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The total cross sections for single-charge transfer in H + H, He+ + H, He+ + He+, and Li2+ + H collisions have
been calculated in the framework of four-body (4B) formalism of boundary corrected continuum intermediate state
(BCCIS) approximation in the energy range 20–5000 keV/amu. The dynamic electron correlation is explicitly
taken into account through the complete perturbation potentials. In the initial channel, the passive electron plays
the role of screening of the projectile ion. However, continuum states of the target ion and the electron in the
field of the residual projectile ion are included. In all cases, total single-electron capture cross sections have
been calculated by summing over all contributions up to n = 2 shells and subshells, respectively, except the H-H
collision. The present computed results, both in prior and post forms of BCCIS-4B method for symmetric and
asymmetric cases have been compared with the available theoretical and experimental results. We found that
our computed results, particularly in the prior form, are in better agreement with the experimental observations
in comparison to other theoretical findings. Post-prior discrepancy has been found to be within 20% above
70 keV/amu for all interactions.
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I. INTRODUCTION

In recent years much work has been devoted to the study
of single-electron capture by multicharged ions interacting
with few-electron atoms. When many active electrons are
involved in high energy ion-atom collisions, one has to face
the question of the influence of electronic correlations on
the magnitude of cross section for the process. The study
of interelectronic correlation has played a central role in
atomic collision physics for a long time [1]. Not only is this
research motivated by the quest for a better understanding of
the fundamental few-body dynamics, but it has also practical
implications for applied field, such as plasma physics and
fusion research. For a long time, theoretical and experimental
efforts concentrated on the energy dependence of total cross
sections (TCSs) for a single-electron transfer from single-
electron target atoms or ions colliding with hydrogenlike
projectiles. In this respect, previous theoretical work consists
of calculations in the framework of three-body (3B) formalism
such as the continuum distorted wave (CDW-3B) approxima-
tion of Belkic [2], coupled-channel calculations of Ford et al.
[3], Oppenheimer-Brinkman-Kramers (OBK) approximation
[4,5], classical trajectory Monte Carlo (CTMC) method [6,7],
CDW-3B and continuum intermediate state (CIS) approxi-
mations [8] and the two-center atomic-orbital close-coupling
method of Liu et al. [9]. Some of these three-body models
show a satisfactory agreement with experimental data, but
these models completely neglect electronic correlations. In the
present paper we shall be particularly interested in processes
of the single-electron capture, in which the two electrons
take part. Such processes involve scattering between the two
hydrogenlike atoms. However, different quantum-mechanical
four-body formalisms for such reactions have been proposed.
Different four-body theories such as the boundary corrected
first Born approximation (CB1-4B) of Mancev [10,11], the
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CIS approximation of Banyard and Shirtcliffe [12], the CTMC
method of Becker and MacKellar [13], the atomic-orbital
expansion method of Fritsch and Lin [14], the time-dependent
Hartree-Fock approximation (TDHF) of Henne et al. [15],
the CDW-4B method [16,17], and the CDW-4B and CB1-4B
methods of Mancev [18,19]. In the present theoretical inves-
tigation, we have focused our attention on charge transfer
of hydrogenlike ions or atoms by the impact of H, He+,
and Li2+ ions in the incident energy range between 20 and
5000 keV/amu.

The total and partial single-electron capture cross sec-
tions in the He+-He+ collision has been studied within the
two-electron form of the atomic-orbital expansion method
[14]. The calculated results are in very close agreement
with experimental data at lower energies. Cross sections
for single-electron capture in the collision of partially and
completely stripped projectile ions with hydrogenlike atoms
were calculated by Belkic [2] in the framework of three-body
CDW approximation at incident energies ranging from 25 keV
to 10 MeV. In this method, the dynamic correlations have been
neglected. The calculation shows that in the low-energy range,
the computed results are not in satisfactory agreement. The
problem of single-charge exchange in collision of hydrogen-
like atoms with ground-state hydrogenlike atoms or ions was
investigated by Mancev [10] in the framework of CB1-4B
theory within the distorted wave four-body formalism. In such
investigation, they have studied the sensitivity of the total
cross sections to the choice of ground-state wave function for
heliumlike atoms and the influence of noncaptured electrons
on the final results. However, the agreements of the obtained
results with the experimental findings are not satisfactory
in the low-energy range. Mancev [11] also investigated the
cross sections for single-electron transfer from helium atoms
by the impact of hydrogen atoms and helium ions using the
same method. They have used an independent particle model
with a one-electron Roothan-Hartree-Fock (RHF) orbital for
the target atom. Agreement of the obtained results with
the experimental data for the He+ + He collision is not
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satisfactory in the whole energy range. Becker and Mackellar
[13] have developed a general four-body version of CTMC
and calculated the electron transfer and ionization for He+ +
H and H + H collisions in the energy range 35–1000 keV,
but there are substantial differences compared with the
experimental results. The CDW-4B model [18] has been
used to investigate the charge exchange between hydrogenlike
projectiles and atoms. In this calculation, the effects of electron
correlation have been explicitly taken into account in the
complete perturbation potential. The calculation shows that
below 200 keV/amu for the He+ + He collision and 150 keV
for the He+ + H collision, respectively, the computed
results are not in satisfactory agreement. Later, Mancev
[19] investigated the total cross sections for change transfer
in Li2+-H and He+-He+ collisions using the CB1-4B and
CDW-4B methods in the energy range 10–5000 keV/amu.
In this calculation, the dynamic correlation has been taken
into account through the perturbation potential. The computed
results are not in agreement with the experimental results
in the energy range 10–300 keV/amu. Recently, electron
capture by fast Beq+ (q = 2,3) and Bq+ (q = 3,4) ions in
collisions with atomic hydrogen have been also studied by Liu
et al. [9] in the framework of the the two-center atomic-orbital
close coupling method (TC-AOCC) in the energy region
from 0.1 to 100 keV/amu. Total and subshell state-selective
cross sections are compared with available experimental and
other theoretical data. These results are quite satisfactory. In
this context, Belkic et al. [20] have extensively discussed
different quantum mechanical four-body (4B) methods for
various inelastic ion-atom collisions. Based on the success
of four-body boundary corrected continuum intermediate state
(BCCIS-4B) approximation [21], we are motivated to study the
above-mentioned processes in the framework of the BCCIS-4B
theory at impact energies of 20–5000 keV/amu.

The plan of this paper is as follows. We present the details of
our calculations in Sec. II and discuss our computed results in
Sec. III. Finally, we make our concluding remarks in Sec. IV.
Atomic units will be used throughout unless otherwise stated.

II. THEORY

Single-electron capture in the process of the scattering
between two hydrogenlike atomic systems may be written as

(ZP ; e1)i1 + (ZT , e2)i2 → (ZP ; e1,e2)f + ZT , (1)

where Zp and ZT are, respectively, the nuclear charges of the
projectile and the target. Here e, T , and P represent active
electron, target ion, and projectile ion, respectively. e1 and e2

are the two electrons initially bound to the projectile and target
nucleus, respectively. Finally the electron e2 is captured by
the projectile but e1 occupies the same orbital before and after
collision. Let �s1 and �s2 (�x1 and �x2) be position vectors of the first
and second electrons (e1 and e2) relative to the nuclear charge
of the projectile Zp (target ZT ). The interelectronic coordinate
is denoted by �r12 = �s1 − �s2 = �x1 − �x2. �R denotes the position
vector of the projectile (P ) relative to the target (T ) nucleus.
In the entrance channel, it is convenient to introduce �RT as
the position vector between the center of mass of (ZP ; e1)
and (ZT ; e2) system, and �RP is the position vector of the
center of mass of (ZP ; e1,e2) system relative to ZT . The total

Hamiltonian of the system may be written as

H = Hi + Vi = Hf + Vf , (2)

where Hi,f represents the Hamiltonian in the entrance and
exit channels, respectively, and Vi,f are the corresponding
perturbation potentials, respectively. Let MT (Mp) be the mass
of the target (projectile) nucleus. In the initial channel, one may
write

Hi = − 1

2μi

∇2
RT

+ (ZP − 1)(ZT − 1)

RT

− 1

2a
∇2

x2

− ZT

x2
− 1

2b
∇2

s1
− Zp

s1
, (3)

Vi = ZP ZT

R
− ZT

x1
− ZP

s2
+ 1

r12
− (ZP − 1)(ZT − 1)

RT

,

≈ ZT

(
1

R
− 1

x1

)
+ ZP

(
1

R
− 1

s2

)
+

(
1

r12
− 1

R

)
.

When the aggregates P and T are far apart, they interact
through a residual Coulomb potential (ZP −1)(ZT −1)

RT
. According

to the prescriptions of collision theory [22], this asymptotic
potential has to appear in the initial channel Hamiltonian (Hi).
However, the initial perturbation potential Vi is obtained by
subtracting the asymptotic potential from the total interaction
potential between projectile and target. So, in the initial
channel Vi decreases much faster than the Coulomb interaction
at large internuclear distance ( �R). In the exit channel, the target
is a bare ion. Thus, Hf and Vf can be written as

Hf = − 1

2μf

∇2
Rp

+ ZT (ZP − 2)

RP

− 1

2b
∇2

s1

− 1

2b
∇2

s2
− Zp

s1
− Zp

s2
+ 1

r12
,

Vf = ZP ZT

R
− ZT

x1
− ZT

x2
− ZT (ZP − 2)

RP

≈ 2ZT

R
− ZT

x1
− ZT

x2
, (4)

where

μi = (1 + MP )(MT + 1)

(2 + MP + MT )
, μf = MT (2 + MP )

(2 + MP + MT )
,

a = MT

1 + MT

, b = MP

1 + MP

.

The prior form of the scattering amplitude may be written
in the form

T
(−)
if = 〈ψ−

f |Vi |ψi〉. (5)

Here the wave function in the initial channel is given by

ψi( �RT ,�x2,�s1) = φT (�x2)φP (�s1)χ+
i ( �RT ),

where φT (�x2) and φP (�s1) are the target bound state and the
projectile bound state wave functions, respectively. χ+

i ( �RT )
is the Coulomb distorted wave for the relative motion of P

and T in the center-of-mass frame of the whole system which
satisfies the equation[

− 1

2μi

∇2
RT

+ (ZP − 1)(ZT − 1)

RT

− k2
f

2μi

]
χ+

i ( �RT ) = 0. (6)
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Solving this equation, we find

χ+
i ( �RT ) = e− π

2 α3�(1 + iα3)ei �ki · �RT

× 1F1{−iα3; 1; i(kiRT − �ki · �RT )}, (7)

where α3 = (ZP −1)(ZT −1)
vi

. Furthermore,
⇀

ki is the initial wave
vector. The electron in the projectile is passive. The passive
electron plays the role of screening the projectile ion. However,
the interaction of the target ion with the screened projectile ion
and that between the active electron and the projectile core are
described by the Coulomb continuum wave functions in the
final channel. The Coulomb continuum wave function in the
final channel ψ

(−)
f is given by

ψ
(−)
f = e

π
2 (α1−α2)�(1 + i α1)�(1 − i α2)

× ei �kf · �Rpφf (�s1,�s2) 1F1{−iα1; 1; −i(vf x2 + �vf · �x2)}
× 1F1{i α2; 1; −i(kf RT + �kf · �RT )}, (8)

where

α1 = ZT

vf

, α2 = ZT (ZP − 1)

vf

.

Here φf (�s1,�s2) is the bound-state wave function of the
atomic system (Zp; e1, e2). The bound-state wave function
of Li+ or He, i.e., φf (�s1,�s2), may be written as [23] a set of
two-electron hydrogenic configurations φλ,λ′(�s1,�s2).

ϕλ,λ′ (�s1,�s2) =
∑
λ�λ′

a
f

λλ′ ϕ
f

λλ′(�s1,�s2),

where φ
f

λλ′ is a configuration with the same symmetry as φf .

φ
f

λλ′(�s1,�s2) = Nf {Rnλlλ (s1)Rnλ′ lλ′ (s2)YLM
lλlλ′ (

�

s1,
�

s2)

+ (−1)δRnλ′ lλ′ (s1)Rnλlλ(s2)YLM
lλ′ lλ (

�

s1,
�

s2)} . (9)

Here the constant

Nf = 1√
2

for λ 
= λ′

= 1 + (−1)L+S

4
for λ = λ′ and δ = L+ S − lλ − lλ′ .

ŝk(k = 1,2) is the direction of the vector �sk; Rnλlλ (sk) and
YLM

lλlλ′ (
�

s1,
�

s2) are radial hydrogenic function and spherical
harmonics, respectively.

The transition amplitude in the post form can be written as

T
(+)
if = 〈ψf |Vf |ψ+

i 〉, (10)

where ψf is the wave function in the final channel which is
given by ψf = φf (�s1,�s2)χ−

f ( �RP ). φf (�s1,�s2) is the final bound-

state wave function and χ−
f ( �RP ), the Coulomb distorted wave

in the exit channel, is given by

χ−
f ( �RP ) = e− π

2 α3�(1 − iα3)ei �kf · �Rp

× 1F1{iα3; 1; − i(kf RP + �kf · �RP )}, (11)

where α3 = ZT (ZP −2)
vf

. �kf is the final wave vector. Here, the
passive electron in the projectile plays the role of screening the
projectile ion in the initial channel. However, the interaction
of the active electron and the target ion with the screened
projectile ion are described by the Coulomb continuum wave
functions. So, the wave function in the initial channel may be
given by

ψ+
i = e

π
2 (α1−α2)�(1−iα1)�(1+iα2)ei �ki . �RT φi(�x2,�s1)

× 1F1{iα1; 1; i (vis2 + �vi · �s2)}
× 1F1{−iα2; 1; ia(kiRP − �ki · �RP )}, (12)

where α1 = (ZP −1)
vi

, α2 = ZT (ZP −1)
vi

.
Here φi(�x2,�s1) = φT (�x2)φp(�s1). φT (�x2) and φp(�s1) are the

hydrogenlike wave functions for the target and the projectile,
respectively. The transition amplitudes in the prior and post
forms for single-electron capture in the BCCIS-4B theory may
be written as

T
BCCIS(−)
if = N

∫ ∫ ∫
d �s1d �x2d �Rei�ki · �RT −i�kf · �Rpϕ∗

f (�s1,�s2)1F1{iα1; 1; i(vf x2 + �vf · �x2)}1F1{−iα2; 1; i(kf RT + �kf · �RT )}

×
{
ZT

(
1

R
− 1

x1

)
+ ZP

(
1

R
− 1

s2

)
+

(
1

r12
− 1

R

)}
ϕi(�x2,�s1)1F1{−iα3; 1; i(kiRT − �ki · �RT )}, (13)

where

N = e
π
2 (α1−α2−α3)�(1 − iα1)�(1 + iα2)�(1 + iα3), α1 = ZT

vf

, α2 = ZT (ZP − 1)

vf

, and α3 = (ZP − 1)(ZT − 1)

vi

,

and

T
BCCIS(+)
if = N

∫ ∫ ∫
d �s1d �s2d �Rei�ki . �RT −i�kf . �Rpϕ∗

f (�s1,�s2) 1F1{−iα3; 1; i(kf R + �kf · �R)}
(

2ZT

R
− ZT

x1
− ZT

x2

)
ϕi(�x2,�s1)

× 1F1{iα1; 1; i(vis2 + �vi.�s2)} 1F1{−iα2; 1; ia(kiRP − �ki · �RP )}, (14)

where

N = e
π
2 (α1−α2−α3)�(1 − iα1)�(1 + iα2)�(1 + iα3), α1 = (ZP − 1)

vi

, α2 = ZT (ZP − 1)

vi

,
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and

α3 = ZT (ZP − 2)

vf

.

Using the integral representation of confluent hypergeometric function, the technique of Fourier transform, a Feynman
parametric integral such as 1

a′b′ = ∫ 1
0

dx
[a′x+(1−x)b′]2 , and applying the Lewis integral [24], respectively, Eqs. (13) and (14) can be

expressed in both prior and post forms as

T
BCCIS(±)
if = 32C ′ N

1

2πi

∮
dt3t

−i α3−1
3 (t3 − 1)i α3 lim

β1, ε1→0
D(β1,δ2,γ1,γ2,ε1)

∫ 1

0

dx

�

∫ ∞

0
dyK, (15)

where

K = − 1

A

(
A

A + B

)iα1
(

A

A + D

)−iα2

2F1

{
iα1; −iα2; 1;

P

Q

}
, P = BD − AC, Q = (A + B)(A + D),

�2 =
{ �kf

2 + Mp

− (1 − b)�ki

}2

x(1 − x) + λ2
1x + (1 − x)β2

1 ,

λ1 = γ ′
1 + γ1 for the prior form and

�2 =
{ �kf

2 + Mp

−
�ki

1 + MT

}2

x(1 − x) + λ2
1x + (1 − x)β2

1 for the post form.

Here A, B, C, and D in prior form (–) and post form ( + ) are given by

A± = A±
1 y2 + 2y(β±A±

1 + A±
22 + A±

23) + A±
3 , B± = B±

1 y2 + 2y(β±B±
1 + B±

22 + B±
23) + B±

3 ,

C± = C±
1 y2 + 2y(β±C±

1 + C±
22 + C±

23) + C±
3 , D± = D±

1 y2 + 2y(β±D±
1 + D±

22 + D±
23) + D±

3 ,

where in prior form, β− = γ2,

A−
1 = q2

− + (δ2 + � + ε1)2 − 2�q− · �vf t1 − 2i vf t1(δ2 + � + ε1),

B−
1 = −2�q− · �kf + 2�vf · �kf t1 − 2iki(δ2 + � + ε1) − 2vf kf t1, C−

1 = 2�q− · �ki − 2�vf · �kit1 − 2iki(δ2 + � + ε1) − 2vf ki t1,

D−
1 = −2kikf − 2�ki · �kf , A−

22 = β−
2

{
q2

− + (� + ε1)2 + γ 2
2

}
, B−

22 = −2β−
2 {�q− · �kf + ikf (� + ε1)},

C−
22 = 2β−

2 {�q− · �ki − iki(� + ε1)}, D−
22 = −2β−

2 (kikf + �ki · �kf ),

A−
23 = (� + ε1)P −

23, B−
23 = −ikf P −

23, C−
23 = −ikiP

−
23, D23 = 0,

A−
3 = E−

11{q2
− + (� + ε1 + γ2)2}, B−

3 = −E−
11{2�q− · �kf + 2ikf (� + ε1 + γ2)},

C−
3 = E−

11{2�q− · �kf − 2iki(� + ε1 + γ2)}, D−
3 = −2E−

11{�ki · �kf + kikf }.
The terms �q−, β−

2 , P −
23 and E−

11 can be explicitly written as

�q− = �kf

(
1 − x

2 + MT

)
− (1 + bx − x)�ki, β−

2 = δ2 − ivf t1,

P −
23 =

{ �kf

2 + MP

+ (1 − a)�ki

}2

+ δ2
2 + γ 2

2 − 2�vf ·
{ �kf

2 + MP

+ (1 − a)�ki

}
t1 − 2i vf δ2 t1,

E−
11 = P −

23 + 2δ2γ2 − 2ivf γ2t1,

and in post form, β+ = δ2,

A+
1 = q2

+ + (γ2 + � + ε1)2 + 2�q+ · �vit1 − 2ivi(γ2 + � + ε1)t1, B+
1 = 2�q+ · �ki − 2iki(γ2 + � + ε1),

C+
1 = −2�q+ · �kf − 2�vi · �kf t1 − 2ikf (γ2 + � + ε1) − 2vikf t1, D+

1 = −2�ki · �kf − 2kikf ,

A+
22 = λ+

2 {q2
+ + (� + ε1)2 + δ2

2}, B+
22 = λ+

2 {�q+ · �ki − 2iki(� + ε1)},
C+

22 = λ+
2 {�q+ · �kf − 2ikf (� + ε1)}, D+

22 = −2λ+
2 {�ki · �kf + kikf },

A+
23 = (� + ε1)P +

23, B+
23 = −ikiP

+
23, C+

23 = −ikf P +
23, D+

23 = 0,

A+
3 = E+

11{q2
+ + (δ2 + � + ε1)2}, B+

3 = 2E+
11{�q+ · �ki − iki(δ2 + � + ε1)},

C+
3 = −2E+

11{�q+ · �kf + ikf (δ2 + � + ε1)}, D+
3 = −2E+

11{�ki · �kf + kikf }.
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The terms �q+, λ+
2 , P +

23, and E+
11 can be explicitly written as

�q+ = �kf

(
1 − x

2 + MP

)
− �ki

(
1 − x

1 + MP

)
, λ+

2 = γ2 − i vi t1,

P +
23 =

{ �kf

2 + MP

+
�ki

1 + MT

}2

+ δ2
2 + γ 2

2 − 2�vi ·
( �kf

2 + MP

+
�ki

1 + MT

)
t1, E+

11 = P +
23 + 2δ2γ2 − 2i vi δ2 t1.

Here the constant C ′ originates from the initial and final
bound-state wave functions. D(β1,δ2,γ1,γ2,ε1) is a parametric
differential operator used to generate the excited-state wave
functions. δ2, γ1 and γ ′

1, γ2 are the orbital component of the
initial and final bound-state wave functions. Finally, the total
cross sections in prior form (Q(−)

if ) and post form (Q(+)
if ) are

given by

Q
(±)
if

(
πa2

0

) = μiμf

4π2

kf

ki

∫ ∣∣ T BCCIS(±)
if

∣∣2
d�, (16)

where d� is the solid angle around �ki .
The transition amplitude contains three-dimensional in-

tegrals such as Lewis, Feynman, and a complex contour
integration. The final real form of this complex contour
integration (in t3) in Eq. (15) may be written [25] as

1

2πi

∮
dt3t

−i α3−1
3 (t3 − 1)i α3f (t3) dt3,

t3 → τ = eπα3 − e−πα3

2πi

∫ ∞

0

{[
eiα3τ φ

(
1

eτ + 1

)

+ e−iα3τ e−τ φ

(
1

e−τ + 1

) ]/(
1 + e−τ

)}
dτ + f (0), (17)

where eτ = (1 − t3)/t3, τ being the transformed integration
variable, and φ(t3) = f (t3) − f (0).

The real two-dimensional integration in y and τ is finally
carried out numerically. To evaluate the double integral (y
and τ ), we first perform the y integration by the Gauss
quadrature method with different fixed values of τ , which
are the Gauss Laguerre quadrature points required for the
subsequent τ integration. The Feynman integral has been
evaluated numerically with the 48-point Gauss-Legendre
quadrature method. Finally, integration over the scattering
angles has been performed with the 48-point Gauss-Legendre
quadrature method. However, it may be mentioned that
cross sections have finally been evaluated with an accuracy
of 0.1%.

III. RESULTS AND DISCUSSION

The total single-electron capture cross sections for the
process of the scattering between two hydrogenlike atomic
systems were obtained by summing over all contributions
(ground state (1s2), singly excited states 1s2s, 1s2p) from
individual shells and subshells up to n = 2, except the H + H
collision as the H− ion does not have any stable excited states.
So only one state is to be taken into account in the capture
process. The variation of single-electron capture cross sections

of ground-state hydrogenlike ions by the impact of different
projectile ions as a function of the incident energy ranging
from 20 to 5000 keV/amu is plotted in Figs. 1–4, respectively
using both prior and post forms of BCCIS-4B approximation.
Post-prior discrepancy does not exceed 20% for all interactions
above 70 keV/amu. Numerical computations are carried out
for the following reactions:

H + H → H−(1s2) + H+, (18)

He+ + He+ → He + He2+, (19)

He+ + H → He + H+, (20)

Li2+ + H → Li+ + H+. (21)

The present results obtained for the reaction (18) are
presented in Fig. 1 in both forms of BCCIS-4B approximation.
Our computed results for total single-electron capture cross
sections have also been compared with the measurements
of McClure [26], Schryber [27], and Hill et al. [28] and
with the theoretical results of Mancev [10] obtained by CB1-
4B method, the continuum-intermediate-states approximation
(CIS) of Banyard and Shirtcliffe [12], the CDW method of
Moore and Banyard [29] using the Hartree-Fock (HF) function,
the first Born approximation of Mapleton [30], and the couple-
state results of Wang et al. [31]. The agreement between
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FIG. 1. Total cross sections (in cm2) as a function of the incident
energy E (keV) for reaction H + H(1s)→H− + H+. Theory:
(solid line, 1) present results (prior form of BCCIS-4B); (dotted
line, 2) present results (post form of BCCIS-4B); (dashed line,
3) CB1-4B results of Mancev [10]; (dash-dotted line, 4) CIS-HF
results of Banyard and Shirtcliffe [12]; (dash-dot-dotted line, 5)
CDW-HF results of Moore and Banyard [29]; (open circle) first Born
results of Mapleton [30]; (open square) couple state results of Wang
et al. [31]. Experiments: (•) results of McClure [26]; (�) results of
Schryber [27]; (�) results of Hill et al. [28].
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FIG. 2. Total cross sections (in cm2) as a function of the incident
energy E (keV/amu) for reaction He+ + He+→He + He2+. Theory:
(solid line, 1) present results (prior form of BCCIS-4B); (dotted
line, 2) present results (post form of BCCIS-4B); (dashed line, 3)
prior form of CDW-4B results of Mancev [19]; (dash-dotted line,
4) post form of CB1-4B results of Mancev [19]. Experiments: (�)
results of Murphy et al. [34]; (•) results of Melchert et al. [35];
(�) results of Schmidt-Bocking and Dorner [36] (data taken from
Mancev [10]).

BCCIS-4B theory and experimental results [26–28] are found
to be satisfactory in both low- and intermediate-energy ranges.
Additional experimental results at higher impact energies are
very much needed to provide a better test of our formalism.
The CB1-4B results of Mancev [10] obtained by means of
the Hylleraas wave function [32] for H−(1s2) have a trend of
departing from experimental data below 200 keV as collision
energy decreases. This is expected because the formulation
does not include intermediate continuum states which are very
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FIG. 3. Total cross sections (in cm2) as a function of the incident
energy E (keV) for reaction He+ + H(1s)→He + H+. Theory: (solid
line, 1) present results (prior form of BCCIS-4B); (dotted line, 2)
present results (post form of BCCIS-4B); (dashed line, 3) CDW-4B
results of Mancev [18]; (open square) CTMC results of Becker
and MacKellar [13]; (open circle) CB1-4B results of Mancev [10].
Experiments: (�) results of Olson et al. [7]; (�) results of Shah
and Gilbody [37]; (•) results of Phaneuf et al. [38]; (�) results of
Hvelplund and Andersen [39].
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FIG. 4. Total cross sections (in cm2) as a function of the incident
energy E (keV/amu) for reaction Li2+ + H(1s)→Li+ + H+. Theory:
(solid line, 1) present results (prior form of BCCIS-4B); (dotted line,
2): present results (post form of BCCIS-4B); (dashed line, 3) prior
form of CDW-4B results of Mancev [13]; (dash-dotted line, 4) post
form of CB1-4B results of Mancev [19]; (open square) BCCIS-3B
results of Purkait [6]; (open triangle) CTMC results of Purkait [6];
(open circle) results of Eichler et al. [4]. Experiments: (�) results of
Shah et al. [40].

much important for the description of a charge transfer event.
It is also observed that the present computed results using
the Hylleraas wave function [32] agree with the theoretical
results of Moore and Banyard [29], but agreement is not
satisfactory with the CIS method of Banyard and Shirteliffe
[12] using the HF function in the low-energy region. The
reason may be attributed to the fact that the CIS method
does not satisfy proper boundary conditions. However, the
results of Mapleton [30] obtained by the two-parameter wave
function of Chandrasekhar [33] in the first Born approximation
overestimate the present findings at low energies. This feature
is obvious because first Born approximation is valid at high
energies. In Fig. 2, we have displayed the present results
for another symmetric collision of He+ with He+ as a
function of incident projectile energy. The present data are
compared with the existing experimental results of Murphy
et al. [34], Melchert et al. [35], Schmidt-Bocking and Dorner
[36] [for the reverse reaction: He2+ + He(1s2) → He+(1s) +
He+(1s)], and only the theoretical results of Mancev [19].
However, our calculated results are in better agreement with the
experimental results [34,35] in comparison to other theoretical
results [19], particularly at the lower side of the energy
region under consideration, but agreement is poor with other
experimental results [36] that have measured the cross sections
for the reverse reaction. This discrepancy may be attributed to
the principle of detail balancing. The theoretical results of
Mancev using the CB1-4B [19] approximation agrees with
the experimental results of Schmidt-Bocking and Dorner [36]
(data taken from Ref. [10]), whereas the results obtained
by the CDW-4B model [19] overestimate the experimental
results [34–36] below 150 keV/amu. In the CDW-4B method,
the electronic continuum intermediate states are included in
both channels through the Coulomb waves but are not included
in the CB1-4B method. However, the CDW-4B and CB1-4B
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approximation may not be accurate at low energies. We have
also observed that the ground-state capture is dominant as
for symmetric collision. This is expected because of energy
resonance and velocity matching of the active electron in the
initial and final states. We find from Figs. 1 and 2 the post-prior
discrepancy is within 20% above 60 keV/amu for the H +
H collision and throughout the whole energy region for the
He+ + He+ collision.

Now, we shall study our computed results for the asymmet-
ric reactions given by reactions (20) and (21). In Fig. 3, we
have displayed the present results along with other available
experimental and theoretical data for collision He+ + H. From
Fig. 3, it is evident that the present computed results show over-
all good agreement with the experimental results [7,37–39].
The results obtained by the CDW-4B approximation [18]
overestimate the present computed results below 500 keV as
the CDW-4B approximation may not be valid in the low-energy
range. The CTMC results of Becker and MacKeller [13]
overestimate all the available results to a significant extent
because classical treatment of a two-electron collision system
may not be accurate. It may be seen from Fig. 3 that the present
results show good agreement with the theoretical results of
Mancev [10] in the whole energy range. In such case the
post-prior discrepancy is less than 20% above 70 keV/amu.
For the Li2+ + H collision, the present computed results in
both forms are presented in graphical form in Fig. 4. We have
compared our theoretical results with only the experimental
results [40] and theoretical results [4,6,19]. It is evident that
the present results show good agreement with the experimental
results. However, a comparison of the CDW-4B and CB1-4B
models of Mancev [19] with the measurements shows that the
theoretical curves underestimate experimental data, especially
at lower impact energy (less than 400 keV/amu). The results
obtained by the method of three-body formalism of the BCCIS
approximation in prior form and the CTMC method [6] have
a similar trend with the present BCCIS-4B model. In both
these methods [6], the interactions of the active electron in
the target with incoming projectile ions have been taken
by a suitable potential containing both a long-range part

and a short-range part. However, such a BCCIS-3B model
cannot yield any information about the relative significance
of the role of the dynamic electron-electron correlation in
collisions under study. As may be expected, the theoretical
results of Eichler et al. [4] using the Oppenheimer-Brinkman-
Kramers (OBK) approximation are not in agreement with
the present results. We have observed that the maximum
contribution of total capture cross sections occur at n = 2
state for Li2+ + H collision in the low-energy range. The
capture peak in the individual state may be explained in
terms of the binding energy matching and the momentum
distribution of the active electron in the initial and final state,
respectively.

IV. CONCLUSIONS

We have calculated cross sections for the capture of 1s

electrons by hydrogenlike projectile ions using the BCCIS-4B
approximation in both the prior and post forms in the collision
energy range of 20–5000 keV/amu. The present computed
results are in satisfactory agreement with the experimental ob-
servations. The reasons for such success are the following: (i)
The continuum state of the active electron has been taken into
account properly; (ii) the boundary condition for the scattering
wave function has also been satisfied; and (iii) the potential
is faster falling than the Coulomb potential. In the presented
four-body formalisms, the dynamic electron correlations are
automatically included through the perturbation potentials.
However, more experimental data covering higher energies
is needed for the above-mentioned interactions both for the
development of refined theory and their applications in other
branches of physics.
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