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Characterization of anomalous Zeeman patterns in complex atomic spectra
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The modeling of complex atomic spectra is a difficult task, due to the huge number of levels and lines involved.
In the presence of a magnetic field, the computation becomes even more difficult. The anomalous Zeeman pattern
is a superposition of many absorption or emission profiles with different Zeeman relative strengths, shifts, widths,
asymmetries, and sharpnesses. We propose a statistical approach to study the effect of a magnetic field on the
broadening of spectral lines and transition arrays in atomic spectra. In this model, the σ and π profiles are
described using the moments of the Zeeman components, which depend on quantum numbers and Landé factors.
A graphical calculation of these moments, together with a statistical modeling of Zeeman profiles as expansions
in terms of Hermite polynomials are presented. It is shown that the procedure is more efficient, in terms of
convergence and validity range, than the Taylor-series (TS) expansion in powers of the magnetic field, which was
suggested in the past. Finally, a simple approximate method to estimate the contribution of a magnetic field to the
width of transition arrays is proposed. It relies on our recently published recursive technique for the numbering
of LS terms of an arbitrary configuration.
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I. INTRODUCTION

In astrophysics, the observation of a splitting of spec-
tral lines in the visible and UV ranges for a few white
dwarfs [1] confirmed the existence of intense magnetic fields
(0.1–104 MG) as predicted by Blackett [2]. The influence
of a magnetic field on an atom modifies its emission or
absorption lines. Thanks to this property, known as the Zeeman
effect, the detection of magnetic fields is possible at large
distances, through the measured radiation. The linear and
quadratic Zeeman effects [3,4] explain the separation of
spectral lines and enable one to determine a value of the
magnetic field. In the same way, pulsars and neutron stars
having an even more intense magnetic field (105–108 MG)
have been discovered through their spectrum in the range of
radio frequencies and x rays. There are numerous astrophysical
applications, both direct or indirect and requiring sometimes
a sophisticated theoretical modeling. The methods differ
according to the nature of the objects studied (see Table I), the
magnitude and the geometry of the magnetic fields, and the
quality of the observation in terms of sensitivity and spectral
resolution. Moreover, the variations of the magnetic field of
stars during their rotation bring some information about their
global geometry. The spectropolarimetric methods exploit the
additional recording of the circular polarization with respect
to the wavelength. This enables one to obtain a detailed map
of the field [5] through a separation of its components parallel
or perpendicular to the line of sight.

Strong magnetic fields are also encountered, for instance,
in magneto-inertial fusion [6]. Inserting a magnetic field into
inertial-confinement-fusion capsules before compressing them
[7] presents the advantages to suppress the electron thermal-
conduction losses and to better control the α-particle energy
deposition. The magnetic fields generated inside a Hohlraum
can reach a few MG.

In this work, the effect of a magnetic field on the broadening
of spectral lines and transition arrays in complex atomic
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spectra is investigated. A proper description of physical
broadening mechanisms [8] requires a simultaneous treatment
of Stark and Zeeman effects, which was performed by Ferri
et al. [9] in the framework of the frequency fluctuation model
[10]. In the case of an atom (ion) having several open subshells,
the number of electric dipolar lines can be immense and the
anomalous Zeeman pattern is a superposition of many profiles.
When dealing with a huge number of simultaneously recorded
profiles, it becomes necessary to characterize the line shape
in terms of a limited number of parameters, and therefore to
determine constraints on modelings. A statistical analysis can
be performed using the moments of the profile. The nth-order
centered moment μn,c[A] of a distribution A(E) is defined by

μn,c[A] =
∫ ∞
−∞(E − μ1)nA(E)dE∫ ∞

−∞ A(E)dE
, (1)

where

μ1 =
∫ ∞
−∞ EA(E)dE∫ ∞
−∞ A(E)dE

(2)

is the center of gravity of A(E). Each absorption or emission
profile constituting the anomalous Zeeman pattern has its
own strength, shift (first-order moment), width (second-order
moment), asymmetry (third-order moment), and sharpness
(fourth-order moment). We discuss different ways of calcu-
lating these moments (whatever the order) in terms of the
quantum numbers and Landé factors of the levels involved
in the line and present a statistical modeling of the Zeeman
profile. It relies on the use of an A-type Gram-Charlier
expansion series for each of the components �M = 0, +1,
and −1. Finally, leaning on our recently published recursive
approach for the numbering of LS terms of an arbitrary
configuration [11], we propose a simple approximation to
estimate the contribution of a magnetic field to the emission
and absorption coefficients.

The paper is organized as follows. In Sec. II, the intensity
distribution of an electric dipolar (E1) line is introduced,
together with its strength-weighted moments. In Sec. III, a
graphical representation of the angular-momentum sum rules
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TABLE I. Orders of magnitude of magnetic fields encountered in
astrophysics (1 MG = 106, G = 100 T).

Magnetic field B (MG) Astrophysical object

105–108 Neutron star or pulsar
10−1–104 White dwarf
10−4–10−2 Hot magnetic star
0–10−6 Planets of the solar system
10−13–10−11 Interstellar cloud

involved in the calculations of the moments is described. It
reveals the way the Racah algebra proceeds and is simple to
compute: The nth-order moment reduces to a regular polygon
with (n + 2) sides. In Sec. IV, the statistical modeling of a line
perturbed by a magnetic field is discussed, using particular
distributions involving the reduced centered moments of
the Zeeman π and σ± components. It is proven that the
Gram-Charlier development is more efficient than the usual
Taylor-series expansion. In Sec. V, an efficient approach to
take into account the effect of a magnetic field on a transition
array is proposed. In Sec. VI it is shown that the techniques
presented in this paper still apply when hyperfine interaction
is included. Section VII is the conclusion.

II. INTENSITIES AND CHARACTERISTICS
OF ZEEMAN COMPONENTS

The Zeeman Hamiltonian reads

HZ = μBB (Lz + gsSz), (3)

where B is the magnitude of the magnetic field along the z

axis �B = B �uz, μB the Bohr magneton, gs = 2.002 319 2 is
the anomalous gyromagnetic ratio for the electron spin, and
Lz and Sz, respectively, the projections of total orbital and
spin angular momenta of the system. For sufficiently weak
values of the field B, the off-diagonal matrix elements of HZ

that connect basis states of different values of J (modulus of
the total angular momentum of the system �J = �L + �S) will
be negligible compared to the contributions of the Coulomb
and spin-orbit interactions to the energy. It becomes then
reasonable to neglect the mixing of basis states of different
values of J . The energy matrix breaks down into blocks
according to the value of J (as in the field-free case) and
the contribution of the magnetic field to the energy can be
calculated as a simple perturbation. The following expression
for the diagonal matrix element of HZ for the state |γ JM〉:

〈γ JM|Lz + gsSz|γ JM〉 = gγJ 〈γ JM|Jz|γ JM〉 = gγJ M,

(4)

where Jz = Lz + Sz, defines the Landé factor gγJ of level
γ J [12]. One can roughly consider that the Zeeman approach
is no longer valid when the magnetic field is of the same order
of magnitude as the spin-orbit contribution (see Table II)

Bc = (Z∗e2/h̄c)2me4/(μBh̄2). (5)

In that case, a Paschen-Back [13] treatment is necessary.

TABLE II. Critical value of the magnetic field for which the
spin-orbit interaction becomes of the same order of magnitude as
the magnetic interaction. This gives an estimate of the critical field
for which the Paschen-Back treatment is more appropriate than the
Zeeman description.

Element Bc (MG)

H (Z = 1) 0.0078
Al (Z = 13) 1.30
Ni (Z = 28) 6.10
Nb (Z = 41) 13.10
Sm (Z = 62) 30.00
Po (Z = 84) 55.00
Np (Z = 93) 67.50

In the presence of a magnetic field, the total intensity of
transition γ JM → γ ′J ′M ′ at the energy E reads

I (E) =
∑

γ JM→γ ′J ′M ′
SγJM,γ ′J ′M ′

×�γJM,γ ′J ′M ′(E − EγJM,γ ′J ′M ′ ), (6)

where

EγJM,γ ′J ′M ′ = EγJ,γ ′J ′ + μBB(gγ ′J ′M ′ − gγJ M) (7)

and SγJM,γ ′J ′M ′ are respectively the energy and the strength of
a transition γ JM → γ ′J ′M ′. EγJ,γ ′J ′ represents the energy
of the line γ J → γ ′J ′

EγJ,γ ′J ′ = Eγ ′J ′ − EγJ = 〈γ ′J ′|H |γ ′J ′〉 − 〈γ J |H |γ J 〉,
(8)

where H is the Hamiltonian of the system. The normalized
profile �γJM,γ ′J ′M ′(E) takes into account the broadening of
the line due to radiative decay, Doppler effect, ionic Stark
effect, electron collisions, etc.

Assuming that the optical media is passive (e.g., there is
no Faraday rotation), the intensity, detected with an angle of
observation θ , is given by Refs. [14,15]

Iθ (E) = I‖(E) cos2(θ ) + I⊥(E) sin2(θ ), (9)

where the longitudinal intensity is

I‖(E) = 1
2 [I+1(E) + I−1(E)] (10)

and the transverse intensity

I⊥(E) = 1
4 [I+1(E) + I−1(E) + 2I0(E)]. (11)

Iθ (E) can be written in the form

Iθ (E) =
(

1 + cos2(θ )

4

)
[I+1(E) + I−1(E)] + sin2(θ )

2
I0(E).

(12)

Each line γ J → γ ′J ′ can be represented as a sum of
three helical components associated to the selection rules
M ′ = M + q, where the polarization q is equal to 0 for π

components and to ±1 for σ± components. The intensity of
the q component of the E1 line γ J → γ ′J ′ reads, assuming
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that all quantum states are populated in the statistical-weight
approximation (high-temperature limit)

Iq(E) =
∑
M,M ′

SM,M ′,q�γJM,γ ′J ′M ′(E − EγJM,γ ′J ′M ′), (13)

where

SM,M ′,q = CM,M ′,qSγ J,γ ′J ′ (14)

and

CM,M ′,q = 3

(
J 1 J ′

−M −q M ′

)2

. (15)

The quantity

SγJ,γ ′J ′ =
∑

γ JM→γ ′J ′M ′
SγJM,γ ′J ′M ′ (16)

represents the strength of the line γ J → γ ′J ′ and is propor-
tional to |〈γ J |Z|γ ′J ′〉|2, where Z is the z component of the
dipole transition operator. Since

∑
M,M ′

(
J 1 J ′

−M −q M ′

)2

= 1

3
, (17)

each component has the same strength. The number of
transitions in each component is equal to 2 × min(J,J ′) + 1.
The distribution Iq(E) can be characterized by the moments
centered in EγJ,γ ′J ′

M[q]
k =

∑
M,M ′

CM,M ′,q(gγ ′J ′M ′ − gγJ M)k

=
∑
M,M ′

CM,M ′,q
(
gγ ′J ′M ′ − gγJ M − M[q]

1 + M[q]
1

)k

=
k∑

i=0

(
k

i

)
M[q]

i,c

(
M[q]

1

)k−i
, (18)

where

M[q]
n,c =

∑
M,M ′

CM,M ′,q
(
gγ ′J ′M ′ − gγJ M − M[q]

1

)n
(19)

is the nth-order centered moment of the distribution. It is useful
to introduce the reduced centered moments defined by

α[q]
n =

∑
M,M ′

CM,M ′,q

(
gγ ′J ′M ′ − gγJ M − M[q]

1√
V [q]

)n

, (20)

where M[q]
1 is the center of gravity of the strength-weighted

component energies (relative to EγJ,γ ′J ′ and in units of μBB)

and
√
V [q] =

√
M[q]

2,c is the standard deviation (in units of
μBB). Centered moments of σ− and σ+ components are related
by M[σ−]

n,c = (−1)nM[σ+]
n,c . The use of α

[q]
n instead of M[q]

n

allows one to avoid numerical problems due to the occurrence
of large numbers. The first values are α

[q]
0 = 1, α

[q]
1 = 0 and

α
[q]
2 = 1. The distribution Iq(E) is therefore fully character-

ized by the values ofM[q]
1 ,V [q] and of the high-order moments

α
[q]
n with n > 2. It is reasonable to consider that the first

four moments are sufficient to capture the global shape of the
distribution Iq(E) (see for instance Ref. [16], pp. 88–89). The

third- and fourth-order reduced centered moments α
[q]
3 and α

[q]
4

are named skewness and kurtosis. They quantify respectively
the asymmetry and sharpness of the distribution. The kurtosis
is usually compared to the value α

[q]
4 = 3 for a Gaussian.

III. MOMENTS OF THE ZEEMAN COMPONENTS
π , σ+, AND σ− OF A LINE γ J → γ ′ J ′

A. Racah algebra and graphical representation

The moments can be easily derived using Racah algebra
and graphical techniques [17–21]. We define the notations
[a,b,c, . . .] = (2a + 1)(2b + 1)(2c + 1) . . . , and use the con-
vention of Biedenharn et al.: x̄ = x(x + 1) [22]. Since M can
be expressed as

M = (−1)J−M
√

[J ]J̄

(
J 1 J

−M 0 M

)
, (21)

the first-order moment can be obtained from the relations (A3),
(A5), and (A8) given in Appendix A [17]. One has

∑
M,M ′

(
J 1 J ′
−M −q M ′

)2

M = − q

12
(J̄ − J̄ ′ + 2), (22)

and∑
M,M ′

(
J 1 J ′

−M −q M ′

)2

M ′ = q

12
(J̄ ′ − J̄ + 2), (23)

which gives finally [23]

M[q]
1 = q

4
[2(gγJ + gγ ′J ′ )

+ (gγJ − gγ ′J ′ )(J − J ′)(J + J ′ + 1)]. (24)

The variance is obtained using the sum rule (A4) [17]
together with the expressions (A5) to (A10) [24–26]. More
generally, the nth-order moment involves the following sum
rule:∑

M,M ′
(−1)n(J−M)

(
J 1 J ′

−M −q M ′

)2 (
J 1 J

−M 0 M

)n

,

(25)

where n is an integer. Figures 1 and 2 give the graphical
simplified representations of a three-jm and a six-j symbol
respectively. Each line represents an angular momentum
[17–21]. The names of the angular momenta (or of their projec-
tions in the case of three-jm coefficients) and the phase factors
are omitted. Figures 3–6 display the graphical representations
of the calculations of the first four moments M[q]

1 and M[q]
2 ,

M[q]
3 , and M[q]

4 respectively. One can also see on Fig. 3 how
the three-jm symbols merge into a single closed diagram.
These schemes are a representation of summation rules and
reduction formulas. Although some computer programs exist

FIG. 1. Graphical representation of a three-jm coefficient.
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FIG. 2. Graphical representation of a six-j coefficient.

FIG. 3. Simplified graphical representation of the sum rule (A3)
of Appendix A involved in the calculation of the first-order moment
M[q]

1 of a Zeeman component. The first equality corresponds to
the merging of the three three-jm symbols, and the second one the
splitting into a three-jm and a six-j symbol.

FIG. 4. Simplified graphical representation of the sum rule (A4)
of Appendix A involved in the calculation of the second-order
moment M[q]

2 of a Zeeman component.

FIG. 5. Simplified graphical representation of the sum rule
involved in the calculation of the third-order moment M[q]

3 of a
Zeeman component.

FIG. 6. Simplified graphical representation of the sum rule
involved in the calculation of the fourth-order moment M[q]

4 of a
Zeeman component.

(see for instance Refs. [27–32]), which are devoted to the
reduction of graphs, it is easy to understand that the calculation
becomes more and more cumbersome as the order of the
moment increases. The nth-order moment reduces graphically
to a polygon with (n + 2) sides.

B. Expression in terms of Bernoulli polynomials

Mathys and Stenflo [33,34] have obtained more compact
formulas for the moments in terms of Bernoulli polynomials
(see Appendix B). Values of α3 and α4 for the three selection
rules �J = 0,−1,+1 are displayed in Tables III and IV. One
finds that the variance of the π component is always larger
than the variance of the σ+ and σ− components, indeed

V [π] − V [σ±] = (gγJ − gγ ′J ′ )2

20
(8J̄ − 1) if J ′ = J (26)

and

V [π] − V [σ±] = (gγJ − gγ ′J ′ )2

20
(J̄ + J ) if J ′ = J + 1,

(27)

where V [q] = M[q]
2,c = M[q]

2 − (M[q]
1 )2. Therefore, in all

cases, V [π] − V [σ±] � 0. We can see on Fig. 7 that the variance
of the π component for a given value of J is larger for �J = 0
than for �J = ±1 lines, and that the difference increases with
J . Things are slightly different for the σ components (see
Fig. 7): The variance for �J = 0 overcomes the one from
�J = ±1 only for J � 3. Moreover, the difference between
both variances at fixed J is smaller than for the π component.
Figure 8 shows that the skewness α3 of the σ+ component is
a decreasing function of J for �J = ±1 line (the skewness
is zero for �J = 0 since the splitting is symmetric in that

TABLE III. Values of α3 and α4 of the σ+ component of E1 lines.

σ+ J ′ = J J ′ = J + 1 J ′ = J − 1

α3 0 2
√

5
3
√

3
J+1√
J (J+2)

− 2
√

5
3
√

3
J√
J 2−1

α4
5
7

(
12J̄−17
4J̄−3

)
5
21

(
13J (J+2)−4

J (J+2)

)
− 5

21

(
13J 2−17

1−J 2

)
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TABLE IV. Values of α3 and α4 of the π component of E1 lines.

π J ′ = J J ′ = J + 1 J ′ = J − 1

α3 0 0 0

α4
25
7

(
3{(J+2)J 2−1}J+1

{1−3J̄ }2

)
5
7

(
3J (J+2)−2

J (J+2)

)
5
7

(
3J 2−5
J 2−1

)
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FIG. 7. (Color online) Variance of the π and σ components with
respect to J .
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FIG. 8. (Color online) Skewness α3 of the σ+ component with
respect to J for �J = ±1.
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FIG. 9. (Color online) Kurtosis α4 of the π and σ components
with respect to J for �J = 0 and �J = ±1.
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FIG. 10. (Color online) Kurtosis α4 versus skewness α3 of the σ+
component for �J = +1.

case). In contrast to the variance, the kurtosis α4 (see Fig. 9) is
systematically higher for �J = ±1 than for �J = 0, and the
difference is almost constant and equal to 1. It is interesting
to plot α4 versus α3 for the σ+ component; It reveals that
the dependence is quite linear, and that the values are very
concentrated around 0.875 for the kurtosis and slightly above
3 for the skewness (see Fig. 10). As can be shown on Fig. 11, for
a given value of J the reduced centered moments αn increase
with the order n, and, for a given value of n, they increase as
well with J , and get closer and closer when J increases.

The numerical values α4, α6, and α8 of the π component for
several lines are listed in Table V. Tables VI and VII contain
the odd reduced centered moments of the σ component for the
same lines.

IV. ZEEMAN PROFILE IN LOW MAGNETIC FIELDS

In the following, we consider the case where

I (E) = 1
3 [I+1(E) + I−1(E) + I0(E)] (28)

which, according to Eq. (9), corresponds to an observation
angle θ with z axis such that cos2(θ ) = 1

3 .
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FIG. 11. (Color online) Reduced centered moments αn of the σ+
component versus n for different values of J in the case �J = ±1.
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TABLE V. Parameters of the π component for several lines of the
transition array Fe VII 3d2 → 3d4p. Even reduced centered moments.

Line V α4 α6 α8

5F1 → 5F2 0.60 1.667 2.778 4.629
7D3 → 7D4 0.03 2.048 5.190 14.407
4D3/2 → 4D5/2 1.05 1.871 3.944 8.436
5P2 → 5P3 1.60 1.964 4.576 11.230

A. Taylor-series expansion

In the following, we make the assumption that �γJM,γ ′J ′M ′

is a universal function � centered in EγJM,γ ′J ′M ′ . The quantity
Iq(E) (13) can be expressed [33,34] as a Taylor series around
the line energy EγJ,γ ′J ′

Iq(E)

= SγJ,γ ′J ′

{
�(E − EγJ,γ ′J ′ ) +

∞∑
k=1

(−1)k

k!
(μBB)kM[q]

k

× dk

dEk
�(E − EγJ,γ ′J ′ )

}
. (29)

Assuming a Gaussian physical broadening of the lines

�(E − EγJ,γ ′J ′ ) = 1√
2πv

exp

(
− (E − EγJ,γ ′J ′ )2

2v

)
, (30)

where v represents the variance of the physical broadening
mechanisms other than the Zeeman effect (Doppler, Stark,
etc.), we have (Rodrigues’ formula)

dn

dEn
�(E − EγJ,γ ′J ′ ) = (−1)n

vn/2
�(E − EγJ,γ ′J ′ )

× Hen

(
E − EγJ,γ ′J ′√

v

)
, (31)

where Hek is the Hermite polynomial of order k, related to the
usual Hermite polynomial Hk by

Hek(x) = 1

2k/2
Hk

(
x√
2

)
. (32)

Hek obeys the recursion relation

Hek+1(x) = xHek(x) − kHek−1(x) (33)

TABLE VI. Parameters of the σ component for several lines of the
transition array Fe VII 3d2 → 3d4p. Odd reduced centered moments.

Line α3 α5 α7

5F1 → 5F2 0.994 5.521 27.913
7D3 → 7D4 0.889 6.067 41.822
4D3/2 → 4D5/2 0.939 5.856 35.177
5P2 → 5P3 0.913 5.977 38.670

TABLE VII. Parameters of the σ component for several lines
of the transition array Fe VII 3d2 → 3d4p. Even reduced centered
moments.

Line V α4 α6 α8

5F1 → 5F2 0.4500 2.778 12.654 62.592
7D3 → 7D4 2.2500 3.032 16.426 114.192
4D3/2 → 4D5/2 0.7875 2.914 14.637 87.850
5P2 → 5P3 1.2000 2.976 15.575 101.273

with He0(x) = 1 and He1(x) = x. The resulting expression of
Iq(E) reads

Iq(E) = SγJ,γ ′J ′�(E − EγJ,γ ′J ′ )

×
{

1 +
∞∑

k=1

(μBB)k

k! vk/2
M[q]

k Hek

(
E − EγJ,γ ′J ′√

v

)}
.

(34)

At the second order

Iq(E) = SγJ,γ ′J ′�(E − EγJ,γ ′J ′ )

×
{

1 + μBB M[q]
1

(E − EγJ,γ ′J ′ )√
v

− (μBB)2
[
M[q]

2,c + (
M[q]

1

)]2 [v−(E−EγJ,γ ′J ′ )2]

2v2

}
.

(35)

Throughout the paper, the calculations denoted exact are
performed with the flexible atomic code (FAC) [35]. Figure 12
shows that, for B = 1.25 MG and v = 5 × 10−5 eV2, the TS
expansion converges to the exact profile with a very good
accuracy. Such an approach still works fairly well even when
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FIG. 12. (Color online) Modeling of a line J = 3 → J ′ = 4 of
transition array Fe VII 3d2 → 3d4p with Taylor-series expansion of
different orders, compared to the exact calculation for B = 1.25 MG
and v = 5 × 10−5 eV2. The development for n = 16 and the exact
calculation are superimposed.
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FIG. 13. (Color online) Modeling of a line J = 3 → J ′ = 4 of
transition array Fe VII 3d2 → 3d4p with Taylor-series expansion of
different orders, compared to the exact calculation for B = 1.5 MG
and v = 5 × 10−5 eV2.

the profile starts to exhibit oscillations due to the important
separation of the π , σ+, and σ− components (see Fig. 13) for
B = 1.5 MG (corresponding to μBB/

√
v ≈ 1.23). In the latter

case however, the convergence is quite slow: A satisfactory
agreement is still not achieved at the order n = 16. The Taylor-
series method is valid for μBB � √

v, but breaks down if μBB

becomes much larger than
√

v. Note that expression (35) can
be exploited for a rough determination of the magnitude of
the magnetic field B, provided that variance v of the other
broadening mechanisms is known (see Appendix C). It is
interesting to mention, as can be seen on Fig. 14, that the
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FIG. 14. (Color online) Modeling of a line J = 3 → J ′ = 4 of
transition array Fe VII 3d2 → 3d4p with Taylor-series expansion of
eighth order, for each component separately for B = 1.5 MG and
v = 5 × 10−5 eV2.

modeling of each component separately is not satisfactory at
all, since in the present case, the separate TS expansions exhibit
some oscillations and can even become negative, for σ+ and
σ− components. However, such variations do not affect the
resulting total function (sum of the three components).

B. A-type Gram-Charlier expansion series

An alternative to the Taylor-series method consists in
using a statistical distinction based on the Gram-Charlier
development. Once the centered moments μn,c of a dis-
crete distribution A(E) are known, such a distribution can
be modeled using an analytical function that preserves an
arbitrary number of these moments. It is possible to build
a function using the properties of orthogonal polynomials
and their associated basis functions [16,36–38]. The A-type
Gram-Charlier (GC) expansion series is a combination of
products of Hermite polynomials by a Gaussian function

GCn(E) = exp
(− y2

2

)
√

2πμ2,c[A]

(
1 +

n∑
k=2

ckHek(y)

)
, (36)

with

ck =
int(k/2)∑

j=0

(−1)j

j !(k − 2j )!2j
αk−2j [A], (37)

where y = (E − μ1)/
√

μ2,c, n is the number of moments,
int(k/2) is the integer part of k/2 and the Hermite polynomial
Hek is defined in the preceding Sec. IV A. The GC series
uses the reduced centered moments αn[A] of A(E), which are
defined by

αn[A] = μn,c[A]

(μ2,c[A])n/2
. (38)

The fourth-order GC series reads

GC4(E) = exp
(− y2

2

)
√

2πμ2,c[A]

{
1 − α3

2

(
y − y3

3

)

+ (α4 − 3)

24
(3 − 6y2 + y4)

}
. (39)

The truncated series GCn(E) may be viewed as a Gaussian
function multiplied by a polynomial, which accounts for the
effects of departure from normality. Therefore it may be a
slowly converging series when A(E) differs strongly from
the Gaussian distribution. It is also known to suffer from
numerical instability since Eq. (37) involves a sum of large
terms of alternating sign. Still assuming a Gaussian physical
broadening [see Eq. (30)] of the lines, the moments of the
convolution read

μn,c[A ⊗ �] = 1√
π

n∑
k=0

(
n

k

)
(2v)

n−k
2 	

(
n − k + 1

2

)

×
(

1 + (−1)n−k

2

)
μk,c[A], (40)

where x �→ 	(x) is the usual Gamma function.
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FIG. 15. (Color online) Modeling of a line J = 3 → J ′ = 4 of
transition array Fe VII 3d2 → 3d4p with A-type Gram-Charlier ex-
pansion series of different orders, compared to the exact calculation.
B = 1.5 MG and v = 5 × 10−5 eV2. The sum of three fourth-order
GC functions and the exact calculation are almost superimposed.

1. Global Gram-Charlier expansion series for the total intensity

In that case, A = I = ∑+1
q=−1 Iq and

μn,c[I ] = (μBB)n

3

n∑
i=0

(
n

i

) +1∑
q=−1

(
M[q]

1

)n−iM[q]
i,c . (41)

Figure 15 shows that, for a line J = 3 → J ′ = 4 of
transition array Fe VII 3d2 → 3d4p, the fourth-order A-type
Gram-Charlier distribution GC4(E) of Eq. (39) provides a
satisfactory depiction of the profile. However, when the order
increases, the departure from the exact calculation becomes
larger and larger. This is due to the fact that the reduced
centered moments αn[I ] [see Eq. (38)] do not depend on
B. Therefore, such an approach can be applied only if the
global shape I (E) is close to a Gaussian (i.e., does not have a
nonmonotonic character). This implies that the method is valid
only if μBB <

√
v, so that the π and σ± components are not

too separated. This approach provides a good depiction of the
profile if μBB <

√
v.

2. A-type Gram-Charlier expansion series for each component

In that case, A = Iq and

μn,c[Iq] = M[q]
n,c(μBB)n. (42)

This approach has a wider validity range than the previous
one (see Fig. 16 for the case of a magnetic field equal to
B = 2.5 MG). When the ratio μBB/

√
v becomes larger

than one, the summation of three A-type Gram-Charlier
expansion series brings more flexibility. One can notice on
the wings that the A-type Gram-Charlier expansion series
yield negative values in certain circumstances. However, it
provides a good global depiction of the profile. Figure 17
displays the modeling of each component separately. The σ+
and σ− profiles do not show the oscillations observed with the
TS expansion (see Fig. 14).
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FIG. 16. (Color online) Modeling of a line J = 3 → J ′ = 4
of transition array Fe VII 3d2 → 3d4p with A-type Gram-Charlier
expansion series of different orders, compared to the calculation.
B = 2.5 MG and v = 5 × 10−5 eV2. The sum of three fourth-order
GC functions and the exact calculation are almost superimposed.

V. GLOBAL ACCOUNTING FOR ZEEMAN EFFECT
ON A TRANSITION ARRAY

A. Statistical description

The absorption and emission spectra consist of a huge
number of electric dipolar (E1) lines. A transition array [39]
represents all the E1 lines between two configurations and
is characterized by a line-strength-weighted distribution of
photon energy E

I (E) =
∑

γ J→γ ′J ′,M,M ′,q

Iq(E)

=
∑

γ J→γ ′J ′
SγJ,γ ′J ′�(E − EγJ,γ ′J ′ ). (43)
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FIG. 17. (Color online) Modeling of a line J = 3 → J ′ = 4
of transition array Fe VII 3d2 → 3d4p with A-type Gram-Charlier
expansion series of fourth order for each component. B = 2.5 MG
and v = 5 × 10−5 eV2.
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The sum runs over the upper and lower levels of each line
belonging to the transition array.

In the unresolved transition array (UTA) approach [40], the
discrete set of lines (as δ functions) is replaced by a continuous
function (usually Gaussian), which preserves its first- and
second-order moments. The moments of this distribution are
evaluated as

μn ≈
∑

γ J→γ ′J ′ SγJ,γ ′J ′En
γJ,γ ′J ′∑

γ J→γ ′J ′ SγJ,γ ′J ′
. (44)

It is possible to derive analytical formulas for the mo-
ments μn using Racah’s quantum-mechanical algebra and the
second-quantization techniques of Judd [41]. Such expres-
sions, which depend only on radial integrals, have been pub-
lished by Bauche-Arnoult et al. [40,42–44] for the moments
μn,c (centered moments with respect to μ1) with n � 3 of
several kinds of transition arrays (relativistic or not). Karazija
et al. have proposed an algorithm in order to calculate the
moments of a transition array using diagrammatic techniques
[27–29].

The contribution of the Zeeman effect to the kth-order
moment of a transition array for a polarization q reads [45]

μZ
k =

∑
γ JM,γ ′J ′M ′

Pγ JM→γ ′J ′M ′

× {EγJ,γ ′J ′ + μBB (gγ ′J ′M ′ − gγJ M)}k, (45)

Pγ JM→γ ′J ′M ′ being the probability of a transition from
(J,MJ ) to (J ′,MJ − q) (component). Using the binomial
development, one obtains

μZ
k = μk +

k∑
p=1

(μBB)p
(

k

p

)
μk−pFp, (46)

where

μk =
∑

γ JM,γ ′J ′M ′
Pγ JM→γ ′J ′M ′(Eγ ′J ′ − EγJ )k (47)

and

Fp =
∑

γ JM,γ ′J ′M ′
(gγ ′J ′M ′ − gγJ M)p Pγ JM→γ ′J ′M ′ , (48)

which can be evaluated using the techniques mentioned in the
preceding Secs. III and IV.

The complexity of such a calculation encouraged us to de-
velop an alternative approximate method. Suppose one wants
to include the effect of a magnetic field in a numerical code
devoted to the computation of opacity or emissivity, without
performing the diagonalization of the Zeeman Hamiltonian.
The numerical code can be either based on a detailed (see
Secs. II–IV) or a statistical description (relying on the UTA
formalism as mentioned above). The main contribution comes
from the splitting of the line into three components. Indeed, if
one considers three components with zero width positioned at
EγJ,γ ′J ′ − μBB, EγJ,γ ′J ′ , and EγJ,γ ′J ′ + μBB (each having
the same strength SγJ,γ ′J ′ ), the variance is equal to

SγJ,γ ′J ′
3 (EγJ,γ ′J ′ − μBB − EγJ,γ ′J ′ )2 + SγJ,γ ′J ′

3 (EγJ,γ ′J ′ − EγJ,γ ′J ′ )2 + SγJ,γ ′J ′
3 (EγJ,γ ′J ′ + μBB − EγJ,γ ′J ′ )2

SγJ,γ ′J ′
(49)

which is equal to 2/3 (μBB)2 ≈ 3.35 × 10−5 [B(MG)]2.
The broadening of each q component separately due to the

magnetic field [which is larger for a π than for a σ component
as a consequence of Eqs. (26) and (27)] is always much smaller
than 2/3 (μBB)2 (by at least one order of magnitude). Thus,
the contribution of a magnetic field to an UTA can be taken
into account roughly by adding a contribution 2/3 (μBB)2 to
the statistical variance. In case of a detailed transition array,
the Zeeman broadening of a line can be represented by a
fourth-order A-type Gram-Charlier expansion series Eq. (39),
i.e.,

�Z(E − EγJ,γ ′J ′ )

=
1∑

q=−1

exp
(−y2

q

2

)
μBB

√
2πM[q]

2,c

{
1 − α

[q]
3

2

(
yq − y3

q

3

)

+
(
α

[q]
4 − 3

)
24

(
3 − 6y2

q + y4
q

)}
, (50)

where

yq = E − EγJ,γ ′J ′ − qgeμBB

μBB

√
M[q]

2,c

. (51)

The coefficient ge of the line γ J → γ ′J ′ is given by

ge = 1
4 {2(gγJ + gγ ′J ′ )

+ (gγJ − gγ ′J ′ )(J − J ′)(J + J ′ + 1)}, (52)

where gγJ and gγ ′J ′ are the Landé factors of levels γ J and
γ ′J ′ respectively [46–48].

B. Approximation of the coefficient ge

If the values of gγJ and gγ ′J ′ are unknown, we suggest to
replace ge by its average value in LS coupling ḡe. Knowing
the distribution of spectroscopic terms Q(S,L) [11,49], it is
possible to get a quick estimate of ḡe. Indeed, the equality

∑
γ (SL)J

XSLJ =
∑
S,L

Q(S,L)XSLJ , (53)

where XSLJ is any quantity depending on S, L, and J , enables
one to deal with the coupling of angular momenta L and
S avoiding the use of coefficients of fractional parentage.
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One has

ḡe =
∑
S,L,J

∑
L′,J ′

Q(S,L′) ge(S,L,J,L′,J ′) ε(L,L′,J,J ′),

(54)

where ε(L,L′,J,J ′) stands for the selection rules: L′ = L,L −
1 or L + 1 avoiding L′ = L = 0 and J ′ = J,J − 1 or J + 1
avoiding J ′ = J = 0. One has

ge(S,L,J,L′,J ′) = 1
4 {2(gSLJ + gSL′J ′ )

+ (gSLJ − gSL′J ′ )(J − J ′)(J + J ′ + 1)},
(55)

where the Landé factors are estimated in LS coupling

gSLJ = 1 + (gs − 1)(J̄ + S̄ − L̄)

2J̄

= gs + 1

2
+ (gs − 1)(S̄ − L̄)

2J̄
(56)

with the convention of Biedenharn et al. [22], x̄ = x(x + 1).
The quantity gs represents the anomalous gyromagnetic ratio
defined in Sec. I. Assuming gs ≈ 2, one has

gSLJ = 3

2
+ (S̄ − L̄)

2J̄
. (57)

Table VIII contains values of the Landé factor calculated in
LS coupling using Eq. (57) as well as ge(S,L,J,L′,J ′) factor
for different lines.

The problem of listing the terms arising in a complex
configuration can be solved from elementary group theory
[50–54]. The number Q(S,L) of LS terms of a configuration
�N can be obtained from the relation

Q(S,L) =
S+1∑

MS=S

L+1∑
ML=L

(−1)S−MS+L−MLPN (MS,ML), (58)

where PN (a,b), number of states with a given MS = a and
ML = b, can be obtained using recursive formulas [11]

PN (MS,ML) = 1

N

G∑
i=1

N∑
k=1

(−1)k+1

×PN−k

(
MS − k

(−1)i

2
; ML − kmi + (−1)i

2

)
,

(59)

where G = ∑N
i=1 Gi , Gi being the degeneracy of orbital i. For

the nonrelativistic configuration �N

mk = 2k − 4� − 3 + (−1)k

4
; 1 � k � 4� + 2, (60)

TABLE VIII. Landé factors for several lines evaluated from
formula (57).

Line gSLJ gSL′J ′ ge(S,L,J,L′,J ′)

5F1 → 5F2 0 1 1.5
7D1 → 7D2 3 2 1.5
4D3/2 → 4D5/2 1.2 1.371 1.417
5P2 → 5P3 1.833 1.667 1.5
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FIG. 18. (Color online) Effect of a 15 MG magnetic field on
transition array Fe VII 3d2 → 3d4p with a convolution width of
0.017 eV. The curves corresponding to the exact (B = 15 MG) and
statistical calculation are almost superimposed.

and for the relativistic configuration jN

mk = k − j + 1; 1 � k � 2j + 1. (61)

The recurrence (59) is initialized with

P0(MS,ML) = δ(MS)δ(ML). (62)

For a configuration �
N1
1 �

N2
2 �

N3
3 . . . , P (MS,ML) is deter-

mined through the relation

PN1,N2,...(MS,ML) = (
PN1 ⊗ PN2 ⊗ · · · ) (MS,ML), (63)

where the distributions are convolved two at a time, which
means

(
PNi

⊗ PNj

)
(MS,ML) =

+∞∑
M ′

S=−∞

+∞∑
M ′

L=−∞
PNi

(M ′
S,M

′
L)

×PNj
(MS − M ′

S,ML − M ′
L). (64)

Thus, in order to take into account approximately the impact
of the magnetic field when the number of lines is large, we
suggest to convolve the transition array in the absence of a
magnetic field with the distribution of Eq. (50). Figures 18–20
(example taken from McLean [55,56]) show that the results are
quite close to the exact calculation. The main approximation
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FIG. 19. (Color online) Detail of Fig. 18.
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FIG. 20. (Color online) Effect of a 1-MG magnetic field on
C V 1s2s3S → 1s2p3P triplet transition with a convolution width
of 0.005 eV.

here comes from the fact that ge is replaced by its average
value in LS coupling, which is justified in case of very strong
magnetic fields (Paschen-Back effect). Table IX displays the
energies and Landé factors of the levels of configurations 1s2s

and 1s2p in intermediate coupling and Table X indicates the
oscillator strength multiplied by the degeneracy gγJ fγJ,γ ′J ′ of
the six lines.

If needed, the evaluation of ḡe can be refined. For
instance, it is possible to calculate an average value of gγJ

depending only on J . This can be achieved using the sum rule
[57]∑

γ

gγJ =
∑
αLS

gLSJ

∑
γ J

〈γ J |αLSJ 〉2 =
∑
αLS

gLSJ , (65)

which states that the sum of the Landé factors for any given
J is independent of the coupling conditions. Such a property
stems from the fact that the trace of a matrix is invariant under
an orthogonal transformation. One can thus define an average
Landé factor associated to a given value of J

ḡJ =
∑

γ gγJ

Q(J )
=

∑
αLS gLSJ

Q(J )
, (66)

where Q(J ) is the number of levels having angular momentum
J [49,58], which can be evaluated recursively [11], in a similar
manner to Q(S,L) [see Eq. (58)].

TABLE IX. Energy (relative to the energy of 1s2) and Landé
factor of the different levels of configurations 1s2s and 1s2p.

Level number J Energy (eV) Landé (IC) Configuration

1 0 303.990 67 1.500 000 000 1s2s

2 1 297.888 24 2.002 320 051 1s2s

3 0 303.592 04 1.500 000 000 1s2p

4 1 303.590 57 1.501 152 782 1s2p

5 1 307.612 42 1.000 007 244 1s2p

6 2 303.606 07 1.501 160 026 1s2p

TABLE X. E1 lines in the transition array 1s2s → 1s2p in
intermediate coupling.

Initial level Final level gγJ fγJ,γ ′J ′

4 1 1.569 36 10−7

1 5 9.473 01 10−2

2 3 3.992 78 10−2

2 4 0.119 69
2 5 3.803 06 10−6

2 6 0.200 16

VI. HYPERFINE STRUCTURE

The same methodology can be applied in order to determine
analytically the moments of the hyperfine components of a line.
The hyperfine operator in the subspace corresponding to the
relevant nucleus and atomic level reads

Hm = AJ ( �I . �J ), (67)

where AJ is the magnetic hyperfine-structure constant of the
level γ J . The nth-order moment of the hyperfine components
is provided by the expression

Mn = 1

SFF ′MM ′

∑
F,F ′,M,M ′

[〈γ J IFM|Hm|γ J IFM〉

− 〈γ ′J ′IF ′M ′|Hm|γ ′J ′IF ′M ′〉]n
×〈γ J IFM|Z (1)

q |γ J IFM〉2, (68)

where Z (1)
q is the q component of the dipole operator Z (1). The

J -file sum rule [58] enables one to simplify the expression of
the strength

SFF ′MM ′ =
∑

F,F ′,M,M ′
〈γ J IFM|Z (1)

q |γ J IFM〉2

=
∑

F,F ′,M,M ′

(
F 1 F ′

−M q M ′

)2

〈F ||Z (1)||F ′〉2

= 1

3

∑
F,F ′

〈F ||Z (1)||F 〉2 = 1

3

∑
F

[F ] = 1

3
[I,J ], (69)

and therefore

Mn = 1

2n[I,J ]

∑
F,F ′

(AJ XFIJ − AJ ′XF ′IJ ′)n〈F ||Z (1)||F ′〉2,

(70)

where XFIJ = (−1)F (F̄ − Ī − J̄ ). Equation (70) can be
written

Mn = 1

2n[I,J ]

∑
F,F ′

[F,F ′](AJ XFIJ − AJ ′XF ′IJ ′ )n

×〈(IJ )F ||Z (1)||(IJ )F ′〉2, (71)
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or

Mn = 1

2n[I ]

∑
F,F ′

[F,F ′](AJ XFIJ − AJ ′XF ′IJ ′)n

×
{

F 1 F ′
J ′ I J

}2

. (72)

In the case where F or F ′ is equal to 0, the calculation is
very simple [59]. In the general case, using

XFIJ = 2(−1)F+I+J
√

Ī J̄ [I,J ]

{
F J I

1 I J

}
, (73)

one has to calculate∑
F,F ′

(−1)k1F+k2F
′
[F,F ′]

{
F J I

1 I J

}k1

×
{

F ′ J ′ I

1 I J ′

}k2
{

F 1 F ′
J ′ I J

}2

, (74)

which can be done using graphical methods [17]. Another
approach consists in adopting another point of view, leading
to the evaluation of quantities of the type

Sn =
∑
F

[F ](F̄ − a)n (75)

where a is a constant (depending on other quantum numbers).
Such a quantity can be expressed, as for the Zeeman effect, in
terms of Bernoulli numbers (see Appendix B)

Sn =
n∑

k=0

k∑
j=0

(
n

k

) (
k

j

)
an−k

× ({2[Bk+j+2(I + J + 1) − Bk+j+2]

+Bk+j+1(I + J + 1) − Bk+j+1}/(I + J + 1)

+{2[Bk+j+2(|I − J | + 1) − Bk+j+2]

+Bk+j+1(|I − J | + 1) − Bk+j+1}/(|I − J | + 1)). (76)

The splitting of F components in a weak magnetic field [60]
is in every way similar to the splitting of J levels. The scale of
the splitting is determined by the factor gF , which is defined
by

〈γ J IFM|Hz|γ J IFM|〉 = μBBgγJ

F̄ + J̄ − Ī

2F̄
M, (77)

and connected with the Landé factor by

gF = gγJ

F̄ + J̄ − Ī

2F̄
. (78)

VII. CONCLUSION

In this work, a statistical modeling of electric dipolar lines
in the presence of an intense magnetic field was proposed. The
formalism requires the moments of the Zeeman components
of a line γ J → γ ′J ′, which can be obtained analytically
in terms of the quantum numbers and Landé factors. It was
found that the fourth-order A-type Gram-Charlier expansion
series provides better results than the usual development in
powers of the magnetic field often used in radiative-transfer
models. Using our recently published recursive method for the
numbering of LS terms of an arbitrary configuration, a simple
approach to estimate the contribution of a magnetic field to the
width (and higher-order moments) of a transition array of E1
lines was presented. We hope that such results will be useful for
the interpretation of Z-pinch absorption or emission spectra,
for the study of laser-induced magnetic fields in inertial-fusion
studies, for the modeling of magnetized stars, as well as for any
application involving magnetic fields in spectroscopic studies
of atomic and molecular systems.
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APPENDIX A: EXPRESSIONS INVOLVING THREE- J M AND SIX- J SYMBOLS USED IN SECTIONS III AND IV

[a,b,c, . . .] = (2a + 1)(2b + 1)(2c + 1) · · · (A1){
x̄ = x(x + 1)

h = J̄ − J̄ ′ + 2
(A2)

∑
M,M ′

(−1)J−M

(
J 1 J ′

−M −q M ′

) (
J ′ 1 J

−M ′ q M

)(
J 1 J

−M 0 M

)
= (−1)J+J ′−q

(
1 1 1

−q 0 q

){
J ′ J 1

1 1 J

}
. (A3)

∑
M,M ′

(
J 1 J

−M 0 M

)(
J 1 J ′

−M −q M ′

)(
J ′ 1 J

−M ′ q M

) (
J 1 J

−M 0 M

)

=
∑
J ′′

(−1)J+J ′+1+J ′′
[J ′′]

(
1 J ′′ 1

0 0 0

) (
1 J ′′ 1

−q 0 q

) {
J J 1

J ′′ 1 J

} {
J ′ J 1

J ′′ 1 J

}
. (A4)

(
1 1 1

−q 0 q

)
= (−1)q+1 q√

6
. (A5)
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(
1 J ′′ 1

0 0 0

)
= (−1)J

′′
(J ′′ − 1)(J ′′ + 2)√

(2 − J ′′)!(J ′′ + 3)!
. (A6)

{
J ′ J 1

0 1 J

}
= (−1)J+J ′+1

√
3[J ]

. (A7)

{
J ′ J 1

1 1 J

}
= (−1)J+J ′ h

2
√

6[J ]J̄
. (A8)

{
J ′ J 1

2 1 J

}
= (−1)J+J ′+1 3 h(h − 1) − 8J̄√

120[J ](2J − 1)(2J + 3)J̄
. (A9)

(
J 1 J

−M 0 M

)
= (−1)J−M M√

[J ]J̄
. (A10)

APPENDIX B: BERNOULLI POLYNOMIALS
AND NUMBERS

The Bernoulli polynomials can be obtained by successive
derivation of a generating function

Bn(x) = ∂n

∂tn

(
t exp(xt)

exp(t) − 1

)∣∣∣∣
t=0

. (B1)

One can write

Bn(x) =
n∑

k=0

(
n

k

)
Bk(0) xn−k, (B2)

where Bn(0) is the n-order Bernoulli number, which is nonzero
only if n is even and which can be obtained from the relation

Bn(0) = − 1

n + 1

n−1∑
k=0

(
n

k

)
Bk(0). (B3)

The first Bernoulli polynomials are

B0(x) = 1, (B4)

B1(x) = x − 1
2 , (B5)

B2(x) = x2 − x + 1
6 , (B6)

B3(x) = (x − 1)
(
x − 1

2

)
x, (B7)

and

B4(x) = x4 − 2x3 + x2 − 1
30 . (B8)

The Bernoulli polynomials obey the following identity

n∑
k=1

kp = Bp+1(n + 1) − Bp+1(0)

p + 1
, (B9)

and the Bernoulli numbers have the explicit Laplace’s
determinant formula [61]

Bn(0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 1
1
2! 1 0 0
...

. . .
...

1
n!

1
(n−1)! 1 0

1
(n+1)!

1
n! · · · 1

2! 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (B10)

APPENDIX C: DIAGNOSTIC OF THE MAGNETIC FIELD

Using second-order TS expansion (35) and assuming
the knowledge of the variance v of the other broadening
mechanisms, it becomes possible to estimate the magnitude
of the magnetic field from the measurement of the full width
at half maximum (FWHM) of the line δ = FWHM/(2

√
v).

B = 1

μB

√
v(1 − 2e−δ2/2)

C(θ )[1 − 2e−δ2/2(1 − δ2)]
, (C1)

where

C(θ ) = A(θ )
(
M[σ+]

1

)2 + M[σ+]
2,c + D(θ )M[π]

2,c , (C2)

with

A(θ ) =
(

1 + cos2(θ )

4

)
(C3)

and

D(θ ) = sin2(θ )

4
. (C4)

This simple formula (C1) can provide an estimation of
the magnetic field, even if the other broadening mechanisms
(Stark, electron collisions, Doppler, autoionization) are domi-
nant. However, it is not as efficient as the method proposed by
Stambulchik et al. [62], which is applicable in situations where
the magnetic field has various directions and amplitudes (or if
they vary in time).
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[48] É. Biémont, P. Palmeri, and P. Quinet, J. Phys. B 43, 074010
(2010).

[49] J. Bauche and C. Bauche-Arnoult, J. Phys. B 20, 1659 (1987).
[50] G. Breit, Phys. Rev. 28, 334 (1926).
[51] R. F. Curl Jr. and J. E. Kilpatrick, Am. J. Phys. 28, 357 (1960).
[52] N. Karayianis, J. Math. Phys. 6, 1204 (1965).
[53] J. Katriel and A. Novoselsky, J. Phys. A 22, 1245 (1989).
[54] R. Xu and Z. Dai, J. Phys. B 39, 3221 (2006).
[55] E. A. McLean, J. A. Stamper, C. K. Manka, H. R. Griem, D. W.

Droemer, and B. H. Ripin, Phys. Fluids 27, 1327 (1984).
[56] H. R. Griem, Principles of Plasma Spectroscopy (Cambridge

University Press, Cambridge, 1997).
[57] R. D. Cowan, The Theory of Atomic Structure and Spectra

(University of California Press, Berkeley, 1981).
[58] E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra

(Cambridge University Press, Cambridge, 1935).
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