increasing charge.
However, it was concluded that the ionization rate (shown as a
function of the peak value of the laser field) obtained within the
relativistic TDDE calculation may be larger or smaller than the
nonrelativistic result. The authors found the higher rate easier
to understand and could only speculate on possible reasons for
the lower one.

A solution of the TDDE within the length gauge was
reported more recently in Ref. [14]. A direct time propagation
on a grid was used. As in Ref. [13] the electron-nucleus inter-
action is described by the unmodified nonrelativistic Coulomb
interaction. While the dipole approximation is solely adopted,
not only results for one-electron but also for two-electron ions
are reported. In the latter case the electron-electron interaction
is also described by the nonrelativistic Coulomb interaction.
No explicit discussion of the inclusion or omission of the
NE states is given. Comparing for Ne9+, Ne8+, U91+, and
U90+ the photoionization cross sections obtained by solving
the TDDE for 10-cycle pulses (using a single pulse with one set
of laser parameters for every ion) with the ones of relativistic
perturbation theory, a good quantitative agreement is found.
This result is, of course, expected, if the laser parameters
are chosen in a way that perturbation theory is applicable,
as was the case in Ref. [14] where relatively low intensities (in
relation to the ionization potentials and photon frequencies)
were considered.

In this work a further approach for solving the TDDE is
presented. It is based on the spectral expansion in field-free
eigenstates where the radial wave functions are expressed
in a B-spline basis. It may be seen as an extension of
the corresponding approaches for solving the nonrelativistic
time-dependent Schrödinger equation (TDSE) for one- and
two-electron atoms in, for example, [15–17], for molecular
hydrogen [18–21], and for in principle arbitrary molecules
within the single-active-electron approximation [22,23]. While
[13,14] mostly considered (or solely) one-photon ioniza-
tion, an extension to multiphoton ionization is presented.
Clearly, within the dipole approximation such multiphoton
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calculations involve more angular momenta than the one-
photon calculations and are thus more demanding due to
the occurrence of larger expansions. A similar complication
arises if calculations beyond the dipole approximations are
performed, as was partially done in Ref. [13]. Within the dipole
approximation and using the unmodified Coulomb interaction
as in Refs. [13,14], a systematic investigation of the importance
of NE states as well as the convergence behavior within either
the length or velocity gauge is performed. A simple scaling
relation is proposed that allows us to relate relativistic TDDE
solutions to the ones obtained with the nonrelativistic TDSE,
if both are performed within the dipole approximation.

In this work atomic units (e = me = h̄ = 1) are used unless
specified otherwise.

II. THEORY

The dynamics of a highly charged atomic ion exposed to an
external electromagnetic field is considered by means of both
a relativistic and a nonrelativistic treatment within the dipole
approximation. The vector potential A(t) is chosen in the form
of an N -cycle cos2-shaped laser pulse that is linear polarized
along the z axis,

A(t) =
{

ezA0 cos2
(

πt
T

)
sin(ωt), t ∈ ( − T

2 , T
2

)
,

0, otherwise,
(1)

where ω is the radiation frequency and T = 2πN/ω is the
pulse duration. Ignoring finite nuclear size effects, the interac-
tion of an electron with the nucleus may be approximated by
the Coulomb potential

U (r) = −Z

r
, (2)

where Z is the nuclear charge. In all calculations presented in
this work the hydrogenlike system is initially prepared in its
ground state.

A. Relativistic calculations

The relativistic dynamics of the quantum system is gov-
erned by the TDDE

i
∂�(t)

∂t
= [

H D
0 + V (t)

]
�(t), (3)

where H D
0 is the field-free Dirac Hamiltonian H D

0 ,

H D
0 = c α · p + c2β + U (r), (4)

and the interaction with the electromagnetic field V (t) can
be presented within the dipole approximation either in the
velocity (V) or length (L) gauge,

V V(t) = c α · A(t) = c αzA(t),
(5)

V L(t) = r · F(t) = zF (t).

Here β and the components of the vector α are the Dirac
matrices, p = −i∇ is the momentum operator, c ≈ 137 is the
speed of light, and F(t) = −dA(t)/dt is the electric field.

As is well known (see, e. g., [24]), the eigenstates of H D
0

can be presented as four component spinors

�κm(r) = 1

r

(
Pκ (r) χκ,m(r̂)

i Qκ (r) χ−κ,m(r̂)

)
, (6)

where χκ,m(r̂) is an ls coupled spherical spinor, κ is the
relativistic quantum number of angular momentum, related
to the orbital and total angular momenta l and j as

κ =
{

−(j + 1/2) = −(l + 1) for j = l + 1/2,

j + 1/2 = l for j = l − 1/2;
(7)

and the radial functions Pκ (r) and Qκ (r) are solutions of the
coupled equations

[U (r) + c2 − E]Pκ (r) + c

[
κ

r
− d

dr

]
Qκ (r) = 0,

(8)

[U (r) − c2 − E]Qκ (r) + c

[
κ

r
+ d

dr

]
Pκ (r) = 0.

For two spinor states, �i and �f , characterized by the
quantum numbers {ni,κi,ji,li ,mi} and {nf ,κf ,jf ,lf ,mf },
respectively, the time-dependent matrix element Vf i(t) =
〈�f |V (t)|�i〉 can be written as

Vf i(t) = δmf ,mi
δ|lf −li |,1 Wf i Mf i(t), (9)

where

Wf i = (−1)jf −mf (−1)ji+1/2
√

(2jf + 1)(2ji + 1)

×
(

jf 1 ji

−mf 0 mi

)(
jf 1 ji

−1/2 0 1/2

)
(10)

and

ML
f i(t) = F (t)

∫
dr r [Pi(r)Pf (r) + Qi(r)Qf (r)], (11)

MV
f i(t) = −icA(t)

∫
dr [(1 + �f i)Pi(r)Qf (r)

−(1 − �f i)Qi(r)Pf (r)] (12)

with �f i = (−1)jf −ji (κf − κi).
In order to describe both bound and continuum states, the

atom is confined within a spherical box boundary of radius
R. This leads to the discretization of the continuum spectrum,
whereas the bound states remain unmodified if R is chosen
sufficiently large and not too highly excited Rydberg states are
considered.

Introducing in a region [0,R] a B-spline set consisting of
n + 2 spline functions Bi(r) of order k, the radial functions
P (r) and Q(r) can be expanded in a B-spline basis as

P (r) =
n∑

i=1

piBi+1(r), Q(r) =
n∑

i=1

qiBi+1(r), (13)

where the first and the last spline are removed from the
expansion to ensure the boundary conditions P (0) = Q(0) =
P (R) = Q(R) = 0. Defining the coefficient vector

C = (p1,q1,p2,q2, . . . ,pn,qn), (14)

the system of Eqs. (8) is transformed into a 2n × 2n

generalized banded eigenvalue problem which is efficiently
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solved using LAPACK routine DSBGVX. This procedure yields
for every value of κ exactly n negative energy solutions and n

positive energy solutions.
As has been discussed in literature since the first solution

of the time-independent (stationary) Dirac equation using B

splines [25], there is the problem of the occurrence of spurious
states [26] that are nonphysical. Different procedures were
proposed to avoid this problem [27–29]. While there can be a
problem with their identification in the case of many-electron
systems, it is the lowest positive energy state for κ > 0 that
represents a spurious state in the present case.

B. Nonrelativistic calculations

The nonrelativistic TDSE

i
∂�(t)

∂t
= [H0 + V (t)] �(t), (15)

where H0 is the nonrelativistic field-free Hamiltonian H0,

H0 = p2

2
+ U (r), (16)

and in contrast to the relativistic case, the interaction with the
electromagnetic field V (t) is given in the velocity gauge by

V V(t) = p · A(t) = pzA(t). (17)

Similar to the relativistic case, the eigenstates of H0, �lm(r) =
r−1Rl(r)Ylm(r̂), are obtained by projecting the radial function
Rl(r) onto the B-spline basis

R(r) =
n∑

i=1

ρi Bi+1(r) (18)

and transforming the radial Schrödinger equation into the n ×
n generalized banded eigenvalue problem with respect to a
coefficient vector

C = (ρ1,ρ2, . . . ,ρn), (19)

which yields n solutions for every orbital quantum number l.
For two states, �i and �f , characterized by the quantum

numbers {ni,li ,mi} and {nf ,lf ,mf }, respectively, the time-
dependent matrix element Vf i(t) = 〈�f |V (t)|�i〉 can also be
written in the form of Eq. (9) but with

Wf i = (−1)lf −mf (−1)lf
√

(2lf + 1)(2li + 1)

×
(

lf 1 li
−mf 0 mi

) (
lf 1 li
0 0 0

)
(20)

and

ML
f i(t) = F (t)

∫
dr r Ri(r)Rf (r), (21)

MV
f i(t) = −iA(t)

∫
dr Rf (r)

[
l

r
Ri(r) + R′

i(r)

]
(22)

where l = sgn(li − lf ) max(li ,lf ).

C. Time propagation

Within the spectral approach, the integration of the TDDE
(3) and the TDSE (15) is performed by expanding the function

�(t) describing the dynamics of the system in the basis of
field-free eigenstates �K ,

�(r,t) =
∑
K

CK (t)e−iEK t�K (r), (23)

where the compound index K represents the full set of quantum
numbers and the coefficients CK (t = −T/2) are set to zero for
all states except for the initial state for which its value is set
to 1. Since the quantum number m is conserved for both cases
and the ground state is chosen as the initial state, the value
of m is fixed to 1/2 for the relativistic case and to 0 for the
nonrelativistic case.

Substituting Eq. (23) into Eq. (3) or TDSE (15) the latter
ones are reduced to a system of coupled first-order ordinary
differential equations,

C ′
K (t) =

∑
K ′

ei(EK−EK′ )t VKK ′ (t)CK ′(t), (24)

which is integrated numerically using a variable-order,
variable-step Adams solver [30].

The ionization yield (after the pulse) is then defined as

Yion =
∑
K

|CK (t = T/2)|2 , (25)

where the summation in Eq. (25) is performed over all dis-
cretized continuum states. The convergence can be controlled
by varying the value of lmax (or jmax) which limits the number
of different symmetries involved in the summation (23).

In the case of the TDDE the question of a proper treatment
of the spurious states mentioned in Sec. II A arises. The success
of the spectral approach relies on the completeness of the states
included in the summation, at least for a given box size. In fact,
already in the case of the nonrelativistic Schrödinger equation
the use of a finite box leads to the occurrence of nonphysical
pseudostates (see, e. g., [16]). In this case it turned out to
be in fact important to include those states in the spectral
expansion since otherwise some relevant part of the Hilbert
space is omitted. In order to decide on the proper treatment
of the spurious states of the Dirac equation (due to the B-
spline expansion), a careful check of the relativistic sum rules
[26] was performed that also served as a check of the proper
implementation of the length and velocity forms of the dipole-
operator matrix elements. On this basis it was concluded that
the spurious states could be omitted from the basis for solving
the TDDE since the sum rules were fulfilled in this case. The
agreement of the TDDE solutions obtained within the length
and the velocity gauge discussed below is another indication
that the omission of the spurious states is appropriate.

D. Computational details and scaling of the TDSE with Z

For the sake of consistency, the same B-spline basis set is
used for both the relativistic and the nonrelativistic treatment.
Typically, the values k = 9 and n = 500 are used to construct
an almost linear knot sequence in which the first 40 intervals
increase with a geometric progression using g = 1.05 and all
following intervals have the length of the 40th one. Such a
choice ensures an accurate numerical description in the vicinity
of the nucleus and, at the same time, a sufficient completeness
for a description of the discretized continuum [31]. Depending
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on the nuclear charge Z, a box size of R = (250/Z) a0 is
adopted. This choice of R reflects the well-known scaling
property of the time-independent Schrödinger equation of
hydrogenlike systems. With the substitution r′ = r/Z and
E′ = Z2E for the position r and the energy E, respectively,
the eigensolutions for a hydrogenlike system with charge Z

reduces to the one of the hydrogen atom with Z = 1.
Within the dipole approximation this property is preserved

also for the TDSE if the pulse parameters are also properly
scaled, for example, the time as t ′ = t/Z2, the laser frequency
as ω′ = Z2ω, the amplitude of the vector potential as A′

0 =
ZA0, and the laser peak intensity as I ′ = Z6I [32]. Since this
property does not persist in case of the relativistic treatment,
and the properly scaled solutions of the TDDE are thus
not identical anymore, any deviation from the nonrelativistic
prediction based on the scaling relations can be classified as a
relativistic effect (cf. [13]).

III. RESULTS AND DISCUSSION

A. Convergence behavior

The handling of the NE solutions of the Dirac equation is
an important issue and steered considerable attention in the
literature, see [13,33] and references therein. The question is
whether the NE states should be removed from the basis as long
as the creation of real positron-electron pair is energetically
out of reach. Such a situation occurs, for example, in case of
ionization of an ion with the nuclear charge Z = 50 exposed
to a pulse with photon energy 500 a.u. (see Fig. 1). Whereas
only three photons are sufficient for ionization, more than 70
photons are required for positron-electron pair creation. As
is demonstrated in Fig. 1, the answer to the question of the
proper treatment of the NE states depends, already within the
dipole approximation adopted here, clearly on the gauge and
thus the interaction operator used in the time propagation. For
the length gauge the exclusion of NE states has virtually no
effect on the final result. In contrast, for the velocity gauge the

3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2
j
max

0.0

5.0×10
-4

1.0×10
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L-gauge, no NE states
L-gauge, with NE states
V-gauge, no NE states
V-gauge, with NE states

FIG. 1. (Color online) Convergence study with respect to the
maximal value of the total angular momentum jmax. The relativistic
calculations of the ionization yield for an ion with the nuclear charge
Z = 50 exposed to a 20-cycle cos2-shaped laser pulse with peak
intensity I = 5 × 1023 W/cm2 and a photon energy of 500 a.u. are
performed using the length (L) or velocity (V) gauge either including
or excluding the negative energy (NE) states in the expansion (23).

results are obviously different. If the NE states are included
in the time propagation, the converged result agrees with the
one obtained using the length gauge, whereas without the NE
states the converged result differs in this example by a factor
of about 1.5. Therefore, these states are absolutely necessary
for obtaining the correct result.

From the practical point of view the finding is also
interesting since the omission of the NE states and thus half
of the total number of states reduces the numerical efforts
tremendously. Clearly doubling the number of states leads
to an increase of the number of operations per time step by
a factor of 4 since the number of transition dipole matrix
elements increases by this factor. In the present example (and
for a given number of jmax) the time propagation in the length
gauge without the NE states is by about a factor of 6 faster
compared to the one where the NE states are included. The
additional time difference (factor of about 1.5) arises from
an increased number of time steps required for convergence
in the used adaptive time propagation, if the NE states are
included. In fact, the length-gauge time propagation by itself
is found to be about 6 times faster than the one performed in
the velocity gauge, even if the NE states are included in both
of them. This factor is due to the finer time grid needed for
convergence in the velocity gauge. Considering both effects
together, even a speed-up by a factor of 50 is found when
comparing the length-gauge calculation without NE states and
the velocity-gauge variant with NE states that for sufficiently
large value of jmax both yield practically identical results.

However, Fig. 1 also reveals that the calculations in the
velocity gauge converge faster with respect to the quantum
numbers j included in the calculation. Therefore, the efficiency
gain of the length gauge is smaller than the value given above.
In the concrete example shown in Fig. 1 the (within better
than 0.1%) converged length-gauge calculation (jmax = 15/2,
without NE states) is by a factor of about 40 faster than
the (within about 10−3%) converged velocity-gauge result
(jmax = 11/2, with NE states). Even compared to the only
about 0.5% converged velocity-gauge result with jmax = 9/2
(with NE states), there is still a factor of about 30 in time gain.
On the other hand, the question of the most efficient choice
of the gauge depends on the laser parameters. If few-photon
processes (in the most extreme case one-photon ionization at
low intensities) are considered, the average angular momentum
j transferred to the ion is small. In such a case the need for
a larger value of jmax in the length-gauge calculation could
even overcompensate the gain from the exclusion of the NE
states. However, if the average number of absorbed photons
increases (due to a smaller ratio of the photon frequency
with respect to the ionization potential or due to a higher
laser intensity), the relative increase in j due to the slower
convergence leads to a smaller increase of the total number of
states than the inclusion of the NE states. In this multiphoton
regime calculations in the length gauge appear to be much
more efficient. This finding for the TDDE solution seems to
differ from the one for the nonrelativistic TDSE where the
velocity gauge is often supposed to converge faster than the
length gauge.

For extremely high intensities around and above the
critical field strength Fcr = c3 ≈ 2.57 × 106, where real pair
production is possible, the inclusion of the NE states is, of
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course, also required in the length gauge. In fact, already for
the parameters discussed in the context of Fig. 1, we find a
relative deviation between otherwise converged length-gauge
results with and without NE states of about 2.2 × 10−5. This
appears reasonable since it is of the order of the (reciprocal)
rest energy c−2 ≈ 5.3 × 10−5. For very high laser intensities
the gain from omitting the NE states is thus lost and future
calculations will have to show whether in that regime length-
gauge calculations can still profit from the need of a sparser
time grid, or whether the faster convergence with j persists in
the velocity gauge and may make this gauge more efficient.

In Ref. [13] it was concluded on the basis of the numerical
results that the inclusion of the NE states is not crucial for
solving the TDDE if the dipole approximation is adopted.
This result was found despite the fact that the calculation
was performed in the velocity gauge. Therefore, this finding
appears to contradict our conclusions. However, it turns out
that the importance of the inclusion of the NE states depends
in fact on the character of the multiphoton ionization process,
that is, on the number of photons. Figure 2 shows the ratio of
the ionization yields obtained either with or without inclusion
of the NE states for both gauges and two values of the nuclear
charge Z. In agreement with the findings discussed above, the
inclusion of the NE states has practically no influence on the
length-gauge results, independently of the number of photons
involved or the nuclear charge. This changes, however, if the
velocity gauge is used in the time propagation. The importance
of the NE states increases with the order of the multiphoton
process (the number of photons required for ionization) and
with the nuclear charge. Within the one-photon regime there
is practically no influence of the NE states. Thus the finding
in Ref. [13] is confirmed that even in the velocity gauge an
inclusion of the NE states is not required for calculations in
the dipole approximation. However, it is to be understood
that those findings apply only to the case where one photon
is sufficient to reach into the ionization continuum. Quite
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1 photon 2 photons 3 photons

FIG. 2. (Color online) Ratio of the ionization yields that are
obtained by either excluding or including the negative energy states
in the expansion (23) adopting either the length (L) or velocity (V)
gauge. The calculations are performed for an ion with two different
values of nuclear charge Z by varying the wavelength λ of a 20-cycle
cos2-shaped laser pulse with the peak intensity Z6 × 1013 W/cm2.
The character of the ionization process changes from single-
photon ionization (λZ2 = 40 nm) to three-photon ionization (λZ2 =
260 nm).

remarkable is also the strong dependence of the importance
of the NE states on Z. For example, for the wavelength
λ = 260/Z2 nm the exclusion of the NE states leads to a
three times smaller value of the ionization yield for Z = 80,
whereas for Z = 40 the decrease is only about 10%. The Z

dependence can also explain the negligible effect of NE states
within the dipole approximation found in Fig. 1 of Ref. [13]
where Z = 1 was used. Furthermore, only the probability of
remaining in the initial ground state was considered and this
quantity is found to converge much faster than, for example,
the ionization yield. This could possibly make it also less
sensitive to the NE states.

B. Single-photon ionization

As has been discussed in Sec. II D, the solution of the TDSE
for different nuclear charges Z gives identical ionization yields
if the laser pulse parameters are scaled properly. For example,
the inset in Fig. 3 shows the nonrelativistic ionization yields
obtained for an ion with the nuclear charge Z exposed to a
20-cycle cos2-shaped laser pulse with a peak intensity of Z6 ×
1011 W/cm2 for photon energies varying in the range between
15 Z2 and 45 Z2 eV. Since the ionization potential of the ion is
equal to 13.6 Z2 eV, the ionization should occur via absorption
of a single photon. In order to study the relativistic effects in
this one-photon ionization regime, the TDDE is solved for the
same system and for five different values of Z (in between 40
and 80 with a stepsize of 10).

The ratio of the relativistic to the nonrelativistic ionization
yield is shown in Fig. 3. Two features can be observed. First,
above 18 Z2 eV the ratio decreases with increasing photon
energy. Thus relativistic effects are more pronounced for
higher photon frequencies ω. As could be expected, this effect
becomes more and more important as Z increases. Second,
for increasing values of Z the ratio also starts to decrease for
photon energies below about 18 Z2 eV. As a consequence, a
sharp maximum appears at this photon energy for large Z. This
is a manifestation of the fact that the ionization potential of the
ion increases as a consequence of the relativistic velocity of
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FIG. 3. (Color online) Ratios of the relativistic ionization yields to
the nonrelativistic ones (shown in the inset) obtained for five different
values of the nuclear charge Z by varying the carrier frequency ω of
a 20-cycle cos2-shaped laser pulse with the peak intensity of Z6 ×
1011 W/cm2.
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an electron in the vicinity of strong Coulomb potentials. The
shift of the ionization potential

�Ip = I rel
p (Z) − I nr

p (Z) = c2

(
1 −

√
1 − Z2

c2

)
− Z2

2
(26)

rapidly increases with increasing Z. [For example, �Ip ≈
Z4/(8c2) for small Z.] Thus, for Z = 80 the absorption of
a single photon with the energy 15 Z2 eV is not sufficient
for ionization anymore and the character of the ionization
process changes from single-photon to two-photon ionization.
For the considered intensities the latter process possesses of
course a much smaller probability. In fact, the ratio would
be even smaller if the ratio at 15 Z2 eV would correspond
to pure two-photon ionization. The finite spectral width of
the adopted 20-cycle laser pulse allows, however, one-photon
ionization to occur even at this energy and thus increases the
ionization yield. Therefore, a finer photon-frequency grid in
between 15 Z2 and 20 Z2 eV would show a much smoother
behavior than the one visible from Fig. 3.

In Ref. [13] (Fig. 5) relativistic effects were considered
by a comparison of the ionization rates obtained with the
TDSE and the TDDE where the latter was solved for eight
different values of Z. However, there the behavior was studied
as a function of the laser field amplitude (also scaled by the
corresponding nonrelativistic scaling relations) and for a fixed
photon frequency. The authors discuss stabilization since the
ionization rate does not increase monotonously with the field
strength, but instead decreases for intensities beyond about
F0 = 1 Z3. For large values of Z the increasing value of F0 for
which the ionization rate has its maximum is then explained by
the stabilization criterion of Gavrila (see [34] and references
therein) and the conjecture that due to the lower energy of
the ground state in the relativistic case the condition for the
occurrence of stabilization shifts to higher field strengths.

In fact, the dependence of the ionization rates on Z

discussed in Ref. [13] may be quantitatively understood from
the scaling relations together with the lowering of the ground-
state energy due to relativistic effects. This is illustrated in the
following way. From the condition I rel

p (Z) = I nr
p (Z′) one finds

a scaled nuclear charge

Z′ =
√

2c2
(
1 −

√
1 − Z2/c2

)
(27)

for a given true charge Z. This allows us to estimate the
relativistic ionization rate from a nonrelativistic calculation
using

�′(F0) =
(

Z′

Z

)2

�

(
F0

[
Z

Z′

]3)
(28)

if the dependence of the nonrelativistic ionization rate on the
photon frequency is ignored. In order to obtain nonrelativistic
ionization rates �(F0), Floquet calculations were performed as
a function of the peak amplitude F0 of the electric field using
program STRFLO [35]. They are shown in Fig. 4 and are in rea-
sonable agreement with the TDSE rates in Ref. [13]. Based on
the nonrelativistic Floquet rates the scaling relation (28) allows
us to estimate the relativistic rates that are also shown in Fig. 4
for Z = 36, 54, and 86. The qualitative agreement with
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FIG. 4. (Color online) Ionization rate (in units of Z2 a.u.) of a
hydrogenlike ion exposed to a monochromatic laser field with the
frequency ω = Z2 as a function of the amplitude of the electric
field (given in units of Z3 a.u.) The black solid curve presents the
(nonrelativistic) Floquet ionization rate, whereas the other curves
present the ionization rates obtained using the scaling relation (28)
in order to estimate the relativistic ionization rates for three different
values of Z.

the TDDE results in Fig. 5 of Ref. [13] is satisfactory
and especially the shift of the maximum to higher fields is
well reproduced. However, in agreement with the discussion
in Ref. [13], the model predicts that the maximum of the
ionization rate increases monotonically with Z. This is in
contrast to the numerical findings in Ref. [13].

C. Multiphoton ionization

If many photons are required for ionization, the relativistic
results may deviate from the nonrelativistic ones by an
order of magnitude or more. This is demonstrated in Fig. 5
where relativistic and nonrelativistic ionization yields are
compared for an ion with the nuclear charge Z = 50. The
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FIG. 5. (Color online) Relativistic (blue circles) and nonrela-
tivistic (black circles) ionization yields obtained for an ion with
the nuclear charge Z = 50 exposed to a 20-cycle cos2-shaped laser
pulse with a peak intensity of 5 × 1022 W/cm2 and various laser
wavelengths. Additionally, the nonrelativistic ionization yields (red
squares) for an ion with the nuclear charge Z′ = 50.88 are shown
whose nonrelativistic ionization potential is equal to the relativistic
ionization potential of the ion with Z = 50. The nonrelativistic
N -photon thresholds (N = 2–4) for Z and Z′ are indicated by black
and red vertical dashed lines, respectively.
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laser wavelength varies in the range from 0.05 nm (two-photon
ionization) to 0.15 nm (five-photon ionization). Whereas the
general structure of the wavelength dependence is similar for
both relativistic and nonrelativistic treatments, the difference
in the positions of all pronounced features like peaks and
minima may result in a substantial discrepancy if the ion yields
are compared at a single photon frequency. Obviously the sharp
steps are due to the N -photon channel closings and the peaks
are signatures of resonantly enhanced multiphoton ionization
(REMPI) processes. Their positions are directly related to
excitation energies and the ionization potential, respectively,
and both are higher in the relativistic than in the nonrelativistic
case.

In view of the scaling relation (27) it is interesting to
compare the TDDE result (for Z = 50) with the nonrelativistic
TDSE result for the scaled nuclear charge Z′ = 50.88. As can
be seen from Fig. 5, the obtained TDSE results deviate from
the relativistic ones for Z = 50 only by a few percent. This
indicates that the change of the ionization potential is the
by far dominating relativistic effect, at least if multiphoton
ionization is described within the dipole approximation. Other
possible effects like the splitting of (resonant) intermediate
states due to spin-orbit coupling are thus very small, but can be
quantified more easily after the scaling relation has accounted
for the main effect. The dominant influence of the shift of the
ionization potential is likely to depend on the considered laser
intensity and photon frequency. It should be reminded that
the Keldysh parameter γ = √

2 Ipω/F0 [36] varies in Fig. 5
in between 38.17 and 12.72. This is deep in the multiphoton
regime, in fact even in the perturbative one.

D. Validity of the dipole approximation

It should be reminded that all calculations in this work
were performed within the dipole approximation. Clearly,
without an explicit inclusion of the neglected higher-order
terms it is not possible to finally conclude whether all
conclusions remain valid in a complete treatment. For large
photon frequencies (corresponding to short wavelengths) one
expects a breakdown of the dipole approximation since the
spatial extent of the atom becomes comparable or even larger
than the photon wavelength. Since the energy and thus the
corresponding photon energy scales with Z2 while the spatial
extent of the atom scales with Z, this effect is expected to
be more pronounced for ions with large nuclear charge. At
the same time, the photon energies in this work are largest
for one-photon ionization (see, e. g., Fig. 3). Therefore, the
largest deviations from the dipole approximation are expected
for the single-photon ionization of very highly charged ions.
In the present work, the laser wavelength becomes comparable
to the spatial extension of the ion in the one-photon regimes
of Figs. 2 and 3 for the largest values of Z = 80. On the
other hand, even the smallest wavelength considered in Fig. 5
(0.05 nm) is about 50 times larger than the spatial extent of the
ion with Z = 50. The dipole approximation should apply in
this case and thus the found scaling relation is definitely valid.

In Ref. [13] the validity of the dipole approximation was
investigated for laser parameters similar to the ones adopted
also in this work. From Fig. 5 in Ref. [13] one may conclude
for the ionization rates shown in Fig. 4 that nondipole effects

are relevant for Z = 86 and an electric field F � 0.75 a.u.
Furthermore, the convergence study in Fig. 1 of Ref. [13]
shows that already the first-order correction to the dipole
correction (increase of the angular momentum and multipole
expansion from lmax = 1 to lmax = 2 [13]) can be significant.
However, at least for the considered example the full rela-
tivistic calculations (thus including also the negative-energy
states) seem to converge to the corresponding nonrelativistic
results both within and beyond the dipole approximation.
This seems to indicate that the corrections to the dipole
approximation, which may be estimated analytically in the
nonrelativistic case as in Ref. [37], are similar for relativistic
or nonrelativistic treatments of the ion. In such a case, ratios
between relativistic and nonrelativistic ionization yields as
shown in Fig. 3 would remain nearly unchanged when going
beyond the dipole approximation.

However, it is unclear up to which value of the nuclear
charge such a relation still holds and how representative the
considered laser pulse is. Furthermore, in the case of the
TDDE calculation beyond the dipole approximation shown in
Fig. 1 of Ref. [13], convergence with respect to one parameter
lmax specifying both the multipole expansion of the laser
field and the angular momenta of the ion is investigated.
The result does not necessarily agree to an independent
convergence study with respect to both of these parameters.
Clearly a proper discussion also of the validity of the dipole
approximation in the present work requires a full solution of the
TDDE beyond the dipole approximation and its comparison
to the corresponding solution of the TDSE. Such calculations,
especially also for the multiphoton situation as considered in
this work, are presently under way. However, especially the
scaling relations and their importance close to the multiphoton
thresholds are expected to remain important, independent of
the validity of the dipole approximation.

IV. CONCLUSION

Single- and multiphoton ionization of highly charged
atomic ions has been numerically studied by a direct solution
of the time-dependent Dirac equation within the dipole approx-
imation. The stationary Dirac equation is solved by projecting
the radial part onto a B-spline basis and the obtained field-free
eigensolutions are used in the subsequent time propagation.
Results for both length and velocity gauges for describing the
ion-field interaction are obtained and compared. The inclusion
of the negative-energy Dirac states for the description of the
relativistic dynamics is shown to be important in the case of the
multiphoton ionization, if the velocity gauge is adopted, even
if the considered intensities and frequencies are too low for
allowing nonnegligible real pair creation. If ionization occurs
via absorption of a single photon or the time propagation is
performed in the length form, the role of negative energy states
is much less significant.

Comparing solutions of the time-dependent Dirac and
Schrödinger equations for the same ion and laser pulses, the
relativistic change of the ionization potential is demonstrated
to dominate other relativistic effects in the case of multiphoton
ionization. It is shown that this effect is successfully accounted
for by a simple scaling relation.
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